摘要
由于工业发展以及生活废弃物污染的不断加剧,作物中的重金属浓度超标,严重威胁人体的健康。铝激活苹果酸转运体编码一类阴离子通道蛋白,在植物有机酸的跨膜转运中发挥重要的作用。为研究GmALMT33基因在大豆应对镉胁迫中的功能,本研究以大豆黑农48的叶片cDNA为模板,利用RT-PCR克隆得到GmALMT33基因。该基因CDS区全长1622 bp,编码553个氨基酸,含有1个ALMT结构域。qRT-PCR结果表明,GmALMT33在大豆根部的表达水平最高;镉胁迫后,该基因表达量呈现先升高后降低的趋势。构建植物表达载体pCPB-GmALMT33并对烟草、大豆毛状根进行遗传转化,转基因植株抗逆表型与生理指标分析表明,镉(66 μmol/L CdCl2)胁迫下,转基因烟草叶片黄化、褪绿,边缘褐化程度明显低于野生型烟草。转基因大豆毛状根复合体植株茎秆和叶脉呈现的红褐色毒害症状程度明显弱于转空载体植株。在镉胁迫处理7 d后,转基因烟草叶片的超氧化物歧化酶、抗坏血酸过氧化物酶活性及可溶性糖含量均高于野生型对照,丙二醛含量均低于对照。在镉胁迫处理0 d、1 d、3 d后,转基因大豆毛状根复合体根和叶的超氧化物歧化酶、抗坏血酸过氧化物酶活性、可溶性糖含量均高于转空载体对照,丙二醛含量均低于对照,表明GmALMT33基因提高了植株的耐镉能力。本研究为进一步探讨GmALMT33基因的作用机制提供了依据,并为大豆抗逆育种提供了新的基因。
大豆(Glycine max)是世界上优质蛋白质和油脂的重要来源,在食品、饲料和工业上有多种用途。然而在大豆生长过程中,会面临环境中各种生物和非生物胁迫的挑战。近年来,为进一步提高我国粮食作物的产量,在田间生产过程中化肥和农药的使用越来越多,导致我国自然环境中重金属污染愈加严
苹果酸转运蛋白(ALMT,Aluminum-activated malate transporter)是植物所特有且广泛存在的一类膜蛋白家
本研究成功克隆了前期在镉胁迫大豆甲基化差异片段中筛选得到的GmALMT33基因,并利用qRT-PCR技术分析其在大豆不同组织及镉胁迫处理后的表达水平,通过镉胁迫下转基因植株的表型分析和相关生理指标检测分析其在镉胁迫应答中的功能,以期为全面解析GmALMT33基因的作用机制和大豆耐镉品种的培育奠定基础。
选取大小均匀、颗粒饱满的黑农48种子,在0.1%次氯酸钠溶液中消毒5 min后用去离子水反复冲洗,将CdCl2配制成质量分数分别为0 mg/L、6 mg/L、10 mg/L、20 mg/L、30 mg/L、50 mg/L的镉溶液,选取50粒黑农48种子,用不同浓度的镉溶液浸种24 h,取出浸泡过的种子,放入MS培养基中。每个处理重复3次,第3天统计发芽势,第7天统计种子发芽率,计算平均值。
选取长势一致的大豆幼苗移至1/2 Hoagland 培养液中培养一周,之后在1/2 Hoagland 培养液中加入66 µmol/L CdCl2进行溶液培养处理,分别在0 h、2 h、6 h、12 h和24 h取材大豆叶片。未经CdCl2处理的大豆根、茎、叶进行组织表达分析。每个样品取3株,用液氮速冻后于-80℃冰箱保存备用。利用RNA提取试剂盒(OMEGA)提取镉处理的大豆叶片总RNA并反转录成cDNA。利用大豆GmALMT33基因定量引物(见
名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') | 用途 Application |
---|---|---|
GmALMT33-F1 | CGCTCTCTGATCGTGTCGTT | qRT-PCR |
GmALMT33-R1 | AGGGTAGCACCTATGCTGAA | |
GmActin11-F | CGGTGGTTCTATCTTGGCATC | 内参基因 |
GmActin11-R | GTCTTTCGCTTCAATAACCCTA | |
GmALMT33-F2 | GATCTAGAAATGGCCGCGAGAGTGGGGT | 基因克隆 |
GmALMT33-R2 | CTCCCGGGCCTAGCTACTTGAGCAAAGGTTG | |
bar-F | AGTCGACCGTGTACGTCTCC | 分子鉴定 |
bar-R | GAAGTCCAGCTGCCAGAAAC |
单下划线为Xba I内切酶识别位点,双下划线为Sma I内切酶识别位点
The single underlined portion is the Xba I endonuclease recognition site,the double underlined portion is the Sma I endonuclease recognition site
根据前期在镉胁迫大豆甲基化差异片段中筛选出的GmALMT33基因片段,在NCBI数据库(http//www.ncbi.nlm.nih.hov/)中同源检索其基因全序列,用Premier 5.0设计引物(
使用NCBI的ORF finder查找开放阅读框并进行序列翻译。在NCBI上用CDD(http://www.ncbi.nlmnih.gov/cdd/)分析GmALMT33蛋白的保守结构域。利用PSORT工具对GmALMT33蛋白进行亚细胞定位分析。将GmALMT33蛋白序列在NCBI上进行BLAST比对,选取同源性较高的部分氨基酸序列,利用MEGA7.0软件构建进化树。
