摘要
野生大豆(Glycine soja Sieb. & Zucc.)是栽培大豆(Glycine max [L.] Merr.)的近缘祖先种。在大豆驯化的过程中,栽培大豆丢失了大量的基因或等位变异,导致栽培大豆的遗传多样性降低,这严重限制了栽培大豆品种选育和改良的有效性与丰富性。我国野生大豆种质资源丰富,蕴藏着许多高蛋白含量、抗病虫、耐干旱、耐盐碱等方面的潜力基因,挖掘潜力基因并利用分子设计育种技术应用到现代的栽培大豆品种中,能够有效地拓宽栽培大豆的遗传多样性。本文综述了野生大豆的分布规律和形态特征、近年来在野生大豆中发掘的重要功能基因或位点,包括百粒重、开花期和成熟期、蛋白质和油分含量、抗病、抗虫、耐盐碱、耐干旱等重要农艺性状基因,并讨论这些重要基因或位点在未来栽培大豆育种中的应用潜力,以期为育种家培育和改良大豆新品种提供一种新的育种思路和策略。
大豆是重要的粮食和油料作物,含有丰富的蛋白质、油脂、人类和动物所需的氨基酸以及生物活性成
野生大豆主要分布在中国、日本、韩国和俄罗斯。我国的野生大豆资源丰富,除新疆、青海和海南外,在全国范围内均有广泛分布,南北可从纬度24°N跨越至52°S,东西可从经度135°E跨越至97°E,目前我国大豆种质资源库中保存了6172份野生大豆,约占世界总数的90%以
野生大豆种子有泥膜、种皮为黑色,且百粒重在2.0 g左右,植株形态主要表现为紫花、棕毛、椭圆叶,茎缠绕、半缠绕或匍匐,其蛋白质、脂肪、异黄酮、油酸等含量较高,如平均蛋白质含量高达46.8%,显著高于栽培大豆的蛋白质含量,此外,野生大豆对于干旱、盐碱、缺磷等环境胁迫具有较强耐受能
籽粒大小(粒重)是决定大豆单株产量的主要因素之一。野生大豆与栽培大豆籽粒大小(粒重)差异较大,一般来说,野生大豆的百粒重在2.0 g左右,而栽培大豆的百粒重是野生大豆的5~10倍,说明在大豆驯化的过程中,控制籽粒大(重)的基因受到了强烈的人工选
目前,有较多的控制籽粒大小(粒重)的QTL在野生大豆中被鉴定出
在植物中,糖是碳水化合物的主要运输形式,它能够通过韧皮部被运输至籽粒种皮,随后从种皮被运输至胚中,说明糖对于籽粒发育具有重要的作
在模式植物拟南芥和模式作物水稻中均报道了多个控制籽粒大小(粒重)相关的基
开花期和成熟期是影响大豆单株产量形成的重要农艺性状,大豆是典型的短日照作物,对光周期非常敏感,相比于短日照条件,同一大豆品种种植在长日照条件下,其开花期和成熟期显著延迟,株高、分枝数、单株荚粒数等增多,最终大豆单株产量增加,说明开花期和成熟期不仅影响大豆的单株产量,同时能够影响大豆的种植适应
野生大豆在全国范围内广泛分布,为解释野生大豆适应长、短日照地区的遗传基础,Dong
目前为止,栽培大豆和野生大豆适应高纬度长日照地区的重要基因均已被克隆,栽培大豆中早开花等位变异tof11-1、tof12-1、Tof

图1 野生大豆适应不同纬度地区功能基因鉴定情况
Fig.1 Identification of functional genes adapted to different latitudes in wild soybean
LD表示长日照环境;SD表示短日照环境
LD indicates long day conditions; SD indicates short day conditions
大豆蛋白是营养价值最高的植物性蛋白质,提高大豆中的蛋白质含量能够满足人们对营养和健康的需求,因此,从20世纪90年代开始,大量与大豆蛋白质含量相关的位点在不同的遗传群体中被鉴定出
病虫害、干旱、盐碱等逆境胁迫是影响大豆产量和品质的重要环境因素,挖掘与病虫害、干旱、盐碱等逆境胁迫响应相关的关键基因,利用分子设计育种培育耐逆大豆品种是防治生物和非生物胁迫、提高大豆产量和品质的有效方法之一,相比于药物防治,能有效降低种植成本,减少对环境的污染与破
我国主要的大豆害虫有豆卷叶螟(Lamprosema indicate Fabricius)、斜纹夜蛾(Spodoptera litura Fabricius)、大豆食心虫(Leguminivora glycinivorella)和蚜虫(Aphis glycines Matsumura)等,这些害虫不仅通过咬断根、茎、叶,咬食豆粒等造成机械损伤危害,同时可能会间接造成病毒的传播,如蚜虫在直接危害大豆的同时,也能够传播大豆花叶病
大豆胞囊线虫病(SCN,soybean cyst nematode)是大豆种植期常见的线虫病害,关于野生大豆对大豆胞囊线虫抗性的QTL定位研究较少。袁翠平
大豆花叶病毒病(Soybean mosaic disease)在全世界范围内均有传播,是由大豆花叶病毒(SMV,soybean mosaic virus)所引起的大豆病害,可造成大豆减产35%~50
大豆腐霉根腐病(Soybean root rot)是一种土传性病害,在世界范围内均普遍发生,严重时可造成大豆减产60%左右,甚至能够造成绝
在缺水环境条件下,干旱和盐碱度对作物的生长发育产生严重的限制,对作物的产量造成巨大的影响。鉴定耐旱、耐盐碱的基因,利用分子设计育种手段培育耐旱、耐盐碱的作物品种,是提高干旱和盐碱地作物产量的有效途径之
SnRK1是丝氨酸-苏氨酸激酶家族的重要基因,能够通过调控细胞的能量稳态来响应植物受到的逆境胁迫,近年来,SnRK1家族的基因功能在拟南芥、水稻等植物中被多次报
截止到2023年,利用正向遗传学在野生大豆中仅鉴定出两个关键耐盐基因。Guan
此外,耐盐基因家族较多,因此研究者利用同源比对等方法,也陆续在野生大豆中鉴定出许多耐盐优异等位变异,如GS
作物的野生祖先通常具有丰富的遗传变异,同时具有丰富的适应性,包括对冷热、干旱和盐碱等环境胁迫的耐逆性,对病原菌等生物胁迫的抗性。但一些提高作物产量的关键基因或优异等位变异,在作物的驯化和改良的过程中发生丢失。例如,影响玉米叶夹角关键基因UPA2(Upright Plant Architecture1),在现代玉米及其祖先种大刍草中存在不同的遗传变异,大刍草中的UPA2等位变异在玉米驯化的过程中被丢失,导致现代玉米的叶夹角较大,将大刍草中的UPA2等位变异重新导入到现代玉米中,可以减小玉米的叶夹角,密植条件下能够增加玉米总产

图2 野生大豆中重要功能基因鉴定情况总结
Fig.2 Summary of identification of important functional genes in wild soybean
