摘要
谷子抽穗期是决定品种适应性的关键性状,解析抽穗期关键基因的表达规律及其单倍型变异特点可为提升品种改良效率奠定基础。本研究通过全基因组关联分析,发现了一个与抽穗期紧密相关的关联信号,该信号定位于谷子5号染色体的11062649 bp处,该位点附近存在一个拟南芥抽穗期基因AtGI的同源基因SiGI。使用qRT-PCR技术研究短日照(10 h光照/14 h黑暗)条件下SiGI 24 h节律变化规律,并对其进行了组织时空表达及亚细胞定位分析。利用697份谷子品种,分析SiGI编码区和启动子区的遗传多态性和单倍型变异规律,并对单倍型的表型效应进行鉴定。结果显示,SiGI在光周期响应组织(根、茎、叶等)中高表达,亚细胞定位于细胞核,在傍晚表达量上调,呈现出24 h节律性表达模式。SiGI在不同谷子品种中存在丰富的多态性,其中,启动子Hap-6单倍型较Hap-3单倍型品种的相对表达量显著上调了约1.5倍(P=0.0083)。在8个不同种植环境下,Hap-6单倍型品种的抽穗期显著提前,并在4个环境中株高显著降低。结果表明SiGI基因的Hap-6单倍型具有早熟且对产量影响较小的优势,可作为优异单倍型用于分子育种选择。
抽穗期是作物重要的农艺性状之
已有研究发现拟南芥GIGANTEA是一种植物特异性核蛋
目前,拟南芥及水稻GI基因的生物钟特征及光周期调控模式已被初步解
根据He
参照张林林
通过Photozyme数据库获取SiGI(Seita.5G129500)的蛋白序列,提交至NCBI(https://www.ncbi.nlm.nih.gov/)进行BLAST比对,获得水稻、高粱、拟南芥、柳枝稷、二穗短柄草等不同物种的同源蛋白序列,整理后导入到MEGA 6中进行多序列比对,并利用邻接法(N-J,neighbor-joining)构建系统发育进化树,Bootstrap值设置为1000。根据Lescot
参照桑璐曼
引物用途 Primer action | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence (5′-3′) | 产物长度 (bp) Product length |
---|---|---|---|
GFP-N端载体 GFP-N terminal vector |
580-5G129500F 580-5G129500R |
GCCCAGATCAACTAGTATGTCAGCTTCAAATGAGAAGTGG TCGAGACGTCTCTAGAGCAAGGGAGGGGGCAGCC | 3512 |
检测引物 Detection primers |
PAN580-Test-F PAN580-Test-R |
ATGACGCACAATCCCACTATCC AAGACCGGCAACAGGATTCAAT | 4400 |
qRT-PCR引物 qRT-PCR primers |
5G-2-F 5G-2-R |
AAGTGCCGTCTATCACCCAC GGGGGTTATGTGTCCGTTGT | 111 |
内参基因 (Photozyme基因号:Seita.3G037700) |
Cullin-F Cullin-R |
TATGGGTCATCAACAGCTTGTC GTAGTCCCTCGTGATGAGATCC | 112 |
参照张林林
本研究在1173份谷子和狗尾草材料的重测序数
通过全基因组关联分析,定位到谷子第5号染色体物理位置11062649 bp处的一个与抽穗期紧密相关的位点,该位点上下游50 kb区间内共存在8个编码基因(

图1 SiGI的GWAS分析
Fig.1 GWAS analysis of SiGI
A: SiGI GWAS 定位结果,蓝点表示关联到的位点,红色虚线标出的为关联最为紧密的位点;B:关联位点区间内的候选基因;C:目的基因的基因结构
A: Results of SiGI GWAS,the blue dots represent the associated sites,the red dashed line indicates the most closely related sites; B: Candidate gene in the associated locus range;C: The gene structure of the target gene
位点名称 Locus name | 拟南芥同源基因 Arabidopsis homologous genes | 拟南芥基因功能注释 Arabidopsis annotation |
---|---|---|
Seita.5G128800 | AT4G05497 | RNI-like superfamily protein |
Seita.5G128900 | AT3G22440 | FRIGIDA-like protein |
Seita.5G129000 | AT5G26830 | 苏氨酸tRNA合成酶 |
Seita.5G129100 | 无 | 无 |
Seita.5G129200 | AT2G25735 | 未知蛋白 |
Seita.5G129500 | AT2G36960 | TSL激酶相互作用蛋白1 |
Seita.5G129400 | AT5G64780 | 未鉴定的保守蛋白UCP009193 |
Seita.5G129500 | AT1G22770(AtGI) | Gigantea protein (GI) |
下划线表示GI同源基因 SiGI(Seita.5G129500)
GI homologous gene SiGI(Seita.5G129500) is marked in underline
谷子Seita.5G129500(SiGI)基因的启动子顺式作用元件分析结果显示(