提取测序正确的pMD-GmALMT33质粒,利用限制性内切酶Xba I和Sma I对植物表达载体pCPB进行双酶切,酶切反应体系:10×K Buffer 5 μL;0.1%BSA 5 μL;pCPB载体 25 μL;Xba I 1 μL;Sma I 1 μL;ddH2O 13 μL。酶切条件:37℃酶切12 h。GmALMT33基因片段与pCPB载体连接,连接体系:GmALMT33 3 μL;pCPB载体片段 5 μL;T4 DNA连接酶 1 μL;10×T4 Buffer 1 μL。连接条件:16℃过夜连接。采用菌液PCR(反应体系同1.2.3)和双酶切对重组载体进行验证。
通过冻融法将pCPB-GmALMT33转入农杆菌EHA105感受态中,叶盘
通过冻融法将重组植物表达载体pCPB-GmALMT33和pCPB空载体分别转化到发根农杆菌9402中。将发根农杆菌9402菌液震荡培养至OD600= 0.7。取6~7日龄大豆幼苗在子叶节近胚轴1 cm处斜切,在子叶节近胚轴3 mm处制造伤口。将处理好的大豆外植体在重悬菌液中浸泡30 min后放置于被1/2 Hoagland营养液浸湿的滤纸上,遮光培养48 h后移栽到蛭石中,7~8天即可长出毛状根。待长出毛状根后,14 h(光照)/10 h(黑暗),光照28℃/黑暗20℃,温室培养3周。
采用CTAB
转GmALMT33基因植株抗逆表型分析 各取3株生长状态较一致的野生型和转基因烟草叶片,用直径7 mm的打孔器打孔,分别置于含有66 μmol/L CdCl2的MS固体培养基上,于25℃,16 h(光照)/8 h(黑暗)的条件下,胁迫处理7 d,观察叶片的变化,并拍照记录,设置3次生物学重复和技术重复。选取3周龄,同一生长状态的转基因及转空载体大豆毛状根复合体植株各3株,转移至1/2 Hoagland营养液中培养一周,然后用含66 μmol/L CdCl2的1/2 Hoagland营养液进行镉胁迫。胁迫处理7 d,拍照记录植株表型,设置3次生物学及技术重复。
转GmALMT33基因植株生理指标测定 取经含66 μmol/L CdCl2的1/2 Hoagland溶液胁迫处理0 d、1 d、3 d的转基因及转空载体大豆毛状根复合体植株的根和叶片,进行生理指标检测。将生长一致的转基因和野生型烟草幼苗移植到土壤∶蛭石=1∶1中,待缓苗后,进行镉胁迫处理。处理组浇灌100 μmol/L CdCl2,对照组浇灌等量的水,处理7 d。对处理7 d 的野生型和转基因烟草各3株植物叶片进行超氧化物歧化酶(SOD,superoxide dismutase)活性、抗坏血酸过氧化物酶(APX,aseorbateperoxidase)活性、丙二醛(MDA,malondialdehyde)含量等测定,生理指标测定试验每组重复3次,用SPSS对数据进行分析。
种子的发芽率是反映植物重金属胁迫的一个基本指标。不同浓度CdCl2对黑农48种子发芽率会产生一定的抑制作用,随着CdCl2浓度升高,抑制作用明显增强。当C
指标 Target | 对照 Control | 处理浓度(mg/L) Treatment concentration | ||||
---|---|---|---|---|---|---|
6 | 10 | 20 | 30 | 50 | ||
发芽率(%) Germination rate |
92.700.0 |
94.670.0 |
78.000.0 |
64.670.0 |
46.000.0 |
26.670.0 |
发芽势(%) Germination force |
96.670.0 |
75.330.0 |
54.670.0 |
46.670.0 |
35.330.0 |
21.330.0 |
数据后小写字母a代表无显著差异,b代表差异显著(P<0.05)
The lowercase letter a after the data represents no significant difference, while b represents significant difference (P<0.05)
qRT-PCR结果显示,GmALMT33基因在大豆根、茎、叶中均有表达,但表达模式有显著差异。GmALMT33基因的表达量在根中最高,在茎和叶中显著降低。大豆植株经66 μmol/L CdCl2处理后,GmALMT33的表达量显著升高,其中胁迫6 h时表达量最高,是对照(0 h)的8.2倍(

图1 GmALMT33基因在不同组织中的表达模式
Fig. 1 The expression patterns of GmALMT33 gene in tissue
**表示达到极显著水平(P<0.01);*表示达到显著水平(P<0.05);下同
** denotes highly significant level (P<0.01); * denotes significant level (P<0.05);The same as below

图2 GmALMT33基因在镉胁迫下的表达模式
Fig. 2 The expression patterns of GmALMT33 gene under different time of CdCl2 stress
利用GmALMT33特异引物从大豆叶片cDNA中扩增获得1770 bp的DNA片段(

图3 大豆GmALMT33基因的克隆与序列分析
Fig. 3 Cloning and sequence analysis of soybean GmALMT33 gene