由于野生大豆与栽培大豆形态差异较大,在后代选育中会存在大量不利性状,如后代蔓生、小粒等,导致传统的杂交育种技术难以将野生大豆的优良性状导入到栽培大豆品种中,为克服这一难题,产生了亲本选配技术、F2代选择技术、回交改良技术。利用这些技术,选育出许多大豆新品种,如小粒豆品种包括吉林小粒1号、吉林小粒3号、吉林小粒6号、吉林小粒豆7号、龙品9777
参考文献
Graham P H, Vance C P. Legumes: Importance and constraints to greater use. Plant Physiology, 2003, 131: 872-877 [百度学术]
Dong L D, Li S C, Wang L S, Su T, Zhang C B, Bi Y D, Lai Y C, Kong L P, Wang F, Pei X X, Li H Y, Hou Z H, Du H P, Du H, Li T, Cheng Q, Fang C, Kong F J, Liu B H. The genetic basis of high-latitude adaptation in wild soybean. Current Biology, 2023, 33(2): 252-262 [百度学术]
Hou Z H, Li Y L, Cheng Y H, Li W W, Li T, Du H, Kong F J, Dong L D, Zheng D F, Feng N J, Liu B H, Cheng Q. Genome-wide analysis of DREB genes identifies a novel salt tolerance gene in wild soybean (Glycine soja). Frontiers in Plant Science, 2022, 13: 821647 [百度学术]
王克晶,李向华.中国野生大豆(Glycine soja)遗传资源主要形态、遗传变异和结构.植物遗传资源学报, 2012, 13(6): 917-928 [百度学术]
Wang K J, Li X H. Morphological types, genetic variation and structure in Chinese wild soybean(Glycine soja)genetic resources. Journal of Plant Genetic Resources, 2012, 13(6): 917-928 [百度学术]
Li Y H, Zhou G, Ma J, Jiang W, Jin L G, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang S S, Zuo Q, Shi X H, Li Y F, Zhang W K, Hu Y, Kong G, Hong H L, Tan B, Song J, Liu Z X, Wang Y S, Ruan H, Yeung C K L, Liu W B, Wang H L, Zhang L J, Guan R X, Wang K J, Bi W B, Chen S Y, Chang R Z, Jiang Z, Jackon S A, Li R Q, Qiu L J. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32(10): 1045-1052 [百度学术]
Xie M, Chung C Y, Li M W, Wong F L, Wang X, Liu A L, Wang Z L, Leung A K, Wong T H, Tong S W, Xiao Z X, Fan K J, Ng M S, Qi X P, Yang L F, Deng T Q, He L J, Chen L, Fu A S, Ding Q, He J X, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen H T, Cannon S B, Foyer C H, Chan T F, Lam H M. A reference-grade wild soybean genome. Nature Communications, 2019, 10(1): 1216 [百度学术]
Zhuang Y B, Wang X T, Li X C, Hu J M, Fan L C, Landis J B, Cannon S B, Grimwood J, Schmutz J, Jackson S A, Doyle J J, Zhang X S, Zhang D, Ma J. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nature Plants, 2022, 8(3): 233-244 [百度学术]
王静,李占军.野生大豆种质资源及开发利用研究进展.农业与技术,2018,38(22): 59-59 [百度学术]
Wang J, Li Z J. Research progress on germplasm resources and development and utilization of wild soybean. Agriculture and Technology, 2018, 38(22): 59-59 [百度学术]
Yang H Y, Wang W B, He Q Y, Xiang S H, Tian D, Zhao T J, Gai J Y. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theoretical and Applied Genetics, 2019, 132(10): 2793-2807 [百度学术]
阚贵珍,童振峰,胡振宾,张丹,张国正,喻德跃.野生大豆荚粒相关性状QTL定位.大豆科学, 2012, 31(3): 333-340 [百度学术]
Kan G Z, Tong Z F, Hu Z B, Zhang D, Zhang G Z, Yu D Y. Mapping QTLs for yield related traits in wild soybean (Glycine soja Sieb.and Zucc.). Soybean Science, 2012, 31(3): 333-340 [百度学术]
