摘要
bHLH转录因子家族是植物中最大的转录因子家族之一。当前越来越多的植物bHLH转录因子家族被鉴定,然而百合bHLH转录因子家族的系统分析尚未见报道。本研究基于百合转录组数据,共鉴定出74个bHLH家族蛋白,均为亲水性蛋白,93%为不稳定蛋白,61%为酸性蛋白。结构域分析发现有25个保守残基的一致性≥50%,其中R16、R17、L27、L49和L59位点高度保守。此外,64个bHLH蛋白能与DNA结合,包含58个E-box结合物和46个G-box结合物。系统进化分析将百合bHLHs分为21个亚家族,基于进化树发现百合bHLHs可能执行信号转导、非生物胁迫、植物生长发育和物质合成等功能。对3个可能与罗勒烯和芳樟醇相关的基因Unigene23213_All、CL1682.Contig2_All和CL8286.Contig2_All进行了克隆,发现它们在品种间存在97.30%~99.89%的同源性。表达模式分析结果显示,三者在花、叶和鳞中均有表达。该研究为开展百合bHLH转录因子的功能研究提供了重要的序列信息。
bHLH(basic helix-loop-helix)是一类广泛存在于动植物和真菌中的转录因子超家族,其在真核生物的正常生长及发育过程中必不可
百合(Lilium spp.)是具有重要经济价值的花卉。虽然有学者对百合鳞茎花青素合成相关的bHLH进行了挖掘分
本研究基于百合转录组数据库,挖掘百合bHLH基因家族,分析其数量和特性并进行分类,同时在东方百合Sorbonne中克隆可能与百合花香相关的bHLH基因,并分析其在不同组织器官中的表达规律以预测其潜在的功能,以期为深入探讨百合bHLH基因的功能提供理论依据。
课题组前期利用Illumina平台对东方百合Sorbonne花、叶、鳞、茎皮、根、柱头6个器官的混合样测序获得了一套转录组数
从Pfam 36.0数据
基于筛选鉴定的百合bHLHs,用在线软件ExPASy ProtParam too
利用序列分析软件DNAMAN对百合bHLH家族蛋白结构域进行比对,比对结果使用在线软件 WebLogo v2.8.
利用MEGA 7.0软件内置的Clustal W程序对候选百合bHLH家族、已报道的百合bHLH及拟南芥bHLH蛋白结构域进行比对分析,将比对结果采用邻接法(NJ,neighbor joining)构建系统发育树,其中校验参数Bootstrap重复1000次,模式设置为Poisson model,缺失值处理方式为pairwise deletion,其他参数使用默认值。利用在线软件iTO
根据1.5的结果选择与已报道的百合花香相关bHLH基因(LoMYC2、LibHLH22和LibHLH63)高度同源的基因(Unigene23213_All、CL1682.Contig2_All和CL8286.Contig2_All)进行进一步研究。
依据课题组东方百合Sorbonne花、叶和鳞的表达谱数
根据序列同源性,设计与LoMYC2同源的Unigene23213_All的引物,与LibHLH63同源的CL8286.Contig2_All的引物,与LibHLH22同源的CL1682.Contig2_All的引物来源于文献[
引物名称 Primer name | 上游引物(5′-3′) Forward primer (5′-3′) | 下游引物(5′-3′) Reverse primer (5′-3′) | 目标长度(bp) Target length | 退火温度(℃) Tm |
---|---|---|---|---|
Unigene23213_All | ATGAAGAGGAACTCGTCCC | TCAGGCTCCTTCAGAGATC | 912 | 58 |
CL1682.Contig2_All | ATGGAGACAACGCCCAGCTC | TCAGAGCTCCGTCTTTAACTGGTTC | 1089 | 60 |
CL8286.Contig2_All | ACTCTATCGGCAAGATTTCAG | CTGAGTAAATTCTTGTGTGGC | 1211 | 55 |
LhActin | TGCTGGATTCTGGTGATGGT | ATAGGTGGTCTCGTGGATGC | 383 | 58 |
采用
使用Pfam与PlantTFDB对东方百合Sorbonne的bHLH转录因子进行初步筛选,其中从Pfam中得到的数据集1包含120个候选序列,从PlantTFDB中得到的数据集2包含132个候选序列,数据集2中的132个序列包含了数据集1中所得到的120个序列。可见PlantTFDB数据库中的信息更为全面,从PlantTFDB中得到的数据集2即为候选百合bHLH。将这132个候选序列输入TBtools的Batch SMART插件,去掉结构域不完整的序列,用Blast Zone插件去除冗余序列,最后根据Toledo-Ortiz
百合bHLHs可编码110~597个氨基酸,预测相对分子量在12462.43~67174.13 Da之间。理论等电点范围在4.42~10.10,其中酸性蛋白(理论等电点<7)有45个(61%),碱性蛋白(理论等电点>7)有29个(39%)(

图1 百合bHLH转录因子家族蛋白特性分析
Fig.1 Characterization of lily bHLH transcription factor family proteins
图中只显示25个百合bHLH蛋白名称
Only 25 lily bHLH protein names were shown
利用SOPMA在线网站预测百合bHLH蛋白二级结构,α-螺旋占比为17.11%~63.64%,延伸链为0.81%~17.66%,β-转角占比为0~10.00%,无规则卷曲程度为28.42%~74.95%。二级结构分析发现,百合bHLH家族蛋白中α-螺旋和无规卷曲所占比例较大,其中62.16%的蛋白二级结构中无规卷曲所占比例最大,37.84%的蛋白二级结构中α-螺旋所占比例最大(
74个百合bHLH结构域比对显示,百合中氨基酸残基一致性≥50%的残基有25个(

图2 百合bHLH转录因子家族保守氨基酸分析
Fig.2 Conserved amino acid analysis of lily bHLH transcription factor family
天冬氨酸(D)和谷氨酸(E)为红色,天冬酰胺(N)和谷氨酰胺(Q)为紫色,赖氨酸(K)、精氨酸(R)和组氨酸(H)为蓝色,半胱氨酸(C)、甘氨酸(G)、丝氨酸(S)、苏氨酸(T)和酪氨酸(Y)为绿色,丙氨酸(A)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、脯氨酸(P)、色氨酸(W)、苯丙氨酸(F)和甲硫氨酸(M)为黑色