A:GmALMT33基因PCR扩增结果;M:DL 2000 DNA 标记;0:空白对照;1~2:GmALMT33基因;B:GmALMT33蛋白亚细胞定位预测;C:GmALMT33蛋白结构域预测;D:GmALMT33蛋白系统进化树
A: PCR amplification results of GmALMT33 gene; 0: Water control; 1-2: GmALMT33 gene; B: Prediction of GmALMT33 protein subcellular localization; C: Prediction of GmALMT33 protein structural domains; D: Phylogenetic tree of GmALMT33 protein
借助Xba I和Sma I内切酶将GmALMT33与植物表达载体pCPB连接,重组质粒双酶切后得到1770 bp的目的基因条带(

图4 植物表达载体的构建及转GmALMT33基因植株的获得及鉴定
Fig.4 Construction of plant expression vectors and acquisition and characterization of transgenic GmALMT33 plants
A:pCPB-GmALMT33 的双酶切鉴定;M:DL15000 分子量标准,1:pCPB-GmALMT33 双酶切产物;B:烟草的遗传转化,Ⅰ~Ⅱ: 愈伤组织的诱导和分化,Ⅲ:再生植株生根,Ⅳ:再生植株移栽;C:获得转基因毛状根大豆复合体植株;D:转GmALMT33烟草的PCR鉴定;M:DL2000 分子量标准;0:空白对照,1:阳性对照(重组质粒为模板),2:阴性对照(野生型烟草),3~9:转基因烟草;E:PCR鉴定转基因毛状根,M:DL2000 分子量标准,0:空白对照,1:阳性对照(重组质粒为模板),2:转空载体大豆毛状根,3~8:转基因毛状根;F: 转基因大豆毛状根中GmALMT33基因的相对表达量
A: Dual enzyme cleavage identification of pCPB-GmALMT33; 1: pCPB-GmALMT33 dual enzyme cleavage product, B: Genetic transformation of tobacco, Ⅰ-Ⅱ: Healing tissue induction and differentiation, Ⅲ: Rooting of regenerated plants, Ⅳ: Transplantation of regenerated plants; C: Cultivation process of soybean composite plants transgenic for hairy roots; D: PCR identification of trans-GmALMT33 tobacco; 0: Blank control; 1: Positive control (recombinant plasmid as a template), 2: Negative control(wild type tobacco), 3-9: Transgenic tobacco; E: PCR identification of transgenic hairy root, 0: Blank control, 1: Positive control (recombinant plasmid as template), 2:Soybean hairy roots transformed into empty carriers, 3-8:Transgenic hairy root; F:Relative expression of GmALMT33 gene in hairy roots of soybean
农杆菌侵染烟草叶片后,经共培养、愈伤组织的诱导、芽的分化、生根培养,最终移栽入土壤中,获得草胺磷抗性再生植株(
对阳性转基因大豆毛状根与转空载体毛状根进行qRT-PCR鉴定(
镉胁迫下转基因烟草植株表型分析 CdCl2胁迫处理结果显示(

图5 转GmALMT33基因植株表型
Fig. 5 Phenotypic of transgenic GmALMT33 plants
A:66 μmol/L CdCl2胁迫处理烟草叶片表型;B:66 μmol/L CdCl2胁迫处理转基因大豆毛状根复合体表型,1~2:转空载体大豆毛状根复合体植株分别胁迫 0 d、7 d,3:转空载体大豆毛状根复合体植株胁迫 7 d 的叶片,4~5:转基因大豆毛状根复合体植株分别胁迫 0 d、7 d,6:转基因大豆毛状根复合体植株胁迫7 d 的叶片
A:66 μmol/L CdCl2 stress-treated tobacco leaf phenotype;B:66 μmol/L CdCl2 stress-treated transgenic soybean hairy root complex phenotype,1-2:Trans-empty vector soybean hairy root complex plants stressed for 0 d and 7 d,respectively,3:Trans-empty vector soybean hairy root complex plants stressed for 7 d,4-5:Transgenic soybean hairy root complex plants stressed for 0 d and 7 d respectively,6:Transgenic soybean hairy root complex plants stressed for 7 d in leaves
