摘要
玉米成熟期籽粒含水量(KMC,kernel moisture content)是影响玉米机械化粒收的关键因素,利用多位点全基因组关联分析(ML-GWAS,multi-locus genome-wide association study)挖掘与籽粒含水量相关性状显著关联的遗传位点,解析其遗传基础,可为适机收玉米品种的选育和遗传改良提供参考。本研究以205份玉米自交系为材料,在4个环境下测定成熟期籽粒、苞叶与穗轴的含水量,使用mrMLM、FASTmrMLM、FASTmrEMMA、pLARmEB、pKWmEB和ISIS EM-BLASSO 6种多位点关联分析方法结合分布于全基因组的76492个单核苷酸多态性位点(SNP,single nucleotide polymorphism)进行关联分析,挖掘其候选基因并进行基因注释。表型分析显示,205份材料的籽粒含水量相关性状的变异系数在10.47%~33.90%,广义遗传率在67.39%~81.24%。6种ML-GWAS方法共检测到26个、15个和23个SNP位点分别与籽粒含水量、苞叶含水量和穗轴含水量显著关联;其中3种及以上方法共同检测到14个显著关联SNP位点,表型贡献率(PVE,phenotypic variation explained)在1.13%~17.21%。6种方法中pLARmEB检测到的显著位点最多,FASTmrEMMA检测到的最少。基于3种及以上方法共同检测到且平均PVE≥5%的显著SNP位点为Chr1_9232728、Chr4_176596174、Chr8_57716249和Chr5_191021635,在这4个SNP位点上下游220 kb共挖掘到17个候选基因,主要富集到细胞解剖实体、新陈代谢过程和细胞进程与催化活性,推测这些基因通过调节细胞代谢与催化活性最终影响玉米籽粒、苞叶和穗轴的含水量。
玉米是我国种植面积最大的作
单位点关联分析显著性的判断大多采用较为严格的矫正方法,从而导致一些效应较小的位点被淘汰。针对这一问题开发的多位点全基因组关联分析(ML-GWAS,multi-locus genome-wide association study)方法,它的优势是先用一个比Bonferroni略宽松的标准筛选SNP,然后用多位点遗传模型分析,不需要多次校
本研究以205份玉米自交系为关联群体,使用6种ML-GWAS方法对籽粒、穗轴及苞叶含水量进行关联分析,检测与其显著关联的SNP位点,筛选低含水量的基因型,进一步挖掘其候选基因,为分子标记辅助选育适机械化粒收玉米品种提供参考。
本研究使用的205份玉米自交系,来自国家玉米改良中心河北分中心,分别于2017年和2018年在河北保定(115.47°E,38.87°N)和河北辛集(115.29°E,37.83°N)种植。田间试验均采用随机完全区组试验设计,2行区,行长4 m,行距0.6 m,种植密度为 67500 株/h
选取行内整齐一致的单株,吐丝前和散粉前分别对雌穗和雄穗进行套袋隔离。待一个自交系有10株以上吐丝和散粉后挑选长势一致的植株自交授粉。调查每个自交系的成熟期,待其籽粒黑层形成时,每个自交系选取5个长势一致的果穗。首先剥苞叶,测定苞叶鲜重;然后脱粒,取果穗中部100粒称重记为籽粒鲜重;再测定穗轴鲜重;将称重后的苞叶、籽粒和穗轴在105 ℃下烘30 min杀青,然后80 ℃下烘干至恒重,测定籽粒、苞叶和穗轴的干
使用Microsoft Excel 2021对两年两点4个环境下玉米籽粒、苞叶和穗轴的鲜重和干重数据进行整理并计算籽粒含水量、苞叶含水量和穗轴含水量。计算公式如下:含水量(%)=(鲜重-干重)/鲜重×100
使用IBM SPSS Statistics 26对4个环境下的含水量数据进行描述统计和方差分析。使用R语言(https://cran.r-project.org/)平台下的GGally软件包计算相关系数并绘
利用CTAB法提取205份玉米自交系叶片DNA,采用Illumina标准流程进行双末端 100 bp 测序,将测序所得有效数据对比到B73RefGen_v4基因组
使用R语言平台下的mrMLM.GUI_V4.02软件包对76492个SNPs和各性状的BLUE值进行GWAS分析,使用软件包内置的mrMLM、FASTmrMLM、FASTmrEMMA、pLARmEB、pKWmEB和ISIS EM-BLASSO 6种方法,采用Q+K模型,其中亲缘关系K矩阵由软件计算,群体结构Q矩阵由admixture软件计算,显著性阈值使用软件默认值LOD=3,其他设置均为默认
使用plink v1.9软件对填补后的基因型文件进行连锁不平衡(LD,linkage disequilibrium)分析,以
对4个环境下籽粒含水量、苞叶含水量和穗轴含水量数据进行描述统计分析(
性状 Traits | 环境 Environment | 范围 Range | 均值±标准差 Mean±SD | 偏度 Skewness | 峰度 Kurtosis | 变异系数(%) CV |
---|---|---|---|---|---|---|
籽粒含水量(%)KMC | 17BD | 10.83~39.69 | 26.86±7.04 | -0.22 | -0.74 | 26.21 |
17XJ | 17.63~48.57 | 38.01±4.80 | -1.14 | 2.96 | 12.62 | |
18BD | 13.01~41.18 | 25.57±6.39 | 0.22 | -0.56 | 24.98 | |
18XJ | 15.80~46.99 | 35.40±5.66 | -0.87 | 0.97 | 15.98 | |
BLUE | 15.29~44.15 | 31.28±4.85 | -0.26 | 0.29 | 15.51 | |
苞叶含水量(%)HMC | 17BD | 13.94~63.52 | 38.04±12.82 | 0.21 | -1.00 | 33.70 |
17XJ | 20.71~72.58 | 45.35±12.85 | -0.02 | -1.11 | 28.34 | |
