摘要
几丁质酶是以几丁质等为底物的糖基水解酶(GH,glycosyl hydrolases),在植物生长发育及抵御逆境中发挥重要功能。然而,大豆几丁质酶基因的组织表达模式及对逆境的响应尚不清楚,影响了其在遗传改良中的应用。本研究分别鉴定野生大豆与栽培大豆几丁质酶基因,并分析其表达模式。结果发现,野生大豆与栽培大豆分别含62个和55个几丁质酶基因,位于17条和18条染色体上;进化树分析发现,117个基因分为5类,其中类群III与类群V属于GH18亚家族,类群I、类群II与类群IV属于GH19亚家族;启动子分析发现,几丁质酶家族成员包含响应激素及逆境胁迫顺式作用元件。栽培大豆几丁质酶基因表达分析发现,其在不同组织及抗病耐逆等过程差异表达,其中Gm.01G142400和Gm.13G346700等在接种花叶病毒的抗病品种叶片中诱导表达,Gm.03G254300和Gm.20G164600等在低磷胁迫的磷高效品种根系中诱导表达,Gm.08G259200和Gm.19G245400等在低磷胁迫根瘤中诱导表达;野生大豆几丁质酶基因表达分析发现,其在不同组织及耐盐过程差异表达,其中Gs.02G002604和Gs.02G002940等在盐胁迫耐盐品种叶片中诱导表达。以上结果为挖掘利用几丁质酶基因奠定了基础。
几丁质酶(Chitinase)是一类以几丁质、壳聚糖、脂壳寡糖以及肽聚糖等天然高聚物为底物的糖基水解酶(GH,glycosyl hydrolases
很多植物含有几丁质酶,主要在根、茎、叶、花、荚等组织部位表
鉴于此,本研究分别利用野生大豆(Glycine soja Sieb. and Zucc.)W05高质量基因组(W05a1)和栽培大豆(Glycine max(L.)Merr.)Williams 82高质量基因组(Wm82a4v1)鉴定几丁质酶基因家族成员,并对其理化性质、染色体分布、系统进化关系、启动子顺式作用元件以及不同组织部位和抗病耐逆过程中的表达模式进行分析,为进一步发挥该类基因在大豆生长发育及抵御生物和非生物胁迫中的作用奠定基础。
首先从SoyBase数据库(https://www.soybase.org/)下载野生大豆W05(W05a1)和栽培大豆Williams 82(Wm82a4v1)最新版本基因组序列,并在NCBI网站(https://www.ncbi.nlm.nih.gov/)查找拟南芥与水稻基因组的所有几丁质酶家族成员蛋白序列;随后以这些蛋白序列为种子序列,在大豆基因组数据中进行BLAST分析,寻找含GH18(PF00704)或GH19(PF00182)结构域的同源基因,同时结合Pfam数据库(http://Pfam/search.shtml)寻找GH18(PF00704)和GH19(PF00182),鉴定大豆几丁质酶家族基因;再利用NCBI数据库中的Conserved Domain Database(http://www.ncbi.nlm.nih. gov/cdd/)工具,保留具有GH18和GH19保守结构域的基
利用MEGA7.0软件对野生大豆、栽培大豆、拟南芥与水稻几丁质酶基因编码蛋白进行多序列比对,并采用相邻连接法(NJ,neighbor-joining)构建系统进化树,参数设置为Bootstrap 1000次重
在SoyBase数据库获取大豆几丁质酶基因家族成员物理位置,利用TBtools软件(https://github.com/CJ-Chen/TBtools)将基因的染色体定位结果进行可视化;通过TBtools软件的OneStepMCScanX-Super Fast工具对基因进行共线性分析。
利用TBtools软件的Simple MEME Wrapper工具获得几丁质酶的蛋白保守基序,其中,最大基序数设为10,通过Visvalize MEME/MAST Motif Pattern工具实现其结果的可视化。
利用TBtools截取大豆几丁质酶家族基因的上游2000 bp序列,通过PlantCare(http://bioinformatics. psb.ugent.be/webtools/plantcare/html/)分析其顺式作用元件。
利用课题组栽培大豆抗病品种(齐黄30)接种花叶病毒(SMV,soybean mosaic virus)不同时间(3 h、24 h、5 d、10 d和14 d)叶片转录组数据(以接种PBS缓冲液为对照
本研究分别在野生大豆W05与栽培大豆Williams 82基因组中鉴定到62个和55个几丁质酶基因(
基因ID Gene ID | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization | 基因ID Gene ID | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
Gs.01G000553 | 296 | 液泡 | Gs.03G008247 | 416 | 细胞壁 |
Gs.01G001524 | 283 | 细胞膜 | Gs.05G011572 | 298 | 细胞外基质 |
Gs.02G002604 | 281 | 液泡 | Gs.07G017058 | 289 | 液泡 |
Gs.02G002940 | 320 | 液泡 | Gs.07G017060 | 341 | 细胞外基质 |
Gs.02G003628 | 296 | 液泡 | Gs.08G021659 | 326 | 液泡 |
Gs.03G005867 | 289 | 细胞膜 | Gs.08G022105 | 420 | 液泡 |
Gs.03G005868 | 289 | 细胞膜 | Gs.08G022109 | 204 | 细胞壁 |
Gs.03G005869 | 289 | 细胞膜 | Gs.09G023118 | 317 | 液泡 |