镉胁迫下转基因大豆毛状根复合体植株表型分析 CdCl2胁迫结果显示(图5B),胁迫7 d 时,转空载体和转基因大豆毛状根复合体植株与胁迫前(0 d)相比均出现镉毒害现象,茎秆出现红褐色,并且从植株的形态学下端向上蔓延,但转空载体植株叶柄出现红褐色并蔓延至叶脉,而转基因植株叶柄处只出现少许红褐色。说明GmALMT33基因能够在一定程度上增强植株对镉胁迫的耐受性。
镉胁迫下转基因烟草生理指标分析 由


图6 转GmALMT33基因植株生理指标
Fig. 6 Physiological indexes of transgenic GmALMT33 plants
A:镉胁迫处理下转基因烟草中的APX、SOD活性和MDA、可溶性糖含量;B:镉胁迫处理下转基因大豆毛状根复合体植株根(左)和叶片(右)中的 SOD、APX活性及MDA、可溶性糖含量
A:APX,SOD activity,MDA and soluble sugar content in transgenic tobacco under cadmium stress treatment;B:SOD,APX activity,MDA and soluble sugar content in roots (left) and leaves (right) of transgenic soybean hairy root complex plants under cadmium stress treatment
镉胁迫下转基因大豆毛状根复合体植株生理指标分析 由
铝激活苹果酸转运体基因家族广泛存在于陆生植物体内,在植物有机酸的跨膜转运中起着重要作用。目前对ALMT基因家族成员的功能研究涉及其增强植物对重金属镉胁迫的耐受
蛋白的结构及其在细胞中的定位与其功能紧密相关。有研究表明ALMT作为一类相对保守的蛋白,其大多数家族成员都含有一个或多个 PF11744结构域,二级结构预测结果也表明大多数ALMT蛋白在N端含有5~7个疏水跨膜结构域,在C端含有亲水
基因的时空表达特异性也与基因的功能直接相关。有研究证明ALMT基因多在根系或叶片中特异性表
Taoufik
在重金属胁迫下,植物已经发展出各种防御机制来减轻氧化应激的影响,包括活性氧解毒酶,如超氧化物歧化酶、抗坏血酸过氧化物酶、过氧化氢酶和谷胱甘肽还原酶,以及低分子量抗氧化剂,如抗坏血酸、谷胱甘肽、类胡萝卜素和金属硫蛋
GmALMT33基因在大豆应对镉胁迫中发挥了重要的调控作用,能够在一定程度上提高植株的耐镉能力,但其具体的作用机制还有待后续进一步研究。
克隆获得GmALMT33基因,该基因在大豆根、茎、叶中均有表达,但在根中表达水平最高,同时该基因被镉胁迫诱导显著上调表达。镉胁迫下转基因烟草及转基因大豆毛状根复合体植株表型及生理分析结果进一步说明GmALMT33基因可以提高植株对镉的耐受性。
参考文献
符云聪,朱晓龙,袁毳,解晓露,李鹏祥,朱维,黎红亮,刘代欢.小麦对镉的吸收、富集及其镉污染预测研究进展.中国农学通报,2020,36(6):37-41 [百度学术]
Fu Y C, Zhu X L, Yuan C, Xie X L, Li P X, Zhu W, Li H L, Liu D H. Cadmium absorption and enrichment in wheat and its cadmiun pollution prediction:Research progress.Chinese Agricultural Science Bulletin,2020,36(6):37-41 [百度学术]
陈华,陈永快,王涛,黄语燕,廖水兰,兰婕,康育鑫.水杨酸对镉胁迫下不结球白菜幼苗生长及生理的响应.福建农业学报,2020,35(12):1321-1329 [百度学术]
Chen H, Chen Y K, Wang T, Huang Y Y, Liao S L, Lan J, Kang Y X. Effects of salicylic acid on growth and physiology of non-heading Chinese cabbage seedlings under cadmium stress. Fujian Journal of Agriculture Science, 2020, 35(12):1321-1329 [百度学术]
蒋欣梅,薛冬冬,于锡宏,吴凤芝,许铧月,李钰锋,曲娟娟,闫雷.玉米秸秆生物炭对镉污染土壤中小白菜生长的影响.江苏农业学报,2020,36(4):1000-1006 [百度学术]
Jiang X M, Xue D D, Yu X H, Wu F Z, Xu H Y, Li Y F, Qu J J, Yan L. Effects of con-stalk biochar on the growth of Chinese cabbage in cadmium contaminated soil. Jiangsu Journal of Agriculture Science, 2020, 36(4):1000-1006 [百度学术]