Dong L D, Cheng Q, Fang C, Kong L P, Yang H, Hou Z H, Li Y L, Nan H Y, Zhang Y H, Chen Q S, Zhang C B, Kou K, Su T, Wang L S, Li S C, Li H Y, Lin X Y, Tang Y, Zhao X H, Lu S J, Liu B H, Kong F J. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Molecular Plant,2022, 15(2): 308-321 [百度学术]
Fliege C E, Ward R A, Vogel P, Nguyen H, Quach T, Guo M, Viana J P G, Dos Santos L B, Specht J E, Clemente T E, Hudson M E, Diers B W. Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20. The Plant Journal, 2022, 110(1): 114-128 [百度学术]
史鸿飞.野生大豆染色体片段代换系群体中斜纹夜蛾抗性、叶片茸毛密度相关QTL/片段的定位及茸毛发育相关基因GmTTG1的克隆.南京:南京农业大学, 2013 [百度学术]
Shi H F. Mapping QTL/segments related to cotton worm resistance and leaf pubescence density in a wild soybean chromosome segment substitution line population and cloning GmTTG1 genes related to pubescence.Nanjing:Nanjing Agricultural University, 2013 [百度学术]
Jin T, Sun Y Y, Shan Z, He J B, Wang N, Gai J Y, Li Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. Plant Biotechnology Journal, 2021, 19(6): 1155-1169 [百度学术]
Hou Z H, Li Y L, Cheng Y H, Li W W, Li T, Du H, Kong F J, Dong L D, Zheng D F, Feng N J, Liu B H, Cheng Q. Genome-wide analysis of DREB genes identifies a novel salt tolerance gene in wild soybean (Glycine soja). Frontiers in Plant Science, 2022, 13: 821674 [百度学术]
牛远,徐宇,李广军,王云清,刘晓芬,李河南,魏世平,章元明.大豆籽粒大小和粒形的驯化研究.大豆科学, 2012, 31(4): 522-528 [百度学术]
Niu Y, Xu Y, Li G J, Wang Y Q, Liu X F, Li H N, Wei S P, Zhang Y M. Domestication of seed size and shape traits in soybean. Soybean Science, 2012, 31(4): 522-528 [百度学术]
Chen L Q, Lin I W, Qu X Q, Sosso D, McFarlane H E, Londono A, Samuels A L, Frommer W B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. The Plant Cell, 2015, 27(3): 607-619 [百度学术]
Yang H Y, Wang W B, He Q Y, Xiang S H, Tian D, Zhao T J, Gai J Y. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theoretical and Applied Genetics, 2019, 132(10): 2793-2807 [百度学术]
Wei S M, Yong B, Jiang H W, An Z H, Wang Y, Li B B, Yang C, Zhu W W, Chen Q S, He C Y. A loss-of-function mutant allele of a glycosyl hydrolase gene has been co-opted for seed weight control during soybean domestication. Journal of Integrative Plant Biology, 2023, 65(11): 2469-2489 [百度学术]
Li J, Zhang Y H, Ma R R, Huang W X, Hou J J, Fang C, Wang L S, Yuan Z H, Sun Q, Dong X H, Hou Y F, Wang Y, Kong F J, Sun L J. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnology Journal, 2022, 20(6): 1110-1121 [百度学术]
Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 2017, 10(5): 670-684 [百度学术]
Meng L S, Xu M K, Wan W, Wang J Y. Integration of environmental and developmental (or metabolic) control of seed mass by sugar and ethylene metabolisms in Arabidopsis. Journal of Agricultural and Food Chemistry, 2018, 66(13): 3477-3488 [百度学术]
Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630 [百度学术]
宿洋,杨静,郭勇,杜维俊,邱丽娟.大豆百粒重相关基因的全基因组发掘分析.作物杂志, 2021(3): 8-18 [百度学术]