18BD | 12.21~67.81 | 35.31±11.97 | 0.10 | -0.69 | 33.90 | |
18XJ | 16.32~68.18 | 41.27±12.70 | 0.23 | -0.66 | 30.76 | |
BLUE | 16.78~67.11 | 39.66±10.39 | 0.07 | -0.64 | 26.20 | |
穗轴含水量(%)CMC | 17BD | 16.59~85.40 | 58.42±14.64 | -0.78 | 0.05 | 25.06 |
17XJ | 37.26~82.14 | 66.00±7.23 | -0.69 | 1.53 | 10.95 | |
18BD | 15.57~78.28 | 54.03±13.60 | -0.67 | 0.11 | 25.18 | |
18XJ | 41.05~81.28 | 65.39±6.85 | -0.70 | 0.85 | 10.47 | |
BLUE | 28.57~87.32 | 60.87±8.46 | -0.63 | 1.07 | 13.90 |
17BD: 2017年保定; 17XJ: 2017年辛集; 18BD: 2018年保定; 18XJ: 2018年辛集; BLUE: 最佳线性无偏估计;下同
17BD: 2017 Baoding; 17XJ: 2017 Xinji; 18BD: 2018 Baoding; 18XJ: 2018 Xinji; KMC: Kernel moisture content; HMC: Husk moisture content; CMC: Cob moisture content; BLUE: Best linear unbiased estimation;The same as below
对4个环境下籽粒含水量、苞叶含水量和穗轴含水量的数据分别进行联合方差分析(
性状 Traits | F值 F-value | 广义遗传率(%) Broad-sense heritability | |||
---|---|---|---|---|---|
区组 Block | 环境 Environment | 基因型 Genotype | 基因型 × 环境 Genotype×Environment | ||
籽粒含水量(%)KMC | 2.09 |
465.4 |
6.1 |
1.5 | 78.06 |
苞叶含水量(%)HMC | 0.70 |
60.9 |
8.0 |
1.7 | 81.24 |
穗轴含水量(%)CMC | 0.02 |
136.6 |
5.7 |
2.0 | 67.39 |
*和** 分别表示在 0.05和 0.01水平上差异显著,下同
* and ** indicate significant differences at the levels of 0.05 and 0.01,respectively,the same as below
对籽粒含水量、苞叶含水量和穗轴含水量的BLUE值进行相关性分析(

图1 籽粒、苞叶和穗轴含水量BLUE值的相关性分析
Fig.1 Correlation analysis of BLUE values of kernel,husk and cob moisture content
籽粒、苞叶和穗轴含水量箱线图、频率分布直方图与曲线图、性状间散点图:频率分布曲线图纵坐标为数据所占比例,横坐标为含水量;散点图横纵坐标为相对应性状的含水量;频率分布直方图纵坐标为数量,横坐标为含水量;箱线图纵坐标为含水量
The box plots,frequency distribution histograms,curve graphs and scatter plot for KMC,HMC,and CMC: The y-axis of the frequency distribution curve graph represents the proportion of the data,while the x-axis represents the moisture content;In the scatter plots,both the x-axis and y-axis correspond to the moisture content of the respective traits;The y-axis of the frequency distribution histogram represents the quantity,and the x-axis represents the moisture content; In the box plot,the y-axis represents the moisture content
使用mrMLM.GUI软件包中的6种方法对籽粒含水量、苞叶含水量和穗轴含水量的BLUE值进行多位点GWAS分析,检测到与籽粒含水量、苞叶含水量、穗轴含水量显著关联的SNP位点分别为26个、15个和23个(

图2 籽粒、苞叶和穗轴含水量曼哈顿图
Fig. 2 Manhattan plot of kernel,husk and cob moisture content
A:籽粒含水量;B:苞叶含水量;C:穗轴含水量。浅绿和浅蓝色为不显著位点,蓝色为1种方法定位到的显著位点,粉色为2种方法共同检测到的位点,深绿色为3种方法共同检测到的位点,紫色为4种方法共同检测到的位点,红色为5种方法共同检测到的位点,黑色为6种方法共同检测到的位点。两种及以上方法共同检测到的位点LOD值为不同方法相近LOD的均值。三种及以上方法检测到的位点分别用对应的颜色在图上标明了具体位点