李明月,张文婷,李阳,张保龙,杨立明,王金彦. 小肽Ospep5对水稻耐镉性的影响.作物学报,2024,50(1):67-75 [百度学术]
Li M Y, Zhang W T, Li Y, Zhang B L, Yang L M, Wang J Y. Effects of small peptide Ospep5 on cadmium tolerance in rice. Acta Agronomica Sinica, 2024, 50(1): 67-75 [百度学术]
赵晓鑫,黄烁淇,谭文勃,兴旺,刘大丽. 甜菜HIPPs基因家族鉴定与镉胁迫下的表达分析.作物学报,2023,49(12):3302-3314 [百度学术]
Zhao X X, Huang S Q, Tan W B, Xing W, Liu D L. Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet. Acta Agronomica Sinica, 2023, 49(12): 3302-3314 [百度学术]
Length Y, Li Y, Wen Y, Zhao H, Wang Q, Li S W L. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Ecotoxicology and Environmental Safety, 2020,204: 111098-111098 [百度学术]
徐佳慧,王萌,张润,吴玲玲. 土壤镉污染的生物毒性研究进展.生态毒理学报, 2020,15(05):82-91 [百度学术]
Xu J H, Wang M, Zhang R, Wu L L. Toxicity of cadmium pollution in soil to organisms: A review. Asian Journal of Ecotoxicology, 2020,15(05):82-91 [百度学术]
张慧,李泽锋,徐国云,金静静,王晨,翟妞,金立锋,郑庆霞,陈千思,刘萍萍,周会娜.普通烟草ALMT基因家族的鉴定与表达分析.烟草科技, 2020,53(5):1-9 [百度学术]
Zhang H, Li Z F, Xu G Y, Jin J J, Wang C, Zhai N, Jin L F, Zheng Q X, Chen Q S, Liu P P, Zhou H N. Identification and expression analysis of ALMT gene family in Nicotiana tobacco. Tobacco Science&Technology, 2020, 53(5):1-9 [百度学术]
Sasaki T, Yoko Y, Bunichi E, Maki, K, Sung J, Ahn S J, Peter R R, Emmanuel D, Hideaki M. A wheat gene encoding an aluminum-activated malate transporter.The Plant Journal:For Cell and Molecular Biology, 2004, 37(5):645-53 [百度学术]
Barbier-Brygoo H, Angeli D A, Filleur S. Anion Channels/Transporters in plants:From molecular bases to regulatory networks. Annual Review of Plant Biology, 2011, 62(1):25-51 [百度学术]
Palmer-Antongy J, Baker A, Muench-Stephen P. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance. Biochemical Society Transactions ,2016, 44(3):856-62 [百度学术]
李姣姣,梁翠月, 廖红. 低磷胁迫对大豆苹果酸转运子GmALMT家族的表达调控//中国作物学会,中国细胞生物学学会,中国遗传学会,中国植物生理与分子生物学会,中国植物学会. 2013全国植物生物学大会论文集.华南农业大学亚热带农业生物资源保护与利用国家重点实验室,资源环境学院根系生物学研究中心,2013:176 [百度学术]
Li J J,Liang C Y,Liao H. Regulation of the expression of the GmALMT family of malate transporters in soybean by low phosphorus stress//The Crop Science Society of China, Chinese Society For Cell Biology, Genetics Society of China, Chinese Society for Plant Biology, Botanical Society of China. Proceedings of the 2013 National Congress of Plant Biology. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,South China Agricultural University,Root Biology Center, College of Resources and Environment,2013:176 [百度学术]
