摘要
大米镉超标问题严重威胁人体健康。水稻镉吸收转运基因OsNramp5的功能缺失可有效降低镉在稻米中的积累。为了快速创制镉低积累的水稻新种质,本研究利用CRISPR/Cas9基因编辑技术敲除三系杂交稻优质抗病恢复系川恢491(R491)中的镉吸收转运基因OsNramp5,获得了多种不同突变方式的编辑植株,并筛选出单靶点突变无转基因成份的两种纯合突变株系(KO1和KO2) 。在镉污染土壤中种植并测定野生型和敲除植株糙米的镉含量,结果显示,相比于野生型R491,敲除株系KO1和KO2糙米中的镉含量显著下降,均降低约90%左右。农艺性状调查结果发现,相比野生型R491,KO1突变株系的农艺性状没有显著差异,但KO2突变株系的株高、结实率和千粒重显著降低。因此,利用CRISPR/Cas9基因编辑技术敲除镉吸收转运基因OsNramp5可快速创制镉低积累的水稻新种质,本研究创制的新种质为加速培育可在镉污染区种植的安全水稻品种提供了新的遗传资源。
关键词
水稻是我国重要的口粮作物,约60%的人口以稻米为主食。镉是一种具有高度毒性的重金属元素,而水稻是一种容易富集镉的作物,在中、重度镉污染的农田中种植水稻会导致稻米中镉含量超标而形成“镉大米
水稻中镉吸收转运相关基因的发掘和克隆,为镉低积累水稻材料的遗传改良和新品种培育奠定了理论基
OsNramp5是编码天然抗性相关巨噬细胞蛋白的基因,直接调控镉的吸收转运,该基因的功能缺失可显著降低稻米中镉的含量。因此,本研究利用CRISPR/Cas9基因编辑技术在三系杂交稻恢复系川恢491(R491)中敲除OsNramp5基因,成功创制了多个不同突变方式的水稻新材料,并从中筛选出两个不含转基因成分的突变株系在镉中度污染稻田种植,测定其糙米中的镉含量,并调查主要农艺性状。本研究可为镉低积累水稻新种质的快速创制和遗传改良以及杂交稻新品种的培育提供参考。
遗传转化受体材料川恢491(R491)是四川农业科学院生物技术核技术研究所选育的三系杂交水稻优质抗病恢复系,具有穗粒数多,配合力好,结实率高等特点。遗传转化所获得的T0转基因材料种植于温室,R491和编辑后代中无转基因成分的植株于2023年种植在四川省农业科学院试验基地,按随机区组设计,每份材料重复种植3个小区,每个小区种4行,每行10株,株行距16 cm×25 cm,常规水肥管理。
利用华南农业大学刘耀光院士团队开发的CRISPR/Cas9敲除系统,在CRISPR-GE网站(http://skl.scau.edu.cn/targetdesign/)进行靶位点设计,在OsNramp5基因第11和12外显子上选取2个特异性的sgRNA靶位点SG1和SG2,分别用OsU6a和OsU6b启动子驱动,引物序列见
引物 Primer | 正向序列(5′-3′) Forward sequence (5′-3′) | 反向序列(5′-3′) Reverse sequence (5′-3′) | 用途 Application |
---|---|---|---|
SG1 | gccgTGCAGGGTTTCTTGGACATC | aaacGATGTCCAAGAAACCCTGCA | 敲除载体构建 |
SG2 | gttgAGAGCAAACGGCAGCTCGA | aaacTCGAGCTGCCGTTTGCTCT | |
SP-L1 | GCGGTGTCATCTATGTTACTAG | CRISPR/Cas 9载体测序 | |
SP-R | CGACATAGATGCAATAACTTCG | ||
KO-D1 | TGACCGTTCGTCTTATGC | AAGCGATGATGATGAGGC | 突变位点测序分析 |
KO-D2 | TGCACATGCCCAAACAGT | CAGGGTGAAGGACCAGCT | |
Hpt | TACACAGGCCATCGGTCCAGA | TAGGAGGGCGTGGATATGTC | 转基因元件检测 |
Cas9 | CACCATCTACCACCTGAGAA | CGAAGTTGCTCTTGAAGTTG |
序列中小写字母:Bsa I限制性酶切位点
The lowercase letters in the sequence:Bsa I restriction enzyme site

图1 OsNramp5 gRNA靶位点及敲除表达载体示意图
Fig.1 Schematic diagram of OsNramp5 gRNA target sites and knock-out expression vector
A:OsNramp5基因结构及靶点SG1和SG2所在位置; 非编码区、外显子和内含子分别用白色框、黑色框、黑线代表;黑色大写字母和下划线标记的红色大写字母分别代表敲除的靶序列和PAM序列(AGG) ;B:2个靶点gRNA表达盒连接在pYLCRISPR/Cas9上组成的表达载体;NLS:核定位信号,Hpt:潮霉素筛选标记,Ka