Gs.03G005871 | 289 | 细胞膜 | Gs.09G023940 | 309 | 细胞壁 |
Gs.03G005873 | 289 | 细胞膜 | Gs.09G023990 | 299 | 液泡 |
Gs.03G005877 | 289 | 细胞膜 | Gs.10G027023 | 225 | 细胞外基质 |
Gs.03G005879 | 289 | 细胞膜 | Gs.10G027869 | 304 | 液泡 |
Gs.03G005932 | 280 | 细胞膜 | Gs.11G029753 | 294 | 细胞膜 |
Gs.03G008223 | 303 | 细胞外基质 | Gs.11G029754 | 178 | 细胞壁 |
Gs.11G029956 | 304 | 细胞壁 | Gs.17G046619 | 384 | 细胞壁 |
Gs.11G030829 | 379 | 细胞壁 | Gs.18G048250 | 295 | 液泡 |
Gs.11G032516 | 308 | 细胞壁 | Gs.18G048257 | 310 | 液泡 |
Gs.11G032517 | 263 | 细胞膜 | Gs.18G048258 | 211 | 液泡 |
Gs.11G032669 | 274 | 液泡 | Gs.18G048259 | 297 | 液泡 |
Gs.12G033410 | 114 | 细胞膜 | Gs.18G049856 | 329 | 液泡 |
Gs.12G033411 | 280 | 液泡 | Gs.19G050817 | 316 | 细胞外基质 |
Gs.12G034517 | 298 | 液泡 | Gs.19G052278 | 277 | 细胞外基质 |
Gs.14G038380 | 156 | 细胞壁 | Gs.19G052570 | 148 | 细胞外基质 |
Gs.15G039684 | 820 | 细胞膜 | Gs.19G052599 | 196 | 细胞壁 |
Gs.15G039953 | 289 | 细胞壁 | Gs.20G053031 | 800 | 细胞核 |
Gs.15G040923 | 318 | 液泡 | Gs.20G054344 | 252 | 液泡 |
Gs.16G043472 | 317 | 液泡 | Gs.20G054345 | 333 | 细胞外基质 |
Gs.16G043474 | 196 | 液泡 | Gs.20G054347 | 299 | 液泡 |
Gs.16G044028 | 297 | 液泡 | Gs.U055170 | 762 | 叶绿体 |
Gs.17G045193 | 374 | 细胞壁 | Gs.U055172 | 365 | 细胞壁 |
Gs.17G045457 | 377 | 细胞壁 | Gs.U055208 | 197 | 细胞外基质 |
野生大豆基因ID Glysoja缩写为Gs.;下同
Wild soybean gene ID Glysoja was abbreviated to Gs.;The same as below
基因ID Gene ID | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization | 基因ID Gene ID | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
Gm.01G055200 | 296 | 液泡 | Gm.05G075000 | 298 | 细胞外基质 |
Gm.01G142400 | 283 | 细胞膜 | Gm.07G005801 | 78 | 细胞膜 |
Gm.01G160100 | 275 | 液泡 | Gm.08G259200 | 326 | 液泡 |
Gm.02G007400 | 281 | 液泡 | Gm.08G299700 | 300 | 液泡 |
Gm.02G042500 | 320 | 液泡 | Gm.08G300300 | 245 | 细胞外基质 |
Gm.02G113600 | 296 | 液泡 | Gm.09G038500 | 317 | 液泡 |
Gm.03G024400 | 289 | 细胞膜 | Gm.09G121000 | 309 | 细胞壁 |
Gm.03G024500 | 289 | 细胞膜 | Gm.09G126200 | 299 | 液泡 |
Gm.03G024566 | 289 | 细胞膜 | Gm.10G227700 | 304 | 液泡 |
Gm.03G024900 | 289 | 细胞膜 | Gm.11G146899 | 304 | 细胞壁 |
Gm.03G025000 | 289 | 细胞膜 | Gm.12G049100 | 114 | 细胞膜 |
Gm.03G025200 | 289 | 细胞膜 | Gm.12G049200 | 280 | 液泡 |
Gm.03G030500 | 280 | 细胞膜 | Gm.12G156600 | 298 | 液泡 |
Gm.03G254300 | 303 | 细胞外基质 | Gm.13G155800 | 379 | 细胞壁 |
Gm.03G256800 | 418 | 细胞壁 | Gm.13G330800 | 308 | 细胞壁 |
Gm.13G330900 | 264 | 细胞膜 | Gm.18G120200 | 295 | 液泡 |
Gm.13G346700 | 274 | 液泡 | Gm.18G120700 | 295 | 液泡 |
Gm.14G110700 | 174 | 细胞壁 | Gm.18G283400 | 329 | 液泡 |
Gm.15G015100 | 820 | 细胞膜 | Gm.19G076200 | 316 | 细胞外基质 |