A: Kernel moisture content; B: Husk moisture content; C: Cob moisture content. Light green and light blue are insignificant loci,blue is the significant loci localized by one method,pink is the loci detected by two methods,dark green is the loci detected by three methods,purple is the loci detected by four methods,red is the loci detected by five methods together,and black is the loci detected by six methods together. The significance of loci detected by two or more methods is the mean of the similar LOD of different methods. The loci detected by three or more methods are marked with corresponding colors on the graph

图3 不同ML-GWAS方法检测到的显著位点数量
Fig. 3 Number of significant loci detected by different ML-GWAS method
3种及以上方法共同检测到的SNP位点有14个(
性状 Traits | 关联位点 SNP | Bin | LOD | 表型贡献率(%) PVE | ML-GWAS方法 ML-GWAS method |
---|---|---|---|---|---|
籽粒含水量 KMC | Chr10_2640900 | 10.01 | 3.87~4.70 | 2.35~4.09 | 1,2,5 |
Chr1_253390359 | 1.08 | 3.30~6.50 | 3.55~5.88 | 2,4,5 | |
Chr4_176596174 | 4.07 | 3.33~8.80 | 3.37~13.09 | 1,2,3,6 | |
Chr4_192913849 | 4.08 | 3.34~5.91 | 2.02~6.25 | 1,2,4,5 | |
Chr1_62415898 | 1.04 | 3.33~9.18 | 1.65~4.79 | 1,2,3,4,5 | |
Chr6_108012658 | 6.04 | 3.92~5.50 | 3.01~6.92 | 1,2,3,4,5 | |
苞叶含水量 HMC | Chr10_2640900 | 10.01 | 3.03~4.48 | 2.21~5.54 | 2,3,5,6 |
Chr1_9232728 | 1.01 | 3.06~7.09 | 3.52~9.40 | 1,2,3,4,5,6 | |
穗轴含水量 CMC | Chr10_84830865 | 10.03 | 3.33~4.54 | 1.13~4.14 | 2,4,5 |
Chr2_110828978 | 2.05 | 3.69~6.80 | 2.30~6.41 | 3,5,6 | |
Chr6_152941834 | 6.05 | 3.03~5.95 | 1.90~4.86 | 1,2,5 | |
Chr8_57716249 | 8.03 | 6.64~9.46 | 3.58~17.21 | 1,2,5,6 | |
Chr5_191021635 | 5.05 | 4.11~5.27 | 1.22~11.42 | 1,4,5,6 | |
Chr2_213305770 | 2.08 | 3.70~8.15 | 2.49~5.34 | 1,2,3,5 |
1: mrMLM; 2: FASTmrMLM; 3: ISIS EM-BLASSO; 4: FASTmrEMMA; 5: pLARmEB; 6: pKWmEB;PVE:Phenotypic variation explained;The same as below
对比分析不同性状定位结果,发现籽粒含水量与苞叶含水量有2个共位点Chr1_253390359和Chr10_2640900,其中Chr10_2640900被3种方法同时检测到与籽粒含水量显著关联,被4种方法同时检测到与苞叶含水量显著关联。籽粒含水量与穗轴含水量有3个共位点Chr2_110828978、Chr2_213305770和Chr6_108012658(详见https://doi.org/10.13430/j.cnki.jpgr.20231218003,
对3种及以上方法共同检测到的14个显著SNP位点进行等位基因分析(

图4 显著SNP不同等位基因的表型差异分析
Fig.4 Analysis of phenotypic difference in different alleles of significant SNPs
n代表该单倍型样本数量;ns表示在0.05水平不显著;***表示在0.001水平上差异显著
n represents the number of that haplotype; ns indicate not significant differences at the level of 0.05; *** indicate significant differences at the levels of 0.001
本研究筛选同时由3种及以上方法共同检测到且平均表型贡献率≥5%的显著SNP位
性状 Traits | SNP标记 SNP marker | 平均表型贡献率 (%) Average PVE | 候选基因 Candidate gene | 基因注释 Gene annotation |
---|---|---|---|---|
苞叶含水量 HMC | Chr1_9232728 | 7.32 | Zm00001d027622 | 锌指(C3HC4型RING指)家族蛋白 |
Zm00001d027623 | MYB2转录因子 | |||
Zm00001d027618 | 60S核糖体蛋白L21 | |||