A: OsNramp5 gene structure and two targets SG1 and SG2 location; Non-coding regions, exons, and introns are represented by white boxes, black boxes, and black lines, respectively; The target site sequences are shown in black uppercase letters and the protospacer adjacent motif (PAM) sequences (AGG) are indicated in red and are underlined;B: Two target gRNA expression cassettes ligated on pYLCRISPR/Cas9 to form an expression vector; NLS: Nuclear localization signal, HPT: Hygromycin selection marker, Ka
采用CTAB法提取T0代水稻叶片DNA,用潮霉素Hpt特异引物对转基因植株进行PCR扩增检测,利用包含OsNramp5靶点1的检测引物KO-D1和靶点2检测引物KO-D2对所有T0代阳性植株进行扩增测序,PCR产物送至北京擎科生物成都分公司进行测序,通过序列比对分析并根据测序峰图确定敲除植株的突变方式。对纯合突变的T0代植株进行种植,在T1代提取单株叶片DNA,用潮霉素引物Hpt和特异引物Cas9检测转基因元件,挑选不含转基因成分的敲除纯合植株进行后续研究。检测所用PCR体系为20 μL:DNA 1 μL,正反向引物各1μL(10 μmol/L),PCR mix 10 μL,ddH2O 7μL;反应程序为:95 ℃ 5 min;95 ℃ 30 s,50~65 ℃ 30 s,72 ℃ 45 s,30个循环; 72 ℃ 5 min。PCR产物用1%的琼脂糖凝胶电泳检测。所用引物见
糙米以及土壤中的重金属镉含量测定采用金属电感耦合等离子质谱法(赛默飞ICP-MS)进行。野生型和两个敲除株系分别3个样品,共9个样品粉碎后过100目筛网,称取固体样品各0.2~0.3 g(精确至0.0001 g)于微波消解罐中,加入5 mL硝酸过夜,旋紧罐盖,按照微波消解仪标准操作步骤进行消解。冷却后取出,缓慢打开罐盖排气,用少量水冲洗内盖,将消解罐放在恒温电热板上,于100 ℃加热30 min,定容体积50 mL,混匀备用,同时做空白试验;打开 ICP-MS机器预热1 h,将消解好的待测液和空白溶液分别注入电感耦合等离子体质谱仪中,然后由机器读出相应的含量浓度,计算出每个样品中镉含量,取平均值作为测定结果。
构建好的OsNramp5敲除表达载体PYLCRISPR/Cas9Pubi-H-OsNramp5通过农杆菌介导的遗传转化法导入籼稻优质恢复系R491愈伤组织,转化后共获得24株T0代转化苗。分别用引物F1/R1和F2/R2扩增包含两个靶位点的DNA片段,根据PCR测序结果比对分析发现,共23个株系发生突变,编辑突变效率95.8%。编辑靶点1发现有T/C插入以及不同长度片段缺失的突变;编辑靶点2发现有A/T插入以及不同长度片段缺失的突变(

图2 OsNramp5编辑植株部分测序结果
Fig.2 Partial sequencing results of OsNramp5 genome editing T0 plants
下划线表示靶位点序列; 红色字母和---分别表示碱基插入和缺失的位置和类型; +和-表示碱基的插入和缺失
Underlined indicates the target site sequence; The red letters and --- indicate the location and type of base insertions and deletions, respectively; + and - indicate insertions and deletions of bases
为了明确OsNramp5基因敲除后对水稻籽粒中镉含量的影响,根据T0代测序结果,利用潮霉素和Cas9标记对T1代单株进行转基因成分的筛选和测序鉴定,从T2代植株中筛选出不含转基因成分的两个单靶点纯合突变株系(KO1和KO2),其中,KO1突变株系在第12外显子上插入了1个A碱基,KO2突变株系在第11外显子上缺失了26 bp。KO1和KO2突变株系与野生型同时种植在镉污染的试验田(土壤镉含量为0.86 mg/kg,pH为5.8)。水稻成熟后收获野生型和敲除突变的种子,将糙米磨成米粉后测定镉的含量,结果发现,与野生型R491相比,在镉污染土壤中KO1和KO2 两个突变株系糙米中镉含量低于0.038 mg/kg,较野生型糙米中0.37 mg/kg的镉含量相比,两个敲除突变株系糙米中镉含量显著降低(降低约90%)(

图3 野生型和突变体植株糙米中镉含量比较
Fig.3 Comparison of cadmium content in brown rice of WT and KO mutants
**:在0.01水平上差异显著,下同
**:Significant different at 0.01,the same as below
为了探究OsNramp5基因不同靶位点突变后是否影响农艺性状,将T2代中选择两种单靶点突变中不含转基因成分的纯合稳定突变株系KO1和KO2进行大田种植,成熟后进行田间农艺性状考查。结果显示,与受体野生型亲本R491相比,KO1突变株系的农艺性状无显著差异(

图4 OsNramp5敲除突变体植株表型
Fig. 4 The phenotypes of OsNramp5 knockout plants