Su Y, Yang J, Guo Y, Du W J, Qiu L J. Whole genome discovery and analysis of genes related to 100-seed weight in soybean. Crops, 2021(3): 8-18 [百度学术]
Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, Zhang L, Wang Z J, Yang Y Q, Yu D Y, Liu X L, Yang Q Y, Lin X Y, Tang Y, Zhao X H, Yang X Q, Tian C G, Xie Q G, Li X, Yuan X H, Tian Z X, Liu B H, Weller J M, Kong F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52(4): 428-436 [百度学术]
Dong L D, Li S C, Wang L S, Su T, Zhang C B, Bi Y D, Lai Y C, Kong L P, Wang F, Pei X X, Li H Y, Hou Z H, Du H P, Du H, Li T, Cheng Q, Fang C, Kong F J, Liu B H. The genetic basis of high-latitude adaptation in wild soybean. Current Biology,2023, 33(2): 252-262 [百度学术]
Diers B W, Shoemaker R C. Restriction fragment length polymorphism analysis of soybean fatty acid content. Journal of the American Oil Chemists Society, 1992, 69: 1242-1244 [百度学术]
Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science, 2005, 45(5): 2015-2022 [百度学术]
Goettel W, Zhang H Y, Li Y, Qiao Z Z, Jiang H, Hou D Y, Song Q J, Pantalone V R, Song B H, Yu D Y, An Y C. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nature Communications, 2022, 13(1):3051 [百度学术]
Zhang H, Goettel W, Song Q, Jiang H, Hu Z, Wang M L, An Y C. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genetics, 2020, 16(11): 1009114 [百度学术]
王娟,刘淼,王志坤,李文滨.大豆抗病、虫转基因研究进展.大豆科学, 2011, 30 (5): 865-868,873 [百度学术]
Wang J, Liu M, Wang Z K, Li W B. Advances in transgenic soybean resistant to disease and pest. Soybean Science, 2011, 30(5): 865-868,873 [百度学术]
傅连舜,吴冈梵,卜雅山.辽宁省野生大豆搜集评价及利用的研究.辽宁农业科学, 1993 (6): 6-9 [百度学术]
Fu L S, Wu G F, Bu Y S. Study on collection, evaluation and utilization of wild soybean in liaoning province. Liaoning Agricultural Sciences,1993 (6): 6-9 [百度学术]
任海红, 任小俊, 刘学义.大豆蚜虫的危害特点与综合防治措施.现代农业科技, 2012 (21): 163-165 [百度学术]
Ren H H, Ren X J, Liu X Y. Damage characteristics and comprehensive control measures of soybean aphids. Modern Agricultural Science and Technology, 2012 (21): 163-165 [百度学术]
杨振宇,本多健一郎,王曙明,马晓萍.中国东北抗蚜野生大豆重复鉴定的研究.吉林农业科学, 2004, 29(5): 4 [百度学术]
Yang Z Y, Honda K, Wang S M, Ma X P. The repetitive identification on aphid-resistant wild soybean on northeast of China. Journal of Jilin Agricultural Sciences, 2004, 29(5): 4 [百度学术]
Wang D, Diers B W, Arelli P R, Shoemaker R C. Loci underlying resistance to Race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theoretical and Applied Genetics, 2001, 103(4): 561-566 [百度学术]
Du H P, Qin R, Li H Y, Du Q, Li X, Yang H, Kong F J, Liu B H, Yu D Y, Wang H. Genome-wide association studies reveal novel loci for herbivore resistance in wild soybean (Glycine soja). International Journal of Molecular Sciences, 2022, 23(14): 8016 [百度学术]
袁翠平,齐广勋,李玉秋,刘晓冬,王英男,王玉民,赵洪锟,董英山.野生大豆抗胞囊线虫QTL定位.中国油料作物学报, 2019, 41(6): 887-893 [百度学术]