路静.苹果酸转运蛋白MdALMT14调控苹果耐盐的功能研究. 泰安:山东农业大学, 2019 [百度学术]
Lu J. Functional characterization in salt tolerance of a malate transporter MdALMT14 in apple.Tai’an: Shandong Agricultural University, 2019 [百度学术]
魏志敏,李亚林,黄鑫,李学文,吴飞华,刘家友,喻敏. 植物阴离子通道铝激活苹果酸转运体ALMTs在植物营养与生理中的作用.植物生理学报, 2023, 59(6):1072-1082 [百度学术]
Wei Z M,Li Y L,Huang X,Li X W,Wu F H,Liu J Y,Yu M. The role of plant anion channel aluminum-activated malate transporters(ALMTs)in plant nutrition and physiolog. Plant Physiology Journal, 2023, 59(6):1072-1082 [百度学术]
Peng W T, Wu W W, P J U, Li J J, Li Y. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. Journal of integrative plant biology, 2018, 60(3): 216-231 [百度学术]
彭福程.铁皮石斛ALMT基因家族全基因组研究及昼夜表达模式的分析. 北京:中国林业科学研究院,2020 [百度学术]
Peng F C. Genome-wide study of ALMT gene family in Dendrobium catenatum and analysis of expression profiles during day and night. Beijing: Chinese Academy of Forestry , 2020 [百度学术]
Ma B Q,Yuan Y Y,Gao M,Qi T H,Li M J, Ma F W.Genome-wide identification,molecular evolution,and expression divergence of aluminum-activated malate transporters in Apples. International Journal of Molecular Science,2018,19(9):2807-2807 [百度学术]
Xu M Y, Gruber B D , Delhaize E , White R G , James R A, You J F , Yang Z M , Ryan P R . The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism. Physiologia Plantarum, 2015,153:183-193 [百度学术]
Miguel A Piñeros, Geraldo M A Cançado, Lyza G Maron, Sangbom M Lyi, Marcelo Menossi, Leon V Kochian. Not all ALMT1-Type transporter mediate aluminum-activated organic acid responses:The case of ZmALMT1-an anion-selective transporter. The Plant Journal: For Cell and Molecular Biology, 2008, 53(2):352-367 [百度学术]
Alexis A D, Ulrike B, Rita F.The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta, 2013, 238(2):283-291 [百度学术]
Liang C, Pionros A M , Tian J , Yao Z F , Sun L L , Liu J P, Shaff Jon, Coluccio Alison, Leon V K , Hong L. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology, 2013,161(3):1347-1361 [百度学术]
蔡冰杰.紫花苜蓿苹果酸转运体基因的克隆和表达模式研究.重庆:重庆大学, 2014 [百度学术]
Cai B J. Study on clone and expression of MsALMT1 gene in Medicago Sativa L. Chongqing: Chongqing University,2014 [百度学术]
彭文婷,彭俊楚,李姣姣,吴炜炜,林雁,孙丽莉,梁翠月,廖红. 大豆苹果酸转运子在大豆响应低磷胁迫中的功能//中国遗传学会,中国细胞生物学学会,中国植物学会,中国植物生理与植物分子生物学学会,中国作物学会. 2016年全国植物生物学大会摘要集.华南农业大学根系生物学研究中心,福建农林大学海峡联合研究院,2016:197 [百度学术]