A~C:分别为野生型和敲除突变体成熟期的植株形态(标尺=20 cm)、穗长(标尺=5 cm)和粒型(标尺=1 cm)比较
A-C:Comparison of plant morphology (Bar=20 cm), panicle length (Bar=5 cm), and grain shape (Bar=1 cm) at maturity between wild-type R491 and the two knockout mutant lines, respectively
株系 Line | 株高 (cm) Plant height | 有效穗数 Number of effective panicles | 穗长 (cm) Panicle length | 穗粒数 Grain number per panicle | 结实率 (%) Seed setting rate | 粒长 (mm) Grain length | 粒宽 (mm) Grain width | 千粒重 (g) 1000-grain weight |
---|---|---|---|---|---|---|---|---|
R491 | 123.9±1.8 | 10.80±1.50 | 24.60±2.10 | 162.53±16.62 | 93.46±2.55 | 8.65±0.12 | 2.71±0.02 | 23.15±0.35 |
KO1 | 122.8±2.2 | 11.68±1.32 | 24.30±2.30 | 172.45±9.64 | 92.57±2.95 | 8.78±0.16 | 2.70±0.03 | 22.86±0.46 |
KO2 | 114.2±2.7** | 11.32±1.70 | 24.70±1.80 | 164.45±13.09 | 91.17±1.85* | 8.73±0.18 | 2.68±0.02 | 21.92±0.43** |
*: 在0.05水平上差异显著
*: Significant difference at 0.05 level
由于KO1和KO2敲除株系的农艺性状差异较大,为了确认KO2突变体的农艺性状差异是否由脱靶引起其他基因突变所致,用在线脱靶效应分析网站offTarget (scau.edu.cn)对SG1和SG2靶点进行了脱靶效应预测分析。预测结果显示SG1靶点有13个位点可能存在脱靶,但脱靶概率小于0.09,其中在LOC_Os01g55090和LOC_Os08g04890基因上的CDS区可能存在脱靶的概率分别为0.018和0.05(
染色体Chr. | 位置(bp) Position | 序列 Sequence | 脱靶率Off-score | 基因 Gene | 区域 Region | 靶点Target |
---|---|---|---|---|---|---|
Chr.8 | 21712827 | TGCGGGGTTTTTTGGAAATC GGG | 0.090 | intergenic | SG1 | |
Chr.1 | 20295468 | TGCAGTGTTTTTTCGACATC AGG | 0.088 | intergenic | SG1 | |
Chr.3 | 21926989 | TTCTTGATTTCTTGGATATC AGG | 0.057 | intergenic | SG1 | |
Chr.8 | 123595 | TGCAGGTTTTTTTGCACATC AGG | 0.048 | intergenic | SG1 | |
Chr.6 | 20600047 | TGGAGGGTATTTTGGACATT AGG | 0.043 | intergenic | SG1 | |
Chr.4 | 10846726 | TGCATGGTTCCTTGGAAATA AGG | 0.037 | intergenic | SG1 | |
Chr.8 | 12800927 | TGCAGTGTTTCGTGGGAATC AGG | 0.030 | LOC_Os08g21474 | intron | SG1 |
Chr.1 | 31673901 | TGCAGTGTGTATTGGACATG TGG | 0.018 | LOC_Os01g55090 | CDS | SG1 |
Chr.11 | 10265343 | TGCTGCGGTTCTTGGACTTC ACG | 0.017 | LOC_Os11g18194 | intron | SG1 |
Chr.1 | 36738645 | CGGCGGGTTTCTTGGACATG AGG | 0.009 | intergenic | SG1 | |
Chr.11 | 25174511 | TGTAGCATTTCTTGGGGATC AGG | 0.005 | intergenic | SG1 | |
Chr.8 | 2495740 | TGAAGGGATTGGTGGAGATC AGG | 0.005 | LOC_Os08g04890 | CDS | SG1 |
Chr.1 | 10819788 | TGAAGGATTTGTTGGACACC AGA | 0.004 | LOC_Os01g19160 | CDS | SG1 |
Chr.7 | 8969915 | CAGAGCAAATGGTAGCTCAA AGG | 0.336 | LOC_Os07g15460 | CDS | SG2 |