图2 SiGI 的启动子区顺式作用元件分析及基因编码区同源蛋白系统进化树
Fig.2 Analysis of cis-acting elements in the promoter region of SiGI and phylogenetic tree of homologous proteins in the gene coding region
A: SiGI启动子区上游2000 bp顺式作用元件分析;B:SiGI同源蛋白系统进化树和基因结构
A: Analysis of 2000 bp cis-acting elements upstream of the SiGI promoter region;B: SiGI homologous protein phylogenetic tree and gene structure
SiGI基因包含14个外显子和15个内含子,共编码1161个氨基酸。SiGI蛋白C-末端第896~1036位氨基酸(第14外显子)存在一个四环素转录抑制(Tetracycline transcriptional repressor)保守结构域。系统发育进化树将水稻、高粱、拟南芥、柳枝稷、二穗短柄草等不同物种中划分为两个主要的分枝:分枝Ⅰ均为单子叶植物(从上至下分别为谷子、狗尾草、柳枝稷、高粱、水稻、二穗短柄草);分枝Ⅱ均为双子叶植物(从上至下分别为拟南芥、棉花、大豆、蒺藜苜蓿)。谷子SiGI与狗尾草、柳枝稷、高粱、水稻、二穗短柄草具有更近的亲缘关系(
利用已发表的谷子基因表达

图3 SiGI 的组织特异性表达分析及亚细胞定位
Fig.3 Tissue-specific expression analysis and subcellular localization of SiGI
A: SiGI 的组织特异性表达分析;B:SiGI的亚细胞定位,红色荧光蛋白信号通道显示核定位信号肽的信号,比例尺 bar=5 μm
A: Tissue-specific expression analysis of SiGI : B: Subcellular localization of SiGI, the RFP field shows RFP signals of nuclear localization signal peptide, bar=5μm;GFP: Green fluorescent protein; RFP: Red fluorescent protein
SiGI节律表达模式分析该基因呈现周期性振荡特征(

图4 SiGI 短日条件24 h节律表达模式分析
Fig.4 Rhythm expression pattern of SiGI in short day
顶部条框的白色和黑色部分分别对应光照时间段(7:00-17:00)和黑暗时间段(17:00-7:00)
The white and black parts of the top bar correspond to the light(7:00-17:00)and dark (17:00-7:00) time periods,respectively
对697份谷子品种的SiGI基因及其启动子区变异位点进行分析,结果显示共70个变异位点,包括64个SNP位点和6个Indel位点,分为16种单倍型,包括5种主要单倍型Hap-1、Hap-2、Hap-3、Hap-4和Hap-6(

图5 SiGI 编码区及启动子区单倍型衍生关系
Fig.5 Relationships between SiGI haplotypes detected in coding region and promoter region
SiGI编码区及启动子区单倍型Network图,不同圆代表不同单倍型,圆的面积和对应单倍型所包含的品种数量成正比,红色连接线代表不同单倍型的突变步骤,连接线上的红色圆点代表一次突变。其中,有表型数据的主要分型为Hap-1(单倍型频次为499)、Hap-2(单倍型频次为85)、Hap-3(单倍型频次为61)、Hap-4(单倍型频次为45)和Hap-6(单倍型频次为7)
SiGI haplotype network diagram of coding region and promoter region, different circles represent different haplotypes, the area of the circle is proportional to the number of species contained in the corresponding haplotype, the red connecting lines represent the mutation steps of different haplotypes, and the red circles on the connecting lines dots represent a mutation. Among them, the main haplotypes with phenotype data are Hap-1 (haplotype frequency is 499), Hap-2 (haplotype frequency is 85), Hap-3 (haplotype frequency is 61), Hap-4 (haplotype frequency is 45), and Hap-6 (haplotype frequency is 7)