Zm00001d027612 | 谷氨酸-tRNA连接酶 | |||
Zm00001d027627 | SBT1.2亚基蛋白酶 | |||
Zm00001d027625 | ABC转运蛋白C家族MRP4 | |||
Zm00001d027616 | RPM1相互作用蛋白13 | |||
籽粒含水量 KMC | Chr4_176596174 | 7.24 | Zm00001d052021 | DNA复制许可因子MCM5 |
Zm00001d052020 | β-1,2-N-乙酰葡糖胺基转移酶II | |||
Zm00001d052010 | 钙调神经磷酸酶B亚基 | |||
Zm00001d052019 | 假定的RING锌指结构域超家族蛋白 | |||
Zm00001d052015 | 丝氨酸蛋白 | |||
穗轴含水量CMC | Chr8_57716249 | 9.25 | Zm00001d009349 | 假定的呼吸爆发氧化酶同源蛋白H |
Chr5_191021635 | 6.21 | Zm00001d017263 | 假定的未知功能蛋白(DUF640) | |
Zm00001d017261 | 假定的酪蛋白激酶家族蛋白 | |||
Zm00001d017268 | Myb相关蛋白质Myb4 | |||
Zm00001d017264 | 细胞壁相关受体激酶5 |
GO分类结果显示这17个基因中有6个主要富集在细胞解剖实体,4个富集在新陈代谢过程,4个富集在细胞进程和催化活性(

图5 候选基因的富集分析和动态表达分析
Fig.5 Enrichment and dynamic expression analysis of candidate genes
A:候选基因富集分类结果,BP:生物过程,MF:分子功能;CC:细胞组分;B:17个候选基因在玉米23个组织中的表达量;C:5个候选基因在籽粒发育0~38 d的表达量
A: Candidate gene enrichment classification results,BP: Biological process; MF: Molecular function; CC: Cellular component;B: The expression levels of 17 candidate genes across 23 tissues in maize,DAP:Days after pollination;C: The Expression of five candidate genes on 0-38 d of seed development
结合玉米自交系B73基因表达数据分析,发现这17个候选基因在玉米23个组织中的表达量存在较大差异(
进一步分析5个籽粒含水量候选基因(Zm00001d052010、Zm00001d052019、Zm00001d052021、Zm00001d052020和Zm00001d052015)在籽粒发育不同阶段的表达情况(
玉米籽粒含水量是多基因控制的数量性状,其遗传基础复杂。本研究定位结果显示,籽粒、苞叶和穗轴含水量分别检测到26个、15个和23个显著位点。其中,籽粒含水量位点Chr10_2640900与李文
另外,苞叶性状、穗轴性状及叶片性状均会对成熟时籽粒含水量产生影响。本研究中相关分析表明籽粒含水量与苞叶含水量、穗轴含水量之间存在显著相关性。通过关联分析,发现籽粒含水量与苞叶含水量有2个共位点Chr1_253390359和Chr10_2640900,籽粒含水量与穗轴含水量有3个共位点Chr2_110828978、Chr2_213305770和Chr6_108012658,进一步从遗传基础上说明籽粒含水量与苞叶含水量和穗轴含水量存在显著相关性,这与Zhang
An
本研究发现不同ML-GWAS方法对玉米籽粒含水量相关性状的检测效力存在差异。pLARmEB检测到的位点最多,而FASTmrEMMA检测到的位点数量最少。在6种GWAS方法中,mrMLM方法提高了检测小效应基因位点的能力,但可能会出现过拟合问
为确保挖掘位点的可靠性,本研究筛选了至少被3种多位点 GWAS方法共同检测到的显著位点,并根据表型贡献率≥5%进一步筛选显著位点后,查找影响玉米籽粒、穗轴和苞叶含水量的基因。在苞叶含水量显著位点Chr_9232728附近发现编码锌指家族蛋白的Zm00001d027622基因。前人研究表明该家族成员作为RNA结合蛋白,在mRNA加工过程中具有调节功能,并参与非生物和生物应激,调节植物的生长发
参考文献
Zhang M Y,Xiangchen C Y,Yan J Q,Chengxu Y J,Liu H,Zou C Y,Pan G T,Shen Y,Ma L L. Genome-wide association study reveals the genetic basis of kernel and cob moisture changes in maize atphysiological maturity stage. Plants,2022,11(15): 1989 [百度学术]
Qian Y L,Zhang X Q,Wang L F,Chen J,Chen B R,Lv G H,Wu Z C,Guo J,Wang J,Qi Y C,Li T C,Zhang W,Ruan L,Zuo X L. Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.). Genetics and Molecular Research,2016,15(3): e15038151 [百度学术]
Jiang S Q,Zhang H B,Ni P Z,Yu S,Dong H X,Zhang A,Cao H Y,Zhang L J,Ruan Y Y,Cui Z H. Genome-wide association study dissects the genetic architecture of maize husk tightness. Frontiers in Plant Science,2020,11(30): e861 [百度学术]