Gm.15G043300 | 298 | 细胞壁 | Gm.19G221800 | 272 | 细胞外基质 |
Gm.15G143600 | 318 | 液泡 | Gm.19G245400 | 211 | 细胞膜 |
Gm.15G206400 | 762 | 叶绿体 | Gm.19G245500 | 194 | 细胞膜 |
Gm.15G206800 | 365 | 细胞壁 | Gm.20G164600 | 301 | 液泡 |
Gm.16G119200 | 317 | 液泡 | Gm.20G164700 | 333 | 细胞外基质 |
Gm.16G173000 | 297 | 液泡 | Gm.20G164900 | 299 | 液泡 |
Gm.17G076100 | 374 | 细胞壁 | Gm.U031104 | 289 | 细胞膜 |
Gm.17G103500 | 377 | 细胞壁 | Gm.U031204 | 289 | 细胞膜 |
Gm.17G217000 | 384 | 细胞壁 |
栽培大豆基因ID Glyma缩写为Gm.;下同
Cultivated soybean gene ID Glyma was abbreviated to Gm.;The same as below
分析野生大豆62个几丁质酶基因的染色体分布发现(图

(图1)

A:野生大豆几丁质酶基因:B:栽培大豆几丁质酶基因
A: Wild soybean chitinase genes; B: Cultivated soybean chitinase genes
图1 野生大豆与栽培大豆几丁质酶基因的染色体分布
Fig. 1 Chromosome distributions of chitinase genes in wild and cultivated soybean
对上述鉴定的野生大豆和栽培大豆几丁质酶基因编码蛋白构建系统进化树(以拟南芥与水稻几丁质酶基因为参考),结果发现(

图2 大豆几丁质酶家族成员系统进化树分析
Fig. 2 The phylogenetic tree of chitinase family members in soybean
对野生大豆与栽培大豆几丁质酶基因进行共线性分析发现(

图3 大豆几丁质酶基因家族成员共线性分析
Fig.3 Collinear relationships of chitinase family genes in soybean
灰色线连接共线性基因,蓝色线连接野生大豆纯化选择基因,红色线连接栽培大豆纯化选择基因;红色字体为野生大豆基因,黑色字体为栽培大豆基因
Gray lines indicate collinear genes, the blue lines indicate wild soybean purification selection genes, and the red lines indicate cultivated soybean purification selection genes; red font indicate wild soybean genes, black font indicate cultivated soybean genes
分析野生大豆和栽培大豆几丁质酶基因的保守基序发现(


图4 大豆几丁质酶家庭成员保守基序分析
Fig. 4 Motif structure analysis of chitinase family members in soybean
A:GH18亚家族成员保守基序分析;B:GH19亚家族成员保守基序分析
A: Motif structure analysis of GH18 subfamily; B: Motif structure analysis of GH19 subfamily
分析几丁质酶基因上游启动子顺式作用元件发现(

图5 大豆几丁质酶基因启动子区的顺式作用元件分析
Fig.5 Cis-acting elements analyses of chitinase family genes in soybean
A:野生大豆:B:栽培大豆
A: Wild soybean; B: Cultivated soybean
栽培大豆几丁质酶基因上游启动子序列中也含有响应多种植物激素以及生物与非生物胁迫的元件(
分析栽培大豆55个几丁质酶基因在不同组织器官的表达模式发现(

图6 几丁质酶基因在栽培大豆不同组织部位的表达模式分析
Fig. 6 Expression analysis of chitinase genes in different cultivated soybean tissues
分析栽培大豆抗病品种叶片接种花叶病毒不同时间几丁质酶基因表达量发现(

图7 几丁质酶基因在栽培大豆抗病品种接种花叶病毒后的表达分析
Fig. 7 Expression analysis of chitinase genes after SMV inoculation in resistant cultivated soybean variety
QH30:齐黄30,抗花叶病毒品种
QH30:Qihuang30, high-resistant cultivated soybean variety
分析几丁质酶基因在磷高效品种低磷处理4个不同时间的根系表达量发现(

图8 几丁质酶基因在栽培大豆磷高效品种低磷处理不同时间后的表达分析
Fig. 8 Expression analysis of chitinase genes after low phosphorous treatment in high-efficiency cultivated soybean variety
ZH15:中黄15,磷高效品种
ZH15:Zhonghuang15, high-efficiency cultivated soybean variety