Peng W T, Peng J C, Li J J, Wu W W, Ling Y,Sun L L, Liang C Y, Liao H. Function of soybean malic acid transporter in soybean response to low phosphorus stress//Genetics Society of China,Chinese Society For Cell Biology, Botanical Society of China,Chinese Society for Plant Biology,The Crop Science Society of China. Proceedings of the 2016 National Congress of Plant Biology.Root Biology Center,South China Agricultural University,Haixia Institute of Science and Technology,Fujian Agriculture and Forestry University,2016:197 [百度学术]
Jun L, Gao X R , Dong Z M , Yi J , An L J. Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum. Plant Cell Reports, 2012,31(1):49-56 [百度学术]
Liu J. Biology and function of the OsALMT1 gene in rice (Oryza sativa L.). Tasmania: University of Tasmania,2016 [百度学术]
Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, Beckers G J M, Martinoia E. ABA-induced stomatal closure involves ALMT4, a phosphorylation dependent vacuolar anion channel of Arabidopsis. Plant Cell ,2017,29(10):2552-2569 [百度学术]
姜静涵,关荣霞,郭勇,常汝镇,邱丽娟.大豆苗期耐盐性的简便鉴定方法. 作物学报, 2013, 39(7):1248-1256 [百度学术]
Jiang J H, Guang R X, Guo Y, Chang R Z, Qiu L J. Simple evaluation method of tolerance to salt at seeding stage in soybean. Acat Agronomica Sinica, 2013, 39(7) 1248-1256 [百度学术]
彭亚男.大豆GmCBL7基因启动子的克隆与功能分析. 哈尔滨:哈尔滨师范大学, 2021 [百度学术]
Peng Y N. Cloning and functional analysis of soybean GmCBL7 gene promoter. Harbin:Harbin Normal University,2021 [百度学术]
李舒文,李殷睿智,董笛,王梦迪,晁跃辉,韩烈保. 蒺藜苜蓿MtSAG113基因的转化及表达特征分析.生物技术通报, 2022,38(1):108-114 [百度学术]
Li S W, Li Y R Z, Tong D, Wang M D, Chao Y H, Han L B. Transformation and expression pattern analysis of gene MtSAG113 from Medicago truncatula. Biotechnology Bulletin, 2022,38(1):108-114 [百度学术]
邵亚林,司俊波,常玮,石家恋,丁勇. 五种兜兰属植物基因组DNA提取方法比较. 分子植物育种,2020,18(15):4965-4974 [百度学术]
Shao Y L, Si J B, Chang W, Shi J L, Ding Y. Comparison of genomic DNA extraction methods for five sepecies of Tulipa spp. Molecular Plant Breeding, 2020,18(15):4965-4974 [百度学术]
Delhaize E, Ryan P R, Hebb D M. Engineeringhigh-level aluminium tolerance in barleywith the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42): 15249-15254 [百度学术]
Hoekenga OA, Maron L G, Piñeros M A, Cançado G M, Shaff J, Kobayashi Y, Ryan P R, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(25):9738-9743 [百度学术]