Aspartic acid (D) and glutamic acid (E) were shown in red, asparagine (N) and glutamine (Q) were shown in purple, lysine (K), arginine (R) and histidine (H) were shown in blue, cysteine (C), glycine (G), serine (S), threonine (T) and tyrosine (Y) were shown in green, alanine (A), valine (V), leucine (L), isoleucine (I), proline (P), tryptophan (W), phenylalanine (F), and methionine (M) were shown in black
基于DNAMAN对百合bHLH家族蛋白结构域的比对结果发现,有58个bHLH具有保守的E13/R16位点,为E-box结合蛋白。在能与E-box结合的bHLH中,46个bHLH具有保守的K/H9和R17位点,为G-box结合蛋白。由于氨基酸E13或R16的缺失,以及在基本区中碱性氨基酸少于6个,有10个bHLH为不能与DNA结合的蛋白(
结合模式 Binding pattern | 数量 Number |
---|---|
能与DNA结合 DNA binding | 64 |
能与E-box结合E-box binding | 58 |
能与G-box结合G-box binding | 46 |
不能与G-box结合 Non-G-box binding | 12 |
不能与E-box结合 Non-E-box binding | 6 |
不能与DNA结合 Non-DNA binding | 10 |
构建拟南芥与百合bHLH家族的系统进化树,研究其进化关系(

图3 百合与拟南芥bHLH结构域系统发育树
Fig.3 Phylogentic analysis of bHLH domain from Lilium and Arabidopsis thaliana
灰色实心五角星标注的是本研究所鉴定的百合bHLHs,灰色空心五角星标注的是已报道的百合bHLH
The solid gray pentagram indicates the lily bHLHs identified in this paper, and the hollow gray pentacle indicates reported lily bHLH
同一亚家族成员可能具有相类似的功能,推测与拟南芥bHLH聚在相同亚族的百合bHLH发挥着相同或相近的作用。在百合21个bHLHs亚族中,Vb和VIIIa亚族同源的AtbHLH功能未知,且这2个亚族蛋白在NCBI中未能对比到任何功能明确的bHLH,因此Vb和VIIIa亚族功能尚待研究。其余亚族可能参与信号转导、非生物胁迫、植物生长发育和物质合成等过程。其中III(d+e)家族基因可能与花香物质芳樟醇的合成相
基于Sorbonne花、叶和鳞3个器官表达谱所做热图可知(

图4 Unigene23213_All、CL1682.Contig2_All 和CL8286.Contig2_All的空间表达
Fig.4 The spatial expression of Unigene23213_All, CL1682.Contig2_All and CL8286.Contig2_All
A:Unigene23213_All、CL1682.Contig2_All、CL8286.Contig2_All在花、叶和鳞中的表达情况;B:Unigene23213_All、CL1682.Contig2_All、CL8286.Contig2_All在花、叶、鳞中的半定量分析;F:花,L:叶,S:鳞
A: Expression pattern of Unigene23213_All, CL1682.Contig2_All, CL8286.Contig2_All in flower, leaf and scale;B: Semi-quantitative analysis of Unigene23213_All, CL1682.Contig2_All, CL8286.Contig2_All in flower, leaf and scale;F: Flower, L: Leaf, S: Scale
半定量RT-PCR琼脂糖凝胶电泳图显示(
前人研

图5 LhMYC2、LrMYC2与LoMYC2氨基酸序列比对图
Fig.5 Amino acid sequence comparison of LhMYC2、LrMYC2 and LoMYC2
黑色三角表示bHLH结构域的保守位点;下同
The black triangle represents conserved sites in the bHLH domain;The same as below
CL1682.Contig2_All和CL8286.Contig2_All分别与Siberia中调控花香物质罗勒烯和芳樟醇合成的LibHLH22和LibHLH63同源。以Sorbonne花cDNA为模板对CL1682.Contig2_All和CL8286.Contig2_All进行PCR扩增,凝胶电泳检测结果与预期大小一致(

图6 CL1682.Contig2_All和CL8286.Contig2_All基因的凝胶电泳图
Fig.6 Agarose gel electrophoresis diagram of CL1682.Contig2_All and CL8286.Contig2_All genes
M:D2000 DNA ladder

图7 CL1682.Contig2_All与LibHLH22和CL8286.Contig2_All与LibHLH63氨基酸序列比对图
Fig.7 Amino acid sequence comparison between CL1682.Contig2_All and LibHLH22, CL8286.Contig2_All and LibHLH63
A:CL1682.Contig2_All与LibHLH22蛋白序列比对结果;B:CL8286.Contig2_All与LibHLH63蛋白序列比对结果
A:Protein sequence alignment between CL1682.Contig2_All and LibHLH22; B:Protein sequence alignment between CL8286.Contig2_All and LibHLH63