分析几丁质酶基因在低磷胁迫28 d的大豆成熟根瘤表达量发现(

图9 几丁质酶基因在栽培大豆低磷处理成熟根瘤后的表达分析
Fig. 9 Expression analysis of chitinase genes in cultivated soybean mature nodules after low phosphorous treatment
NP: Normal phosphorous; LP: Low phosphorous
分析野生大豆几丁质酶基因的不同组织器官表达模式(

图10 几丁质酶基因在野生大豆不同组织部位的表达模式分析
Fig. 10 Expression analysis of chitinase genes in different wild soybean tissues
分析几丁质酶基因在野生大豆和栽培大豆之间的组织器官差异表达(

图11 几丁质酶基因在栽培大豆与野生大豆之间的组织表达差异
Fig. 11 Different expressions of chitinase genes between wild and cultivated soybeans
基因ID-C:栽培大豆中的基因表达量;基因ID-W:野生大豆中的基因表达量
Gene ID-C: Gene expressions in cultivated soybean; Gene ID-W: Gene expressions in wild soybean; V1: First leaf; R1: Initial flowering; R4: Full pod
利用前人已报道的2个野生大豆(耐盐品种和盐敏感品种)盐胁迫处理不同时间(3 h、10 h,以0 h为对照)的叶片转录组数

图12 盐胁迫下野生大豆叶片中的几丁质酶基因表达
Fig. 12 Expressions of chitinase genes under salt stress condition in wild soybean leaves
T-3h/0h和T-10h/0h:耐盐野生大豆盐胁迫3 h和10 h的相对表达量;S-3h/0h和S-10h/0h:盐敏感野生大豆盐胁迫3 h和10 h的相对表达量
T-3h/0h and T-10h/0h: Relative expressions at 3 h and 10 h after salt stress in tolerant wild soybean;S-3h/0h and S-10h/0h: Relative expressions at 3 h and 10 h after salt stress in sensitive wild soybean
大豆是影响世界的中国起源作物。野生大豆作为栽培大豆的原始祖先种,不仅具有丰富的遗传多样性,而且具有荚多、粒多、耐荫、耐涝、耐高温、耐干旱、耐盐碱以及抗病虫等多种优良特
为验证结果可靠性,本研究查找了目前仅有的几篇有关大豆几丁质酶功能基因的报道,结果发现,与前人结果存在较好的一致性,例如Zhao
通过比较野生大豆与栽培大豆的几丁质酶基因数量及其染色体分布发现,在野生大豆驯化过程中可能发生了几丁质酶家族成员的丢失和染色体间的易位,从而导致栽培大豆的几丁质酶基因数量变少且染色体分布与野生大豆不同。有学者认为,在物种驯化过程中是否存在选择压力,可通过比较异义替换(Ka)与同义替换(Ks)的比值来判断,若比值大于1则认为存在正选择,若比值等于1则认为存在中性选择,而比值小于1则认为属于纯化选
启动子顺式作用元件对基因转录表达及功能发挥具有重要意义。本研究通过分析大豆几丁质酶基因家族成员启动子序列发现,含多种顺式作用元件,如光响应元件,脱落酸、赤霉素、水杨酸和生长素等应答元件以及籽粒生长发育和干旱胁迫响应等元件,意味着该类基因可能通过参与不同的信号通路进而发挥其功能。本研究鉴定到有些几丁质酶基因启动子含有赤霉素响应元件,而赤霉素可调节植物果荚长
目前,有关几丁质酶参与植物抗病虫、耐逆等方面的研究已有报道。左豫虎
另外,有研究发现,大豆果荚腹缝线开裂区的细胞纤维素、木质素含量增多可使其抗裂荚能力明显提
参考文献
Bhattacharya D, Nagpure A, Gupta R K. Bacterial chitinases: Properties and potential. Critical Reviews in Biotechnology, 2007, 27(1): 21-28 [百度学术]
Gong S S, Meng Q L, Qiao J, Huang Y F, Zhong W Q, Zhang G W, Zhang K, Li N X, Shang Y X, Li Z Y, Cai X P. Biological characteristics of recombinant arthrobotrys oligospora chitinase AO-801. Korean Journal of Parasitology, 2022, 60(5): 345-352 [百度学术]
夏文水, 吴焱楠. 甲壳素/壳聚糖水解酶的研究进展. 中国海洋药物, 1997, 16(2): 31-35 [百度学术]
Xia W S, Wu Y N. Recent progress in the research of chitin/chitosan hydrolases. Chinese Journal of Marine Drugs, 1997, 16(2): 31-35 [百度学术]
Li X R, Wajjiha B, Zhang P H, Dang Y J, Prasad R, Wei Y, Zhang S H. Serendipita indica chitinase protects rice from the blast and bakanae diseases. Journal of Basic Microbiology, 2023, 63(7): 734-745 [百度学术]