图6 SiGI编码区及启动子区结构变异
Fig.6 Structural variation of SiGI coding region and promoter region
上方为SiGI编码区基因结构及启动子区2000 bp,其中,框格代表外显子,框格之间的连接线代表内含子。下方对应不同单倍型组合信息表,连接上方 SiGI基因结构图的实心线指示变异位点,其中,红色连接线指示为错义突变,表格中不同颜色单元格代表不同碱基
The upper part shows the gene structure and promoter region of the SiGI coding region at 2000 bp. The frame represents the exon, the connecting lines between the frames represent the intron. The lower part corresponds to the information table of different haplotype combinations. The solid line connecting the SiGI gene structure map above indicates the mutation site. The red connecting line indicates the missense mutation, and the cells with different colors in the table represent different bases. i1:TATAACAA; i2:TA; i3:AT; i4:AG; i5:TG
上游1768 bp处),且该基因的Hap-6分型与其他单倍型在这两处位点都存在差异,说明该基因可能受光响应元件的差异诱导从而影响谷子抽穗期。
SiGI单倍型的抽穗期、株高、主穗重以及主穗粒重效应分析(

图7 SiGI单倍型分型及转录分析
Fig.7 Haploid typing and transcriptional analysis of SiGI promoter region
A:SiGI与不同环境抽穗时间关联的箱式图(697份抽穗期数据),不同小写字母表示显著性差异;B:SiGI启动子单倍型相对表达量分析,P=0.0083;C:SiGI启动子单倍型关联抽穗期分析;*、**:分别在P<0.05和0.01水平达到显著差异;Hap-3包括Ci0162、Ci0203、Ci0227、Ci0230、Ci0779; Hap-6包括Ci0085、Ci0841、Ci0851、Ci0862、Ci0892
A:Box plot of SiGI associated with heading time in different environments(697 pieces of heading date data),different lowercase letters represents significant difference; B: Relative expression analysis of SiGI promoter haplotypes, P=0.0083; C: Analysis of haploid association heading date in SiGI promoter; *、**: Reach a significant difference at P<0.05 and 0.01,respectively;Hap-3:Ci0162、Ci0203、Ci0227、Ci0230、Ci0779,Hap-6:Ci0085、Ci0841、Ci0851、Ci0862、Ci0892


(图8)