作为植物中最大的转录因子家族之一,bHLH在植物整个生命周期的各种生物过程中起着关键作用。本研究共鉴定百合bHLH转录因子74个,比单子叶植物水稻(167个
百合bHLH蛋白结构域中有25个氨基酸位点的保守性在50%及以上,其中E13和R16/R17与DNA结合能力有
根据bHLH与DNA的结合模式和序列同源性,可对bHLH进行不同的分类。研究表明,74个百合bHLH蛋白中有58个(78.38%)能与E-box相结合,46个(62.16%)具有G-box结合功能,该结果与芒果(83.91%/65.52%
Sorbonne和Siberia都属于东方百合品种,基于与Siberia LibHLH22和LibHLH63序列的同源性设计引物克隆获得了Sorbonne CL1682.Contig2_All和CL8286.Contig2_All基因,但其氨基酸序列与LibHLH22和LibHLH63的同源性分别为99.45%和97.30%,推测同一基因在Sorbonne和Siberia间存在序列差异。表达热图与半定量结果显示Unigene 23213_All、CL1682.Contig2_All与CL8286.Contig2_All 在Sorbonne花、叶和鳞中都表达。Cui
综上所述,本研究系统分析了东方百合Sorbonne转录组数据,共鉴定74个百合bHLH转录因子,分为21个亚族。通过与拟南芥bHLHs的比较分析,预测百合bHLHs可能与信号转导、非生物胁迫、植物生长发育和物质合成等功能相关。明确了3个可能与罗勒烯和芳樟醇相关的基因Unigene23213_All、CL1682.Contig2_All 与 CL8286.Contig2_All,并发现三者在Sorbonne花、叶和鳞中均有表达。总体上,百合中还有大量功能未知的bHLH基因需要进一步研究,本研究为进一步系统而全面了解百合bHLH转录因子提供了基础资料。
参考文献
Massari M E, Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Molecular Cellular Biology, 2000, 20(2): 429-440 [百度学术]
Spelt C, Quattrocchio F, Mol J N, Koes R. anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell, 2000, 12(9): 1619-1631 [百度学术]
Atchley W R, Terhalle W, Dress A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. Journal of Molecular Evolution, 1999, 48: 501-516 [百度学术]
Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell, 2003, 15(8): 1749-1770 [百度学术]
Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants. Molecular Biology Evolution, 2010, 27(4): 862-874 [百度学术]
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology, 2010, 153(3): 1398-1412 [百度学术]
Atchley W R, Fitch W M. A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences, 1997, 94(10): 5172-5176 [百度学术]
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant Cell, 2011, 23(2): 701-715 [百度学术]
范文广, 李保豫, 田辉, 李欣, 任海伟, 曹莹莹, 姜欣彤, 柴佳靖, 陈少青. 兰州百合鳞茎花青素合成相关 MYB 与 bHLH 转录因子的筛选分析. 食品与发酵工业, 2024, 50(2): 57-66 [百度学术]
Fan W G, Li B Y, Tian H, Li X, Ren H W, Cao Y Y, Jiang X T, Chai J J,Chen S Q. Screening and analysis of MYB and bHLH transcription factors associated with anthocyanin synthesis in Lilium davidii var. unicolor bulbs. Food and Fermentation Industries, 2024,50(2):57-66 [百度学术]
Nakatsuka A, Yamagishi M, Nakano M, Tasaki K, Kobayashi N. Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily. Scientia Horticulturae, 2009, 121(1): 84-91 [百度学术]
Suzuki K, Tasaki K, Yamagishi M. Two distinct spontaneous mutations involved in white flower development in Lilium speciosum. Molecular Breeding, 2015, 35(10): 1-14 [百度学术]
Yamagishi M. A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale. Molecular Breeding, 2016, 36(1): 1-14 [百度学术]
Sun D Y, Zhang X G, Zhang Q Y, Ji X T, Jia Y, Wang H, Niu L X, Zhang Y L. Comparative transcriptome profiling uncovers a Lilium regale NAC transcription factor, LrNAC35, contributing to defence response against cucumber mosaic virus and tobacco mosaic virus. Molecular Plant Pathology, 2019, 20(12): 1662-1681 [百度学术]