Chr.2 | 24043045 | TCTGGCAAACGGCAGCTAGA AGG | 0.132 | intergenic | SG2 | |
Chr.10 | 4190123 | TATAACAAACCGCAGCTCTA AGG | 0.124 | intergenic | SG2 | |
Chr.10 | 4146706 | TATAACAAACCGCAGCTCTA AGG | 0.124 | intergenic | SG2 | |
Chr.10 | 1300848 | GATGGCAAACGGCGGCACGA CGG | 0.078 | intergenic | SG2 | |
Chr.4 | 22530927 | GAGAGCAAACACCAACCGGA AGG | 0.047 | LOC_Os04g37880 | five_prime_UTR | SG2 |
Chr.2 | 24687566 | TCGAGCAATCGCCATCTCGA AGG | 0.036 | LOC_Os02g40720 | CDS | SG2 |
Chr.11 | 13466068 | GACATCAAACCGCAGCCCGA AGG | 0.035 | LOC_Os11g23790 | intron | SG2 |
Chr.2 | 28987684 | GAGAGCAACCGGTAGGACAA AGG | 0.023 | intergenic | SG2 | |
Chr.3 | 22268854 | GCAAGCAAACGGAAGCTGGG AGG | 0.023 | LOC_Os03g40084 | CDS | SG2 |
Chr.2 | 1659286 | GAGAGCGAACGGCAGCTCAA ATG | 0.020 | LOC_Os02g03900 | CDS | SG2 |
Chr.1 | 17456548 | TAGAGCAAACGGCAGCACAA ATG | 0.015 | LOC_Os01g31870 | CDS | SG2 |
Chr.10 | 21302778 | GAGAGCAAATAGAAGCTAGA AGA | 0.014 | LOC_Os10g39800 | intron | SG2 |
Chr.6 | 26672551 | GAGTGCAAACGGCAAGGCGA AGG | 0.011 | intergenic | SG2 | |
Chr.9 | 22513894 | GAGATCAATAGGCAGCTCGA AGA | 0.011 | LOC_Os09g39200 | CDS | SG2 |
Chr.3 | 30763181 | GAGAACAAAGGGAAGCTCGT AGT | 0.001 | LOC_Os03g53650 | CDS | SG2 |
Chr.3 | 6959271 | GAGAGCAAAGGGCGCGGCGA AGG | 0.001 | LOC_Os03g12910 | CDS | SG2 |
红色字母:表示与靶序列差异的碱基;绿色字母:表示PAM序列
Red letters: Indicate the bases that differ from the target sequence; Green letters: Indicates the PAM sequence

图5 敲除植株中LOC_Os07g15460潜在脱靶位置的测序分析
Fig.5 Sequencing analysis of LOC_Os07g15460 potential off-target locations in the two knockout plants
自“镉大米”事件爆发后,稻米中镉超标的问题引起了社会广泛的关注。如何在镉污染的土壤中生产出安全的稻米,是水稻产业发展中需要解决的一个关键问题。研究表明,培育镉低积累水稻品种是解决镉大米超标问题的最佳策略。在目前已鉴定的调控水稻镉吸收转运相关基因中,LCD、OsLCT1和OsNramp5基因的功能突变后能较大幅度降低水稻籽粒中镉的含量,且不改变农艺性
本研究利用CRISPR/Cas9基因编辑技术在镉吸收转运基因OsNramp5第11和12外显子上设计了两个靶点,对R491进行定向敲除创制了籽粒中镉低积累的水稻新种质。通过对转基因T0代植株进行阳性植株鉴定和两个敲除靶点测序分析,两个靶点均获得了多种不同突变方式的变异株系;进一步筛选获得了无转基因成份的单靶点纯合突变株系KO1和KO2,将其种植在镉含量为0.86 mg/kg的中度污染土壤中,成熟后测定野生型R491和2个突变株系糙米中的镉含量,结果显示,KO1和KO2株系糙米中镉含量低于0.038 mg/kg,远低于食品安全标准(0.2 mg/kg),较野生型糙米中0.37 mg/kg的镉含量下降了90%左右;这一结果与OsNramp5不同突变植株籽粒中镉含量大幅下降一
本研究中,敲除株系KO1和KO2之间的农艺性状有一定的差异,与野生型R491相比,KO1株系的主要农艺性状没有显著变化,而KO2株系在株高、结实率和千粒重方面显著降低;对敲除靶点进行的脱靶效应分析和测序结果显示在KO1和KO2敲除株系中不存在脱靶现象,说明OsNramp5基因不同靶点的突变对植株农艺性状的影响不同。Ishikawa
参考文献