Akira I, Kazutsuka S, Kenta W. Identification of genes encoding ALMT and MATE transporters as candidate aluminum tolerance genes from a typical acid soil plant, Psychotria rubra (Rubiaceae). Peer J, 2019, 7e7739 [百度学术]
Delhaize E,Gruber D B, Ryan R P. The roles of organic anion permeases in aluminium resistance and mineral nutrition. Febs Letters,2007,581(12):2255-2262 [百度学术]
Alexis A D, Jingbo Z, Stefan M. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nature communications,2013,4(1):1804 [百度学术]
李云浩. MdALMT13在苹果响应干旱和碱胁迫中的功能研究. 杨凌:西北农林科技大学,2022 [百度学术]
Li Y H. Study on the functional of MdALMT13 in response to drought and alkali stress in apple. Yangling: Northwest A&F University,2022 [百度学术]
巫伟峰,陈明杰,祁芳斌,陈发兴.李果实有机酸组成特征及其与苹果酸转运体基因PsALMT9和PstDT的相关性.西北植物学报, 2022, 40(8):1356-1363 [百度学术]
Wu W F, Chen M J, Qi F B, Chen F X. Organic acid composition characteristics and its correlation with malate transporter genes PsALMT9 and PstDT in plum fruit. Acta Botanica Boreali-Occidentalia Sinica, 2022,40(8):1356-1363 [百度学术]
王冰.番茄苹果酸调控基因SLALMT9互作蛋白CESA2、TP、TEP的鉴定及功能验证. 武汉:华中农业大学, 2020 [百度学术]
Wang B. Identification and functional analysis of malate regulatory gene SLALMT9 interaction proteins CESA2, TP and TEP in tomato. Wuhan: Huazhong Agricultural University,2020 [百度学术]
赵红,徐芬芬,余淑铃,郑怡婷, 符诗婷. 2,4-表油菜素内酯对镉胁迫下黄瓜幼苗的缓解效应. 北方园艺, 2022(20):35-41 [百度学术]
Zhao H, Xu F F, Yu S L, Zheng Y T, Fu S T. Mitigation effect of 2,4-Epibrassinolide on cucumber seedings under cadmium stress. Northern Horticulture, 2022(20):35-41 [百度学术]
Hegedüs A, Erdei S, Janda T, Toth E, Horvath G, Dudits D. Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Science,2004,166(5):1329-1333 [百度学术]
Taoufik R E,Abdallah O,Abdelmajid H,Hocheol S,Eilhann K, Nanthi B, Abin S,Prasad M. Cadmium stress in plants: A critical review of the effects, mechanisms,and tolerance strategies. Critical Reviews in Environmental Science and Technology. 2022, 52(5):675-726 [百度学术]
王芳洲,王友绍. C
Wang F Z, Wang Y S. Effects of C
闵强,柯汉玲,祖艳群,秦丽. 连续2年土壤砷胁迫对三七(Panax notoginseng)细胞膜透性和抗氧化酶活性的影响. 云南农业大学学报:自然科学版, 2016, 31(4):767-771 [百度学术]
Min Q, Ke H L, Zu Y Q, Qin L. Effects of soil as on cellmembrance permeability and antioxidant enzymes activities of Panax notoginseng. Journal of Yunnan Agricultural University:Natural Science Edition, 2016,31(4):767-771 [百度学术]