Cui Q, Liu Q, Gao X, Yan X, Jia G X. Transcriptome-based identification of genes related to resistance against Botrytis elliptica in Lilium regale. Canadian Journal of Plant Science, 2018, 98(5): 1058-1071 [百度学术]
Cui Q, Gao X, Wang L J, Jia G X. Ectopic expression of LhMYC2 increases susceptibility to Botrytis cinerea in Arabidopsis thaliana. Canadian Journal of Plant Science, 2020, 101(3): 328-340 [百度学术]
Yuan G Z, Wu Z, Liu X Y, Li T, Teng N J. Characterization and functional analysis of LoUDT1, a bHLH transcription factor related to anther development in the lily oriental hybrid Siberia (Lilium spp.). Plant Physiology Biochemistry, 2021, 166: 1087-1095 [百度学术]
Sui J J, Cao X, Yi M F, Wu J, He J N. Isolation and characterization of LoAMS gene in anther development of lily (Lilium oriental hybrids). New Zealand Journal of Crop Horticultural Science, 2020, 48(4): 257-269 [百度学术]
王红. 百合 MYC2 转录因子在花香形成中的作用研究. 广州: 华南农业大学, 2017 [百度学术]
Wang H. The roles of MYC2 transcription factor in the fragrance biosynthesis of Lilium ‘Siberia’. Guangzhou: South China Agricultural University, 2017 [百度学术]
Feng Y, Guo Z Y, Zhong J, Liang Y L, Zhang P, Sun M. The LibHLH22 and LibHLH63 from Lilium ‘Siberia’can positively regulate volatile terpenoid biosynthesis. Horticulturae, 2023, 9(4): 459 [百度学术]
Du F, Wu Y, Zhang L, Li X W, Zhao X Y, Wang W H, Gao Z S, Xia Y P. De novo assembled transcriptome analysis and SSR marker development of a mixture of six tissues from Lilium Oriental hybrid ‘Sorbonne’. Plant Molecular Biology Reporter, 2015, 33: 281-293 [百度学术]
Obermeyer G, Fragner L, Lang V, Weckwerth W. Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiology, 2013, 162(4): 1822-1833 [百度学术]
Shahin A, van Kaauwen M, Esselink D, Bargsten J W, van Tuyl J M, Visser R G, Arens P. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics, 2012, 13: 1-13 [百度学术]
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L, Tosatto S C, Paladin L, Raj S, Richardson L J. Pfam: The protein families database in 2021. Nucleic Acids Research, 2021, 49(D1): D412-D419 [百度学术]
Finn R D, Clements J, Eddy S R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 2011, 39: W29-W37 [百度学术]
Tian F, Yang D C, Meng Y Q, Jin J P, Gao G. PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Research, 2020, 48(D1): D1104-D1113 [百度学术]
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202 [百度学术]
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Research, 2021, 49(W1): W216-W227 [百度学术]
Chou K C, Shen H B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, 2010, 5(6): e11335 [百度学术]
Geourjon C, Deleage G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 1995, 11(6): 681-684 [百度学术]
Crooks G E, Hon G, Chandonia J M, Brenner S E. WebLogo: A sequence logo generator. Genome Research, 2004, 14(6): 1188-1190 [百度学术]
Letunic I, Bork P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 2007, 23(1): 127-128 [百度学术]