A:SiGI与不同环境株高关联的箱式图(701份株高数据);B:SiGI与不同环境主穗重关联的箱式图(286份主穗重数据);C:SiGI与不同环境主穗粒重关联的箱式图(292份主穗粒重数据)
A:Box plot of SiGI associated with plant height in different environments(701 plant height data);B;Box plot of SiGI associated with main spike weight in different environments(286 main spike weight data); C:Box plot of SiGI associated with main spike grain weight in different environments(292 main spike grain weight)
图8 SiGI单倍型分型关联表型
Fig.8 SiGI promoter region haplotype associated phenotype
SiGI单倍型在4个环境下的株高差异显著性分析结果显示(
GI同源基因进化分析结果显示,不同物种中的GI具有类似的基因结构,表明不同物种的GI基因可能具有相似的功能,尤其是在单子叶作物中,GI可能具有更高的结构保守性和更相似的功能。在拟南芥中,由GI‐CO‐FT等3个基因组成的生物钟调控途径促进了长日照下的开花,并且在此通路中GI比CO和FT更早地响应光周期变化,而之前的研究成果表明,在拟南芥中GI作为CO的正调控因子,通过CO整合了来自生物钟中的光信号从而调节了FT的表达,促进植物开
谷子SiGI单倍型变异结合抽穗期和基因相对表达量分析显示,该基因表达量的升高可导致田间环境下抽穗期提前,这与拟南芥中GI基因的表达量升高促进提早开花的结果相一
此外,GI表达受生物钟调控,拟南芥GI在光照后8 h左右转录水平达到峰值,这个高峰的时间、表达丰度和持续时间受日照时长的影
本研究中,通过对SiGI编码区和启动子区的单倍型分析,发现其存在丰富的遗传多样性,共检测到70个变异位点,划分为16种单倍型。其中,Hap-6与其他主要单倍型在编码区和启动子区存在多个差异位点,包括编码区唯一的错义突变位点,共同导致谷子抽穗期在不同环境下的差异。由于SiGI启动子区的变异位点可能是影响基因表达量的重要位点,本研究选取了Hap-3和Hap-6两个分型作为实验材料,比较了两种分型材料中SiGI基因相对表达量以及抽穗期。结果表明,Hap-3和Hap-6分型之间的表达量和抽穗期均存在显著差异。因此,可以将这些变异位点作为设计分子标记选育早抽穗品种的候选位点。综上,Hap-6分型具有更高的表达量和较短的抽穗期,可作为早抽穗单倍型用于育种选择。
通过分析多个环境下的株高、主穗重和主穗粒重发现,4个环境下Hap-6分型的材料株高明显降低,但是在2017年黑龙江齐齐哈尔的主穗重和2019年甘肃定西的主穗粒重并无显著性差异,这表明在抽穗期提前以及株高降低的前提下,可能选育出对主穗重和主穗粒重影响较小的材料。
开花和发育阶段变化的协调调节对作物产量至关重要,因此提高这些发育性状正成为提高产量的主要研究目标。从这个角度来看,谷子的SiGI基因可以被编辑以延迟开花或生殖生长,这将有助于农作物在不同光周期环境下提高适应性,而单倍型分析可为分子育种的研发提供关键变异信息。谷子是一种对不同光周期适应性较差的光敏作
该研究发现谷子SiGI基因具有四环素转录抑制保守结构域,此外,SiGI基因在响应光周期的组织(如根、茎、叶)中高表达,具有典型的昼夜节律性表达模式,并定位于细胞核。SiGI基因单倍型分析结果表明,谷子的主要单倍型Hap-3和Hap-6具有不同的表达水平,并且与抽穗期表现出显著相关性,即单倍型Hap-6的表达量较Hap-3显著上调,导致谷子品种在8个环境下抽穗期显著提前。此外,Hap-6分型在4个环境下株高显著降低,但在2个环境下主穗重和主穗粒重无显著性差异。本研究为SiGI基因功能提供了重要的理论基础,也为谷子分子标记辅助选择提供了新的遗传信息,在谷子分子育种中具有广阔的应用前景。综上所述,单倍型Hap-6可作为早抽穗的重要单倍型进行育种选择。
参考文献
胡时开,苏岩,叶卫军,郭龙彪.水稻抽穗期遗传与分子调控机理研究进展.中国水稻科学,2012, 26(3): 373-382 [百度学术]
Hu S K, Su Y, Ye W J, Guo L B. Advances in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.). Chinese Journal of Rice Science, 2012, 26(3): 373-382 [百度学术]
Seo E, Lee H, Jeon J, Park H, Kim J, Noh Y, Lee I. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. The Plant Cell, 2009, 10(21): 3185-3197 [百度学术]
Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422(6933): 719-722 [百度学术]
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12(12): 2473-2483 [百度学术]
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a Rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology, 2002, 43(10): 1096-1105 [百度学术]
Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu G G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Publishing Group, 2008, 40(6): 761-767 [百度学术]
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell, 2005, 17(8): 2255-2270 [百度学术]
Mishra P, Panigrahi K C S. GIGANTEA - An emerging story. Frontiers in Plant Science, 2015, 6(8): 8 [百度学术]
Berns M C, Nordstroem K, Cremer F, Tóth R, Hartke M, Simon S, Klasen J R, Bürstel I, Coupland G. Evening expression of Arabidopsis GIGANTEA is controlled by combinatorial interactions among evolutionarily conserved regulatory motifs. The Plant Cell, 2014, 26(10): 3999-4018 [百度学术]
Park D H, Somers D E, Kim Y S, Choy Y H, Lim H K, Soh M S, Kim H J, Kay S A,Nam H G. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science, 1999, 285(5433): 1579-1582 [百度学术]
Araki T, Komeda Y. Analysis of the role of the late‐flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant Journal, 1993, 3(2): 231-239 [百度学术]