Hamid R, Khan M A, Ahmad M, Ahmad M M, Abdin M Z, Musarrat J, Javed S. Chitinases: An update. Journal of Pharmacy and Bioallied Sciences, 2013, 5(1): 21-29 [百度学术]
Rawat S, Ali S, Mittra B, Grover A. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. Biotechnology Reports, 2017, 13: 72-79 [百度学术]
Jiao Z L, Su P P, Li Y, Zhao W J, Yang L B, Sun C Q, Xiu J F, Shang X L, Guo G. Identification and function analysis of chitinase 2 gene in housefly, Musca domestica. Comparative Biochemistry & Physiology, 2022, 259: 110717 [百度学术]
Cantarel B L, Coutinho P M, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy):An expert resource for Glycogenomics. Nucleic Acids Research, 2009, 37: 233-238 [百度学术]
Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi G, Iwasaki H, Ohnuma T, Fukamizo T. A plant class V chitinase from a cycad (Cycas revoluta):Biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology, 2009, 19(12): 1452-1461 [百度学术]
Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer A H, Skriver K, Fukamizo T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta, 2011, 234(1): 123-137 [百度学术]
Price N P J, Momany F A, Schnupf U, Naumann T A. Structure and disulfide bonding pattern of the hevein-like peptide domains from plant class Ⅳ chitinases. Physiological & Molecular Plant Pathology, 2015, 89(1): 25-30 [百度学术]
蔡培原, 陈祥贵. 微生物几丁质酶研究概况及其在食品工程中的应用. 四川食品与发酵, 2008, 44(3): 41-45 [百度学术]
Cai P Y, Chen X G. Development and application of chitinase in food engineering. Sichuan Food and Fermentation, 2008, 44(3): 41-45 [百度学术]
Nakazaki T, Tsukiyama T, Okumoto Y, Kageyama D, Naito K, Inouye K, Tanisaka T. Distribution, structure, organ-specific expression, and phylogenic analysis of the pathogenesis-related protein-3 chitinase gene family in rice (Oryza sativa L.). Genome, 2006, 49(6): 619-630 [百度学术]
Vaghela B, Vashi R, Rajput K, Joshi R. Plant chitinases and their role in plant defense: A comprehensive review. Enzyme and Microbial Technology, 2022, 159: 110055 [百度学术]
Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K K, Peng Y G, Zhou Y H, Zhu Z. Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiology, 2012, 159(4): 1440-1452 [百度学术]
Maglovski M, Gregorova Z, Rybansky L, Meszaros P, Moravcikova J, Hauptvogel P, Adamec L, Matusikova I. Nutrition supply affects the activity of pathogenesis-related beta-1,3-glucanases and chitinases in wheat. Plant Growth Regulation, 2017, 81: 443-453 [百度学术]