Yuan C P, Qi G X, Li Y Q, Liu X D, Wang Y N, Wang Y M, Zhao H K, Dong Y S.QTL mapping for resistance to soybean cyst nematode in wild soybean. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 887-893 [百度学术]
Cook D E, Lee T G, Guo X L, Melito S, Wang K, Bayless A M, Wang J P, Hughes T J, Willis D K, Clemente T E, Diers B W, Jiang J M, Hudson M E, Bent A F. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012, 338:1206-1209 [百度学术]
Yu N, Diers B W. Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Euphytica, 2017, 213: 54 [百度学术]
Usovsky M, Gamage V A, Meinhardt C G, Dietz N, Triller M, Basnet P, Gillman J D, Bilyeu K D, Song Q, Dhital B, Nguyen A, Mitchum M G, Scaboo A M. Loss-of-function of an α-SNAP gene confers resistance to soybean cyst nematode. Nature Communications, 2023, 14(1): 7629 [百度学术]
Natukunda M I, Maclntosh G C. The resistant soybean-Aphis glycines interaction: Current knowledge and prospects. Frontiers in Plant Science, 2020, 11: 1223 [百度学术]
Zhang S C, Zhang Z N, Bales C, Gu C H, DiFonzo C, Li M, Song Q J, Cregan P, Yang Z Y, Wang D C. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32. Theoretical and Applied Genetics, 2017, 130 (9): 1941-1952 [百度学术]
Hesler L S. Resistance to soybean aphid among wild soybean lines under controlled conditions. Crop Protection,2013, 53: 139-146 [百度学术]
Conzemius S R, Hesler L S, Varenhorst A J, Tilmon K J. Resistance to soybean aphid biotype 4 in plant introductions of Glycine soja. Euphytica, 2019, 215 (5):10 [百度学术]
Zheng C P, Chen P Y, Gergerich R. Effect of temperature on the expression of necrosis in soybean infected with soybean mosaic virus. Crop Science,2005, 45(3): 916 [百度学术]
钟超,李银萍,孙素丽,刘章雄,邱丽娟,朱振东.野生大豆资源对大豆疫病抗病性和耐病性鉴定.植物遗传资源学报, 2015,16(4): 684-690 [百度学术]
Zhong C, Li Y P, Sun S L, Liu Z X, Qiu L J, Zhu Z D. Identification of resistance and tolerance to phytophthora sojae in wild soybean germplasm. Journal of Plant Genetic Resources, 2015, 16(4): 684-690 [百度学术]
陈珊宇,郑桂杰,杨中路,刘若淼,智海剑.我国大豆核心种质南方材料对SMV流行株系的抗性评价.中国油料作物学报, 2009, 31(4): 513-516 [百度学术]
Chen S Y, Zheng G J, Yang Z L, Liu R M, Zhi H J. Evaluation of resistance to SMV of soybean core collection from southern China. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 513-516 [百度学术]
Xun H W, Qian X Y, Wang M, Yu J X, Zhang X, Pang J S, Wang S C, Jiang L L, Dong Y S, Liu B. Overexpression of a cinnamyl alcohol dehydrogenase-Coding gene, GsCAD1, from wild soybean enhances resistance to soybean mosaic virus. International Journal of Molecular Sciences, 2022, 23(23): 15206 [百度学术]
Tyler B M. Phytophthora sojae: Root rot pathogen of soybean and model oomycete. Molecular Plant Pathology, 2007, 8:1-8 [百度学术]
刘建新,郭新宇,马乐,杨光,毕影东,樊超,刘淼,张忠林.腐霉根腐病抗性候选基因GsDYRK2研究及大豆DYRK基因生物信息学分析.大豆科学, 2022, 41(3): 281-287 [百度学术]
