摘要
非特异性脂质转移蛋白(nsLTP,non-specific lipid transfer proteins)在植物脂质转运和分泌中发挥重要作用。本研究从薰衣草(Lavandula angustifolia)中克隆到2个II型nsLTP基因,命名为nsLTP2-1和nsLTP2-2,并对其进行功能分析。生信分析表明,nsLTP2-1和nsLTP2-2分别编码119个和117个氨基酸,具有脂转移蛋白(LTP,lipid transfer proteins)保守结构域和8个高度保守的半胱氨酸残基;系统进化分析显示它们处于两个分支,与同科的紫苏(Perilla frutescens)相似性最高。基因表达分析显示2个基因均在花蕾中高表达,在叶片、茎和花瓣中几乎不表达,在花萼中的表达存在差异,nsLTP2-1和nsLTP2-2分别在成熟花萼和幼嫩花萼中表达量更高;2个基因在花蕾和叶片中的表达均受到强光诱导,且在花蕾中的表达均受脱落酸诱导,而叶片中nsLTP2-1和nsLTP2-2的表达分别受茉莉酸甲酯和乙烯诱导。亚细胞定位显示2个nsLTPs均定位在细胞膜和细胞壁上,可能与次生代谢物的转运有关。过表达nsLTP2-1和nsLTP2-2烟草叶片经尼罗红染色后,经485~543 nm激发光激发,叶片腺毛头部的荧光显示多于野生型,说明本研究中的nsLTPs 可能在脂类的合成和转运中起重要作用。这些结果为明确薰衣草脂转移蛋白在脂类及萜类转运中的功能研究提供了参考。
非特异性脂质转移蛋白(nsLTP,non-specific lipid transfer proteins)是一类介导膜之间磷脂转移的碱性蛋白,能够结合和转运各种脂质。自1975年首次从马铃薯块茎中分离得到非特异性脂质转移蛋
薰衣草(Lavandula angustifolia)是唇形科(Lamiaceae)的一种芳香植物,其精油富含多种萜烯类化合物,因此薰衣草体内合成、储存的挥发性萜类的转运和分泌活动十分重
薰衣草京薰2号株型美观,观赏性强,既可用作环境建设品种,也可用于生产高品质薰衣草精油,为中国科学院植物研究所惠赠;异源表达所用烟草云烟87为北京市农林科学院蔬菜研究中心惠赠;洋葱为市售的新鲜鳞茎;试验所用菌株为本实验室保存,pSAT6-EYFP-N1和PEZR-K-LN载体为北京市农林科学院惠赠,引物合成及基因测序由北京擎科生物科技有限公司完成。
京薰2号种植在新疆生产建设兵团第四师六十九团基地,种植株距为0.5 m×1 m,常规管理,在盛花期(2021年7月份)从大约1000株薰衣草中选择10株两年生且长势相同的健壮植株作为取样材料。分别取薰衣草的花蕾、幼嫩和成熟的花萼、花瓣、叶片(花序下5片大小相近的叶片)和茎各约0.1 g为材料。参照RNAprep Pure多糖多酚植物总RNA提取试剂盒(北京天根)提取各组织总RNA,由分光光度法(上海元析仪器B-500)和琼脂糖电泳检测浓度和RNA完整性,使用EasyScript® One-Step gDNA Removal and cDNA Synthesis SuperMix(Takara)反转录获得cDNA。
根据薰衣草基因组信息(GenBank索引号PRJNA642976,https://www.ncbi.nlm.nih.gov/search/all/PRJNA642976
引物名称 Primer name | 正向序列 Forword sequence(5'-3') | 反向序列 Reverse sequence(5'-3') | |
---|---|---|---|
nsLTP2-1 | ATGGAGAAGGCAATGTGGTTGG | GCGAACCGTGGAGCAGTCA | |
nsLTP2-2 | ATGTCGAACTCAGTTAAGGTTGTT | TGTACACTGCTGCAGTTAACATT | |
Actin | TCCCCATCTACGAAGGTTACGCACT | AGCTTCTCTTTGATGTCCCTCACGAT | |
qnsLTP2-1 | CCGTCGTTCAACTGCTGCCAAGC | GCAGTCAGTGGAGGGGCTGATCT | |
qnsLTP2-2 | CTGTGTGCGTCTTGATGGTG | CTTCAGCTTCGTTACGCCCT | |
NtGAPDH | TGGGTGTCAACGAGAAGGAA | TCTGGGTGGCAGTAAGGGA |