Hong, J K, Hwang B K. Promoter activation of pepper class Ⅱ basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta, 2006, 223(3): 433-448 [百度学术]
Park C H, Kim S, Park J Y, Ahn I P, Jwa N S, Im K H, Lee Y H. Molecular characterization of a pathogenesis-related protein gene encoding a class Ⅲ chitinase in rice. Molecules and Cells, 2004, 17(1): 144-150 [百度学术]
潘晓雪, 胡明瑜, 王忠伟, 苏梅, 雷开荣, 吴红, 蒋晓英. 水稻几丁质酶基因家族的全基因组鉴定及表达分析. 植物生理学报, 2022, 58(4): 746-756 [百度学术]
Pan X X, Hu M Y, Wang Z W, Su M, Lei K R, Wu H, Jiang X Y. Genome-wide analysis of the rice chitinases gene family and their expression profiles under different stress treatments. Plant Physiology Journal, 2022, 58(4): 746-756 [百度学术]
Yu C S, Chen Y C, Lu C H, Huang J K. Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 2006, 64(3): 643-651 [百度学术]
Petersen T N, Brunak S, Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8(10): 785-786 [百度学术]
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874 [百度学术]
Chu J H, Li W L, Piao D R, Kong Y B, Du H, Lin F, Li X H, Zhang C Y. Mining of a major QTL and novel genes conferring resistance to SC3 and SC7 strains in soybean. Plant Breeding, 2021, 140: 851-859 [百度学术]
Kong Y B, Wang B, Du H, Li W L, Li X H, Zhang C Y. GmEXLB1, a soybean expansin-like B gene, alters root architecture to improve phosphorus acquisition in Arabidopsis. Frontiers in Plant Science. 2019, 10: 808 [百度学术]
Xing X Z, Du H, Yang Z W, Li X H, Kong Y B, Li W L, Zhang C Y. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC Plant Biology, 2022, 22: 161 [百度学术]
Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. The Plant Journal, 2010, 63(1): 86-99 [百度学术]
魏志园, 王宇, 司增志, 魏莱, 温晓蕾, 乔亚科, 李桂兰, 张锴. 盐碱胁迫下野生大豆CBL-CIPK通路表达分析. 核农学报, 2021, 35(8): 1783-1793 [百度学术]
Wei Z Y, Wang Y, Si Z Z, Wei L,Wen X L, Qiao Y K, Li G L, Zhang K. Analysis of CBL-CIPK pathway proteins in wild soybean with saline-alkali stress. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1783-1793 [百度学术]
Yang Z Q, Luo C F, Pei X X, Wang S B, Huang Y M, Li J W, Liu B H, Kong F J, Yang Q Y, Fang C. SoyMD:A platform combining multi-omics data with various tools for soybean research and breeding. Nucleic Acids Research, 2024, 52: 1639-1650 [百度学术]
Kang X, Cai J J, Chen Y X, Yan Y C, Yang S T, He R Q, Wang D, Zhu Y L. Pod-shattering characteristics differences between two groups of soybeans are associated with specific changes in gene expression. Nature Reviews Cancer, 2020, 20(2): 201-210 [百度学术]