Du F, Fan J M, Wang T, Wu Y, Grierson D, Gao Z S, Xia Y P. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid ‘Sorbonne’and putative control network for scent genes. BMC Genomics, 2017, 18(1): 1-14 [百度学术]
Li X X, Duan X P, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W Q, Chen L, Yin J Y. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology, 2006, 141(4): 1167-1184 [百度学术]
Zhang T T, Lv W, Zhang H S, Ma L, Li P H, Ge L, Li G. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biology, 2018, 18: 1-14 [百度学术]
隋心意, 赵小刚, 毛欣, 李亚灵, 温祥珍. 生菜 bHLH 转录因子家族的鉴定与生物信息学分析. 中国农学通报, 2023, 39(3): 104-110 [百度学术]
Sui X Y, Zhao X G, Mao X, Li Y L, Wen X Z. Identification and bioinformatics analysis of bHLH transcription factor family in Lactuca sativa L.. Chinese Agricultural Science Bulletin, 2023, 39(3): 104-110 [百度学术]
孟富宣, 杨玉皎, 段元杰, 吕陟远, 陆晓英, 郭淑萍, 刘海刚. 甜橙 bHLH 转录因子家族的鉴定及生物信息学分析. 西南林业大学学报: 自然科学版, 2020, 40(5): 73-86 [百度学术]
Meng F X, Yang Y J, Duan Y J, Lv Z Y, Lu X Y, Guo S P, Liu H G. Identification and bioinformatics analysis of the bHLH transcription factor family in Citrus sinensis. Journal of Southwest Forestry University: Natural Sciences Edition, 2020, 40(5): 73-86 [百度学术]
孟富宣, 周军, 辛培尧, 唐军荣, 董娇, 付海辉, 周林涛, 徐世宏. 云南红皮梨 bHLH 转录因子的生物信息学分析. 基因组学与应用生物学, 2013, 32(5): 652-659 [百度学术]
Meng F X, Zhou J, Xin P Y, Tang J R, Dong J, Fu H H, Zhou L T, Xu S H. Bioinformatics analysis of bHLH transcription factor in Yunnan red skin pear (Pyrus pyrifolia Naki). Genomics and Applied Biology, 2013, 32(5): 652-659 [百度学术]
孙颖琦, 孟亚轩, 赵心月, 王凤霞, 瓮巧云, 赵治海, 刘颖慧, 袁进成. 谷子 bHLH 转录因子家族基因鉴定及生物信息学分析. 种子, 2021, 40(12): 45-55 [百度学术]
Sun Y Q, Meng Y X, Zhao X Y, Wang F X, Weng Q Y, Zhao Z H, Liu Y H, Yuan J C. Identification and bioinformatics analysis of transcription factor family genes bHLH in Foxtail Milet. Seed, 2021, 40(12): 45-55 [百度学术]
Wang N, Shu X C, Zhang F J, Wang Z. Transcriptome-wide characterization of bHLH transcription factor genes in Lycoris radiata and functional analysis of their response to MeJA. Frontiers in Plant Science, 2023, 13: 975530 [百度学术]
Atchley W R, Zhao J P. Molecular architecture of the DNA-binding region and its relationship to classification of basic helix-loop-helix proteins. Molecular Biology Evolution, 2007, 24(1): 192-202 [百度学术]
郑斌, 文定青, 武红霞, 邹明宏, 刘恒, 王松标, 赵巧丽. 芒果果实 bHLH 家族转录因子的生物信息学分析. 热带作物学报, 2019, 40(2): 289-299 [百度学术]
Zheng B, Wen D Q, Wu H X, Zou M H, Liu H, Wang S B, Zhao Q L. Bioinformatics analysis of bHLH transcription factor family in Mango (Mangifera indica Linn.). Chinese Journal of Tropical Crops, 2019, 40(2): 289-299 [百度学术]
Aslam M, Jakada B H, Fakher B, Greaves J G, Niu X P, Su Z X, Cheng Y, Cao S J, Wang X M, Qin Y. Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (AcCIB2) participates in flowering time regulation and abiotic stress response. BMC Genomics, 2020, 21(1): 1-13 [百度学术]