Hong S Y, Lee S, Seo P J, Yang M S, Park C M. Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: Functional conservation in monocot and dicot plants. Plant molecular biology, 2010, 3: 485-497 [百度学术]
Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano A J, Motoyama R, Sawada Y, Yano M, Hirai M Y, Makino A, Nagamura Y. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell,2011, 23(5): 1741-1755 [百度学术]
Li S, Yue W H, Wang M, Qiu W M, Zhou L, Shou H X. Mutation of OsGIGANTEA leads to enhanced tolerance to polyethylene glycol-generated osmotic stress in rice. Frontiers in Plant Science, 2016, 7: 465 [百度学术]
Zhao X Y, Liu M S, Li J R, Guan C M, Zhang X S. The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Molecular Biology, 2005, 58(1): 53-64 [百度学术]
Hecht V, Knowles C L, Vander Schoor J K, Liew L C, Jones S E, Lambert M J M, Weller J L. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiology, 2007, 144(2): 648-661 [百度学术]
Li D D, Hou Z H, Li H Y, Li Z B, Fang C, Kong L P, Li Y L, Du H, Li T, Wang L S, He M L, Zhao X H, Cheng Q, Kong F J, Liu B H. Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity. Journal of Integrative Plant Biology, 2022, 64 (10): 1866-1882 [百度学术]
张林林,智慧,汤沙,张仁梁,张伟,贾冠清,刁现民.谷子抽穗时间基因SiTOC1的表达与单倍型变异分析. 中国农业科学, 2021, 54(11): 2273-2286 [百度学术]
Zhang L L, Zhi H, Tang S, Zhang R L, Zhang W, Jia G Q, Diao X M. Characterizations of transcriptional and haplotypic variations of SiTOC1 in foxtail millet. Scientia Agricultura Sinica, 2021, 54 (11): 2273-2286 [百度学术]
Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45: 957-961 [百度学术]
He Q, Tang S, Zhi H, Chen J F, Zhang J, Liang H K, Alam O, Li H B, Zhang H, Xing L H, Li X K, Zhang W, Wang H L, Shi J P, Du H L, Wu H P, Wang L W, Yang P, Xing L, Yan H S, Song Z Q, Liu J R, Wang H G, Tian X, Qiao Z J, Feng G J, Guo R F, Zhu W J, Ren Y M, Hao H B, Li M Z, Zhang A Y, Guo E H, Yan F, Li Q Q, Liu Y L, Tian B H, Zhao X Q, Jia R L, Feng J W, Wei J H, Lai J S, Jia G Q, Purugganan M, Diao X M. A graph-based genome and pan-genome variation of the model plant Setaria. Nature Genetics, 2023, 55: 1232-1242 [百度学术]
陆平. 谷子种质资源描述规范和数据标准. 北京:中国农业出版社,2006 [百度学术]
Lu P. Description specification and data standard of millet germplasm resources. Beijing:China Agricultural Press,2006 [百度学术]
Lescot M, Dehais P, Thijs G, Marchal Y, Peer Y V, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327 [百度学术]
桑璐曼,汤沙,张仁梁,贾小平,刁现民.谷子热激蛋白HSP90基因家族鉴定及分析. 植物遗传资源学报, 2022, 23(4): 1085-1097 [百度学术]
Sang L M, Tang S, Zhang R L,Jia X P, Diao X M. Identification and analysis of heat shock protein HSP90 family genes in foxtail millet. Journal of Plant Genetic Resources, 2022, 23 (4): 1085-1097 [百度学术]
张慧,梁红凯,智慧,张林林,刁现民,贾冠清.谷子β-胡萝卜素异构酶家族基因的表达与变异分析. 植物学报,2023,58(1):34-50 [百度学术]
Zhang H, Liang H K, Zhi H, Zhang L L, Diao X M, Jia G Q. Analyses on the transcription and structure variation of β-carotene isomerase gene family in foxtail millet. Chinese Bulletin of Botany, 2023, 58 (1): 34-50 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
Zhang R L, Jia G Q, Diao X M. GeneHapR: An R package for gene haplotypic statistics and visualization. BMC Bioinformatics, 2023, 24(1): 199 [百度学术]
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Moris B, Coupland G, Putterill J. GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. Embo Journal, 2014, 18(17): 4679-4688 [百度学术]