Xu C C,Zhang P,Wang Y Y,Luo N,Tian B J,Liu X W,Wang P,Huang S B. Grain yield and grain moisture associations with leaf,stem and root characteristics in maize. Journal of Integrative Agriculture,2022,21(7): 1941-1951 [百度学术]
姚凌翔. 玉米果穗脱水相关性状的全基因组关联分析. 雅安: 四川农业大学,2021 [百度学术]
Yao L X. Genome-wide association analysis of dehydration-related traits in maize ear spikes. Ya'an: Sichuan Agricultural University,2021 [百度学术]
李露露,张磊,崔敏,邓德祥,刘欢欢,任姣姣,李志鹏,印志同. 玉米籽粒含水量相关性状QTL定位. 江苏农业科学,2019,47(9): 93-96 [百度学术]
Li L L,Zhang L,Cui M,Deng D X,Liu H H,Ren J J,Li Z P,Yin Z T. QTL mapping of grain moisture content related traits of maize. Jiangsu Agricultural Sciences,2019,47(9): 93-96 [百度学术]
吕晨曦. 玉米籽粒含水量及相关性状的全基因组关联分析. 雅安: 四川农业大学,2019 [百度学术]
Lv C X. Genome wide association study of grain water content and related traits in maize. Ya'an : Sichuan Agricultural University,2019 [百度学术]
党冬冬. 利用GWAS解析玉米生理成熟期籽粒脱水性状的遗传基础. 沈阳: 沈阳农业大学,2019 [百度学术]
Dang D D. Analysis of genetic basis of maize kernel dehydration traits during physiological maturity using GWAS. Shenyang : Shenyang Agricultural University,2019 [百度学术]
Li S F,Zhang C X,Lu M,Yang D G,Qian Y L,Yue Y H,Zhang Z J,Jin F X,Wang M,Liu X Y,Liu W G,Li X H. QTL mapping and GWAS for field kernel water content and kernel dehydration rate before physiological maturity in maize. Scientific Reports,2020,10(1): 13114 [百度学术]
Li S F,Zhang C X,Yang D G,Lu M,Qian Y L,Jin F X,Liu X Y,Wang Y,Liu W G,Li X H. Detection of QTNs for kernel moisture concentration and kernel dehydration rate before physiological maturity in maize using multi-locus GWAS. Scientific Reports,2021,11(1): 1764 [百度学术]
Cui Y R,Zhang F,Zhou Y L. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science,2018,9(4): 1464 [百度学术]
Zhang Y L,Liu P,Zhang X X,Zheng Q,Chen M,Ge F,Li Z L,Sun W T,Guan Z R,Liang T H,Zheng Y,Tan X L,Zou C Y,Peng H W,Pan G T,Shen Y. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Frontiers in Plant Science,2018,9(7): 611 [百度学术]
李真,刘文童,杨硕,郭晋杰,赵永锋,黄亚群,陈景堂,祝丽英. 成熟期玉米自交系籽粒含水量的快速测定方法. 种子,2020,39(9): 156-160 [百度学术]
Li Z,Liu W T,Yang S,Guo J J,Zhao Y F,Huang Y Q,Chen J T,Zhu L Y. Rapid determination of grain water content in maize inbred lines at mature Stage. Seed,2020,39(9): 156-160 [百度学术]
马娟,刘京宝,朱卫红,黄璐,宇婷,乔江方. 玉米农艺性状配合力全基因组关联分析和预测. 核农学报,2023,37(5): 944-956 [百度学术]
Ma J,Liu J B,Zhu W H,Huang L,Yu T,Qiao J F. Genome-wide association study and prediction for combining ability of maize agronomic traits. Journal of Nuclear Agricultural Sciences,2023,37(5): 944-956 [百度学术]