王克晶, 李福山. 我国野生大豆(G.soja)种质资源及其种质创新利用. 中国农业科技导报, 2000, 2(6): 69-72 [百度学术]
Wang K J, Li F S. General situation of wild soybean (G. soja) germplasm resources and its utilization of introgression into cultivated soybean in China. Review of China Agricultural Science and Technology, 2000, 2(6): 69-72 [百度学术]
胡小梅, 张必弦, 朱延明, 来永才, 李炜, 李琬, 毕影东, 肖佳磊, 齐宁, 林红, 刘广阳, 杨雪峰, 刘丽艳, 张俐俐. 野生大豆资源的研究与利用. 安徽农业科学, 2011, 39(22): 13311-1331 [百度学术]
Hu X M, Zhang B X, Zhu Y M, Lai Y C, Li W, Li W, Bi Y D, Xiao J L, Qi N, Lin H, Liu G Y, Yang X F, Liu L Y, Zhang L L. The studies and utilization of wild soybean (Glycine soja). Journal of Anhui Agricultural Science, 2011, 39(22): 13311-13313 [百度学术]
齐宁, 林红, 魏淑红, 杨雪峰, 刘广阳. 利用野生大豆资源创新优质抗病大豆新种质. 植物遗传资源学报, 2005, 6(2): 200-203 [百度学术]
Qi N, Lin H, Wei S H, Yang X F, Liu G Y. Using wild soybean resources to develop the new soybean germplasm of high quality and diseases resistance. Journal of Plant Genetic Resources, 2005, 6(2): 200-203. [百度学术]
Zhao C M, Hou H, Xing M G, Xue R G. Identification of stigma specific expression fragment in the promoter of a soybean chitinase class Ⅰ gene. Molecular Biology, 2023, 57(1): 83-94 [百度学术]
Gijzen M, Kuflu K, Qutob D, Chernys J T. A class I chitinase from soybean seed coat. Journal of Experimental Botany, 2001, 52: 2283-2289 [百度学术]
赵艳, 沙伟, 金忠民, 张梅娟. 大豆class Ⅲ酸性内切几丁质酶基因及其启动子表达方式. 中国油料作物学报, 2013, 35(2): 221-224 [百度学术]
Zhao Y, Sha W, Jin Z M, Zhang M J. Expression pattern of soybean class Ⅲ acidic endochitinase gene and promoter. Chinese Journal of Oil Crop Sciences, 2013, 35(2): 221-224 [百度学术]
Nekrutenko A, Makova K D, Li W H. The KA/KS ratio test for assessing the protein-coding potential of genomic regions: An empirical and simulation study. Genome Research, 2002, 12(1): 198-202 [百度学术]
Polowick P L, Sawhney V K. In vitro floral development of oilseed rape (Brassica napus L.): The effects of pH and plant growth regulators. Journal of Experimental Botany, 1991, 42(245): 1583-1588 [百度学术]
郭泽西, 刘露露, 孙大运, 潘凤英, 曲俊杰, 尹玲. 查尔酮合成酶在植物抗病中的研究进展. 分子植物育种, 2023, 21(22): 7545-7553 [百度学术]
Guo Z X, Liu L L, Sun D Y, Pan F Y, Qu J J, Yin L. Progress of chalcone synthase and plant disease resistance. Molecular Plant Breeding, 2023, 21(22): 7545-7553 [百度学术]
吴采玉, 文春雨, 黄丽萍, 徐瑞新, 宋健. 不同颜色大豆种皮成分及抗氧化性分析. 大豆科学, 2023, 42(5): 554-564 [百度学术]
Wu C Y, Wen C Y, Huang L P, Xu R X, Song J. Analysis of seed coat composition and antioxidant activity of soybean with different colors. Soybean Science, 2023, 42(5): 554-564 [百度学术]