Grant C, Clarke J, Duguid S, Chaney R. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008, 390(2-3):301-310 [百度学术]
Åkesson A, Barregard L, Bergdahl I A, Nordberg G F, Nordberg M, Skerfving S. Non-renal effects and the risk assessment of environmental cadmium exposure. Environmental Health Perspectives, 2014, 122(5):431-438 [百度学术]
Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 2009, 238(3):201-208 [百度学术]
Jiang M, Jiang J, Li S, Li M, Tan Y, Song S, Shu Q, Huang J. Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation. Journal of Hazardous Materials, 2020, 384:121319 [百度学术]
Sebastian A, Prasad M N V. Cadmium minimization in rice. A review. Agronomy for Sustainable Development, 2014, 34(1):155-173 [百度学术]
Ishikawa S, Lshimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences, 2012, 109(47):19166-19171 [百度学术]
Sasaki A, Yamaji N, Yokosho K, Ma J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 2012, 24(5):2155-2167 [百度学术]
Ishimaru Y, Takahashi R, Bashir K, Shimo H, Nishizawa N K. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific Reports, 2012, 2(1):286 [百度学术]
Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011, 62(14):4843-4850 [百度学术]
Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa N K. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling & Behavior, 2011, 6(11):1813-1816 [百度学术]
Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant and Cell Physiology, 2012, 53(1):213 [百度学术]
Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa N K, Nakanishi, H. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell and Environment, 2012, 35: 1948-1957 [百度学术]
Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 2011, 189(1):190-199 [百度学术]
Sasaki A, Yamaji N, Ma J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 2014, 65(20): 6013-6021 [百度学术]
Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2017, 62(15):5727 [百度学术]
Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Fujiwara IT. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences, 2011, 108(52):20959-20964 [百度学术]
Chang J D, Huang S, Yamaji N, Zhang W W, Ma J F, Zhao F J. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell and Environment, 2020, 43(10): 2476-2491 [百度学术]
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8):1274-1284 [百度学术]