Knapp S J,Stroup W W,Ross W M. Exact confidence intervals for heritability on a progeny mean basis1. Crop Science,1985,25(1): 7347 [百度学术]
李婷,王亚鹏,董远,郭瑞士,李冬梅,唐雅伶,张兴华,薛吉全,徐淑兔. 基于杂交群体解析玉米籽粒大小相关性状及其配合力的分子遗传机制. 作物学报,2022,48(10): 2451-2462 [百度学术]
Li T,Wang Y P,Dong Y,Guo R S,Li D M,Tang Y L,Zhang X H,Xue J Q,Xu S T. Dissecting the genetic basis of kernel size related traits and their combining ability based on a hybrid population in maize. Acta Agronomica Sinica,2022,48(10): 2451-2462 [百度学术]
Allen G C,Flores-Vergara M A,Krasynanski S,Kumar S,Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols,2006,1(5): 2320-2325 [百度学术]
李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析. 中国农业科学,2022,55(9): 1695-1710 [百度学术]
Li Z S,Dong Y,Li T,Feng Z Q,Duan Y X,Yang M X,Xu S T,Zhang X H,Xue J Q. Genome-wide association analysis of yield and combining ability based on maize hybrid population. Scientia Agricultura Sinica,2022,55(9): 1695-1710 [百度学术]
Zhang Y M,Jia Z Y,Dunwell J M. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science,2019,10(11): e100 [百度学术]
渠建洲,冯文豪,张兴华,徐淑兔,薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报,2022,48(2): 304-319 [百度学术]
Qu J Z,Feng W H,Zhang X H,Xu S T,Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agronomica Sinica,2022,48(2): 304-319 [百度学术]
Chen J,Zeng B,Zhang M,Xie S J,Wang G K,Hauck A,Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology,2014,166(1): 252-264 [百度学术]
李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析. 中国农业科学,2022,55(13): 2485-2499 [百度学术]
Li T,Dong Y,Zhang J,Feng Z Q,Wang Y P,Hao Y C,Zhang X H,Xue J Q,Xu S T. Genome-wide association study of ear related traits in maize hybrids. Scientia Agricultura Sinica,2022,55(13): 2485-2499 [百度学术]
李文强. 玉米籽粒含水量及其动态变化的遗传结构解析. 武汉:华中农业大学,2017 [百度学术]
Li W Q. Dissecting the genetic architecture of maize grain moisture and the dynamic change. Wuhan : Huazhong Agricultural University,2017 [百度学术]
张磊. 玉米籽粒脱水速率QTL的初步定位. 扬州:扬州大学,2016 [百度学术]
Zhang L. The QTL analysis of kernel dehydration rate in maize. Yangzhou : Yangzhou University,2016 [百度学术]
刘显君,王振华,王霞,李庭锋,张林. 玉米籽粒生理成熟后自然脱水速率QTL的初步定位. 作物学报,2010,36(1): 47-52 [百度学术]
Liu X J,Wang Z H,Wang X,Li T F,Zhang L. Primary mapping of QTL for dehydration rate of maize kernel after physiological maturing. Acta Agronomica Sinica,2010,36(1): 47-52 [百度学术]
An Y X,Chen L,Li Y X,Li C H,Shi Y,Zhang D F,Li Y,Wang T Y. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC Plant Biology,2020,20(1): 490 [百度学术]
Zhang J,Feng J Y,Ni Y L,Wen Y J,Niu Y,Tamba C L,Yue C,Song Q,Zhang Y M. pLARmEB: Integration of least angle regression with empirical bayes for multilocus genome-wide association studies. Heredity,2017,118(6): 517-524 [百度学术]