Liu J X, Gou X Y, Ma L, Yang G, Bi Y D, Fan C, Liu M, Zhang Z L. Study on pythium root resistance candidate gene GsDYRK2 and bioinformatics analysis of soybean DYRK genes. Soybean Science, 2022, 41(3): 281-297 [百度学术]
Mian R,Bong J,Joobeur T, Mengistu A, Wiebold W, Shannon G, Wrather A. Identification of soybean genotypes resistant to Cercospora sojina by field screening and molecular markers. Plant Disease, 2009, 93(4): 408-411 [百度学术]
王财金,弟文静,马淑梅,王洋.发掘大豆资源中灰斑病1号生理小种抗性优异等位变异.作物杂志, 2020(6): 189-196 [百度学术]
Wang C J, Di W J, Ma S M, Wang Y. Mining the elite allele of resistance of cercospora sojina hara race 1 in soybean resources. Crops, 2020(6): 189-196 [百度学术]
晏益民.栽培大豆和野生大豆对不同环境胁迫的表型性状响应.北京:中国科学院大学, 2023 [百度学术]
Yan Y M. Phenotypic responses of cultivated soybean and wild soybean to different environmental stresses. Beijing:University of Chinese Academy of Sciences,2023 [百度学术]
Ji W, Zhu Y M, Li Y, Yang L, Zhao X W, Hua C, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnology Letters, 2010, 32(8): 1173-1179 [百度学术]
Ning W F, Zhai H, Yu J Q, Liang S, Yang X, Xing X Y, Hou J L, Tian P, Yang Y L, Bai X. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Molecular Breeding, 2017, 37: 19 [百度学术]
王岩岩,张永兴,郭葳,代文君,周新安,矫永庆,沈欣杰.野生大豆转录因子GsWRKY57基因的克隆与抗旱性功能分析.中国油料作物学报, 2019, 41(4): 524-530 [百度学术]
Wang Y Y, Zhang Y X, Guo W, Dai W J, Zhou X A, Jiao Y Q, Shen X J. Cloning and function of GsWRKY57 transcription factor gene response to drought stress. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 524-530 [百度学术]
孔伟胜,刘言,王林娟,李胜飞,张海荣.植物SnRK家族的研究进展.植物生理学报, 2016, 52(4): 413-422 [百度学术]
Kong W S, Liu Y, Wang L J, Li S F, Zhang H R. Research progress of plant family SnRK. Plant Physiology Journal, 2016, 52(4): 413-422 [百度学术]
Liu Y M, Cao L, Wu X, Wang S, Zhang P M, Li M L, Jiang J H, Ding X D, Cao X Y. Functional characterization of wild soybean (Glycine soja) GsSnRK1.1 protein kinase in plant resistance to abiotic stresses. Journal of Plant Physiology, 2023, 280: 153881 [百度学术]
Guan R X, Qu Y, Guo Y, Yu L L, Liu Y, Jiang J H, Chen J G, Ren Y L, Liu G Y, Tian L, Jin L G, Liu Z X, Hong H L, Chang R Z, Gilliham M, Qiu L J. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. The Plant Journal, 2014, 80(6): 937-950 [百度学术]
Qi X P, Li M W, Xie M, Liu X, Ni M, Shao G H, Song C, Yim A K Y, Tao Y, Wong F L, Isobe S, Wong C F, Wong K S, Xu C Y, Li C Q, Wang Y Guan R, Sun F M, Fan G Y, Xiao, Z X, Zhou F, Phang T H, Xuan L, Tong S W, Chan T F, Yiu S M, Tabata S, Wang J, Xu X, Lam H M. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 2014, 5: 4340 [百度学术]
Zhu D, Cai H, Luo X, Bai X, Deyholos M K, Qin C, Chen C, Ji W, Zhu Y M. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochemical and Biophysical Research Communications, 2012, 426(2): 273-279 [百度学术]