Lv Q, Li W, Sun Z, Ouyang N, Jing X, He Q, Wu J, Zheng J, Zheng J, Tang S. Resequencing of 1143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11(1):4478 [百度学术]
王天抗, 李懿星, 宋书锋, 傅岳峰, 余应弘, 柏连阳, 李莉. 水稻籽粒镉低积累资源挖掘及其新材料创制. 杂交水稻, 2021, 36(1): 68-74 [百度学术]
Wang T K, Li Y X, Song S F, Fu Y F, Yu Y H, Bai L Y, Li L. Excavation of rice resources with low cadmium accumulation in grains and development of new materials. Hybrid Rice, 2021, 36(1): 68-74 [百度学术]
Cao Z Z, Lin X Y, Yang Y J, Guan M Y, Xu P, Chen M X. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. BMC Plant Biology, 2019, 19(1):1-13 [百度学术]
韶也, 彭彦, 毛毕刚, 余丽霞, 唐丽, 李曜魁, 胡远艺, 张丹, 袁智成,罗武中,彭选明,李文建,周利斌,柏连阳,赵炳然. M1TDS技术及镉低积累杂交水稻亲本创制与组合选育, 杂交水稻, 2022, 37(1): 1-11 [百度学术]
Shao Y, Peng Y, Mao B G, Yu L X, Tang L, Li Y K, Hu Y Y, Zhang D, Yuan Z C, Luo W Z, Peng X M, Li W J, Zhou L B, Bai L Y, Zhao B R. M1TDS technology and creation of low-cadmium accumulation parents for hybrid rice breeding. Hybrid Rice, 2022, 37(1): 1-11 [百度学术]
李小秀, 吕启明, 袁定阳. OsNramp5基因变异影响水稻重要农艺性状的研究进展. 中国水稻科学, 2022, 36(6): 562-571 [百度学术]
Li X X, Lv Q M, Yuan D Y. Research progress on the effects of OsNramp5 mutation on important agronomic traits in rice. Chinese Journal of Rice Science, 2022, 36(6): 562-571 [百度学术]
Ishimaru Y, Bashir K, Nakanishi H, Nishizawa N K. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signaling & Behavior, 2012, 7(7):763-766 [百度学术]
Tang L, Mao B, Li Y, Lv Q, Zhang L P, Chen C, He H, Wang W, Zeng X, Shao Y. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 2017, 7(1):14438 [百度学术]
龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻. 中国水稻科学, 2019, 33(05):407-420 [百度学术]
Long Q Z, Huang Y L, Tang X Y, Wang H M, Lu M, Yuan L F, Wan J L. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9. Chinese Journal of Rice Science, 2019, 33(5): 407-420 [百度学术]
董家瑜, 吴天昊, 孙远涛, 何含杰, 李曜魁, 彭彦, 冀中英, 孟前程, 赵炳然, 唐丽. 不同锰浓度环境下OsNRAMP5突变对水稻耐热性和主要经济性状的影响, 杂交水稻, 2021, 36(2):79-88 [百度学术]
Dong J Y, Wu T H, Sun Y T, He H J, Li Y K, Peng Y, Ji Z Y, Meng Q C, Zhao B R, Tang L. Effects of OsNRAMP5 mutation on heat tolerance and main economic traits of rice under the conditions of different manganese concentration. Hybrid Rice, 2021, 36(2): 79-88 [百度学术]
Liu S M, Jiang J, Liu Y, Meng J, Xu S L, Tan Y Y, Li Y F, Shu Q Y, Huang J Z. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice. Rice Science, 2019, 26(2):88-97 [百度学术]