Wen Y J,Zhang H W,Ni Y L,Huang B,Zhang J,Feng J Y,Wang S B,Dunwell J M,Zhang Y M,Wu R L. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Briefings in Bioinformatics,2018,19(4): 700-712 [百度学术]
Liu X L,Huang M,Fan B,Buckler E S,Zhang Z W. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics,2016,12(2): e1005767 [百度学术]
Wang S B,Feng J Y,Ren W L,Huang B,Zhou L,Wen Y J,Zhang J,Dunwell J M,Xu S,Zhang Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports,2016,6(1): 19444 [百度学术]
Zhang Y W,Tamba C L,Wen Y J,Li P,Ren W L,Ni Y L,Gao J,Zhang Y M. mrMLM v4.0.2: An R platform for multi-locus genome-wide association studies. Genomics,Proteomics & Bioinformatics,2020,18(4): 481-487 [百度学术]
Ren W L,Wen Y J,Dunwell J M,Zhang Y M. pKWmEB: Integration of kruskal-wallis test with empirical bayes under polygenic background control for multi-locus genome-wide association study. Heredity,2018,120(3): 208-218 [百度学术]
Tamba C L,Ni Y L,Zhang Y M. Iterative sure independence screening em-bayesian lasso algorithm for multi-locus genome-wide association studies. PLoS Computational Biology,2017,13(1): e1005357 [百度学术]
Zhou G F,Zhu Q L,Mao Y X,Chen G Q,Xue L,Lu H H,Shi M L,Zhang Z L,Song X D,Zhang H M,Hao D R. Multi-locus genome-wide association study and genomic selection of kernel moisture content at the harvest stage in maize. Frontiers in Plant Science,2021,12(9): e697688 [百度学术]
Peng X J,Zhao Y,Cao J G,Zhang W,Jiang H Y,Li X Y,Ma Q,Zhu S W,Cheng B J. CCCH-type zinc finger family in maize: Genome-wide identification,classification and expression profiling under abscisic acid and drought treatments. PLoS ONE,2012,7(7): e40120 [百度学术]
Katiyar A,Smita S,Lenka S K,Rajwanshi R,Chinnusamy V,Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and arabidopsis. BMC Genomics,2012,13(1): 544 [百度学术]
Pratyusha D S,Sarada D V L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports,2022,41(12): 2245-2260 [百度学术]
Han G L,Qiao Z Q,Li Y X,Yang Z R,Wang C F,Zhang Y Y,Liu L L,Wang B S. RING zinc finger proteins in plant abiotic stress tolerance. Frontiers in Plant Science,2022,13(14): e87701 [百度学术]
Liu D,Li Y Y,Zhou Z C,Xiang X H,Liu X,Wang J,Hu Z R,Xiang S P,Li W,Xiao Q Z,Wang Y Y,Hu R S,Zhao Q. Tobacco transcription factor bHLH123 improves salt tolerance by activating NADPH oxidase NtRbohE expression. Plant Physiology,2021,186(3): 1706-1720 [百度学术]
Liu X T,Wang Z C,Tian Y,Zhang S Y,Li D D,Dong W Q,Zhang C Q,Zhang Z. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance. BMC Plant Biology,2021,21(1): 526 [百度学术]