Sun X L, Sun M Z, Jia B W, Qin Z W, Yang K J, Chen C, Yu Q Y, Zhu Y M. A Glycine soja methionine sulfoxide reductase B5a interacts with the C
Wu S Y, Zhu P H, Jia B W, Yang J K, Shen Y, Cai X X, Sun X L, Zhu Y M, Sun M Z.A Glycine soia group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa. BMC Plant Biology, 2018, 18(1): 234-236 [百度学术]
Sun M Z, Qian X, Chen C, Cheng S F, Jia B W, Zhu Y M, Sun X L. Ectopic expression of GsSRK in Medicago sativa reveals its involvement in plant architecture and salt stress response. Frontiers in Plant Science,2018, 9(1): 226-228 [百度学术]
Jin T C, Chang Q, Li W F, Yi D X, Li Z J, Wang D L, Liu B, Liu L X. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue and Organ Culture, 2010, 100: 219-227 [百度学术]
阎文飞,程凡升,姜新强,刘翠霞,朱丹.野大豆盐碱胁迫相关GsTIFY6B基因克隆及表达特性分析.华北农学报, 2018, 33(4): 82-89 [百度学术]
Yan W F, Cheng F S, Jiang X Q, Liu C X, Zhu D. Cloning and expression analysis of GsTIFY6B associated with saline and alkali stress in Glycine soja. Acta Agriculturae Boreali-sinica, 2018, 33(4): 82-89 [百度学术]
潘焕婷.野生大豆GsALS3基因的功能研究.广州:华南农业大学, 2017 [百度学术]
Pan H T. Functional analysis of GsALS3 of Glycine Soja. Guangzhou:South China Agricultural University, 2017 [百度学术]
Tian J G, Wang C L, Xia J L, Wu L S, Xu G H, Wu W H, Li D, Qin W C, Han X, Chen Q Y, Jin W W, Tian F. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019, 365(6454): 658-664 [百度学术]
Do T D, Chen H T, Hien V T, Hamwieh A, Yamada T, Sato T, Yan Y L, Cong H, Shono M, Suenaga K, Xu D H. Ncl synchronously regulates N
Liu Y, Yu L L, Qu Y, Chen J J, Liu X X, Hong H L, Liu Z X, Chang R Z, Gilliham M, Qiu L J, Guan R X. GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl- exclusion prior to N
Guan R X, Yu L L, Liu X X, Li M Q, Chang R Z, Gilliham M, Qiu L J. Selection of the salt tolerance gene GmSALT3 during six decades of soybean breeding in China. Frontiers in Plant Science, 2021, 12: 794241 [百度学术]
杨光宇,王洋,马晓萍,王跃强,王英男,马金保,陈长学,杨文华,郭德广.野生大豆利用技术研究与应用.世界农业, 2010(3): 47-48 [百度学术]
Yang G Y, Wang Y, Ma X P, Wang Y Q, Wang Y N, Ma J B, Chen C X, Yang W H, Guo D G. Research and application of utilization technology of wild soybean. World Agriculture, 2010 (3): 47-48 [百度学术]
来永才,林红,方万程,姚振纯,齐宁,王庆祥,杨雪峰,李辉.黑龙江野生大豆优异资源筛选、评价及利用的研究.中国农学通报, 2005, 21(6): 379-382 [百度学术]
Lai Y C, Lin H, Fang W C, Yao Z C, Qi N, Wang Q X, Yang X F, Li H.Research that the excellent resource of wild soybean screen appraise and utilization in Heilongjiang. Chinese Agricultural Science Bulletin, 2005, 21(6): 379-382 [百度学术]
来永才,林红,方万程,姚振纯,齐宁,王庆祥,杨雪峰,李辉.野生大豆资源在大豆种质拓宽领域中的应用.沈阳农业大学学报, 2004(3): 184-188 [百度学术]
Lai Y C, Lin H, Fang W C, Yao Z C, Qi N, Wang Q X, Yang X F, Li H. Wild soybean natural resources and its application in broadening of soybean germplasm. Journal of Shenyang Agricultural University, 2004(3): 184-188 [百度学术]