杜婷婷, 宋治华, 董碧莹, 曹红燕, 刘腾跃, 杨琬珑, 祁萌, 陈婷, 王梦莹, 孟冬, 杨清, 付玉杰. 木豆类黄酮代谢通路关键基因家族的鉴定与表达分析. 农业生物技术学报, 2021, 29(12): 2289-2303 [百度学术]
Du T T, Song Z H, Dong B Y, Cao H Y, Liu T Y, Yang W L, Qi M, Chen T, Wang M Y, Meng D, Yang Q, Fu Y J. Identification and expression analysis of key gene families in flavonoid metabolism pathway in pigeon pea (Cajanus cajan). Journal of Agricultural Biotechnology, 2021, 29(12): 2289-2303 [百度学术]
厉广辉, 郭鑫, 孙艳斌, 张伟男, 赵慧玲, 赵红军, 王兴军, 付春, 赵传志. 盐胁迫下不同花生品种的类黄酮含量和抗氧化酶活性. 中国油料作物学报, 2023, 45(4): 803-809 [百度学术]
Li G H, Guo X, Sun Y B, Zhang W N, Zhao H L, Zhao H J, Wang X J, Fu C, Zhao C Z. Flavonoid contents and antioxidant enzyme activities of different peanut cultivars under salt stress. Chinese Journal of Oil Crop Sciences, 2023, 45(4): 803-809. [百度学术]
陈敏, 朱辉, 曹扬荣. 费氏中华根瘤菌NodD2蛋白与植物类黄酮互作的生化机制研究. 生命的化学, 2022, 42(7): 1396-1404 [百度学术]
Chen M, Zhu H, Cao Y R. Biochemical mechanism of the interaction between Sinorhizobium fredii NodD2 and plant flavonoids. Chemistry of Life, 2022, 42(7): 1396-1404 [百度学术]
Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher R A, Lange J, Wiemken A, Kim D, Cook D R, Boller T. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant-microbe Interactions, 2000, 13(7): 763-777 [百度学术]
左豫虎, 康振生, 杨传平, 芮海英, 娄树宝, 刘惕若. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系. 植物病理学报, 2009, 39(6): 600-607 [百度学术]
Zuo Y H, Kang Z S, Yang C P, Rui H Y, Lou S B, Liu T R. Relationship between activities of β-1,3-glacanase and chitinase and resistance to phytophthora root rot in soybean. Acta Phytopathologica Sinica, 2009, 39(6): 600-607 [百度学术]
Su Y C, Xu L P, Fu Z W, Yang Y T, Guo J L, Wang S S, Que Y X. ScChi, encoding an acidic Class Ⅲ chitinase of sugarcane, confers positive responses to biotic and abiotic stresses in sugarcane. International Journal of Molecular Sciences, 2014, 15, 2738-2760 [百度学术]
Salzer P, Feddermann N, Wiemken A, Boller T, Staehelin C. Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: A comparison between symbiosis-specific class V and defence-related class Ⅳ chitinases. Planta, 2004, 219(4): 626-638 [百度学术]
Dong Y, Yang X, Liu J, Wang B H, Liu B L, Wang Y Z. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 2014, 5: 3352 [百度学术]
Sanchez-Rodriguez C, Bauer S, Hématy K, Saxe F, Ibáñez A B, Vodermaier V, Konlechner C, Sampathkumar A, Rüggeberg M, Aichinger E, Neumetzler L, Burgert Ⅰ, Somerville C, Hauser M T, Persson S. Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. The Plant Cell, 2012, 24(2): 589-607 [百度学术]