利用在线工具SignalP(https://services.healthtech.dtu.dk/SignalP)、TMHMM(https://services.healthtech.dtu.dk/TMHMM)、Plant-mploc(https://www.expasy.org/Protscale)、InterProScan(https://www.ebi.ac.uk/)分别对nsLTP2-1和nsLTP2-2的蛋白结构、跨膜结构域、亚细胞定位及保守结构域等进行预测;在NCBI(https://www.ncbi.nlm.nih.gov/)的BLAST程序进行氨基酸保守结构域检索,nsLTP2-1和nsLTP2-2与紫苏(Perilla frutescens)、丹参(Salvia miltiorrhiza)、泡桐(Paulownia fortunei)和互叶醉鱼草(Buddleja alternifolia)的相似性较高,分别下载nsLTP2-1和nsLTP2-2同源的氨基酸序列:紫苏(PEK6769357、PEK6769360)、丹参(SA57804313、SA57804433)、泡桐(PAK3473096、PAK3474776)和互叶醉鱼草(BUKA836308、BUKA366618),使用DNAMAN和MEGA11软件分别进行基因和氨基酸同源序列比对,采用邻接法(NJ,neighbor-joining method),构建系统进化树,Bootstrap值设置为1000。
从转录组数据库(GenBank索引号为 PRJNA892961)中获取nsLTP2-1和nsLTP2-2基因在薰衣草6种不同组织部位(花蕾、幼嫩和成熟的花萼、花瓣、叶片和茎)的基因表达量,使用Praphpad Pism9.5软件(https://www.graphpad.com/)采用单因素方差分析对基因间的表达量进行差异显著性分析。为了确定候选基因对不同激素和非生物胁迫的响应特征,选取两年生成株春季移栽至花盆,于培养室内培养(22~28℃, 光照时间16 h,光强10000 lx),选取发芽后正常生长的植株培养至开花期,分别进行100 μM赤霉素(GA, gibberellin)、脱落酸(ABA, abscisic acid)、茉莉酸甲酯(MeJA, methyl jasmonate
将nsLTP2-1和nsLTP2-2分别连接到植物瞬时表达载体pSAT6-EYFP-N1上,载体携带增强型黄绿色荧光蛋白(EYFP),重组载体命名为pSAT6-EYFP-nsLTP,转化至农杆菌获得重组菌株。洋葱鳞叶内部用解剖刀轻画1 c
将nsLTP2-1和nsLTP2-2分别连接到植物表达载体PEZR-K-LN上,重组载体命名为PEZR-nsLTP,转化至农杆菌EHA105获得重组菌株,采用农杆菌介导的叶盘法异源转化烟草云烟87,经卡那霉素 (Kanamycin)抗生素筛选后,通过qRT-PCR分析nsLTP2-1和nsLTP2-2基因相对表达量鉴定转基因植
利用基因组数据设计引物,从薰衣草基因组中扩增出了350 bp左右的nsLTP2-1和nsLTP2-2基因片段,与目标序列大小匹配(

图1 薰衣草nsLTP2-1和nsLTP2-2基因的克隆
Fig. 1 Cloning of nsLTP2-1 and nsLTP2-2 in lavender
利用Plant-mploc软件预测nsLTP2-1、nsLTP2-2蛋白定位在细胞壁,存在信号肽,属于亲水性的碱性蛋白质,无跨膜结构域,nsLTP2-1的稳定性比nsLTP2-2稍强。氨基酸序列分析显示2个蛋白均属于Ⅱ型nsLTP蛋白,含有8个高度保守的半胱氨酸残基,具有3个保守结构域,分别是α-淀粉酶抑制剂(AAI,alpha-amylase inhibiting units)、种子储藏蛋白(SSP,seed storage proteins)以及脂转移蛋白(LTP,lipid transfer protein)。2个蛋白的磷酸化位点也存在差异,特别是苏氨酸(Thr)磷酸化位点的数量,nsLTP2-1蛋白有12个苏氨酸的磷酸化位点,nsLTP2-2仅有6个。蛋白二级和三级结构预测的结果都表明,nsLTP2-1和nsLTP2-2主要的结构元件是α-螺旋和无规则卷曲,并包含少量的β-转角。
利用NCBI对nsLTP2-1、nsLTP2-2的氨基酸序列进行BLAST检索与比对,发现与紫苏、丹参、泡桐和互叶醉鱼草的nsLTP相似性较高。使用MEGA11对氨基酸序列进行比对,结果显示nsLTP2-1、nsLTP2-2均含有8个高度保守的半胱氨酸残基骨架(

图2 nsLTP2-1和nsLTP2-2蛋白的多重序列比对
Fig. 2 Multiple sequence alignment of nsLTP2-1 and nsLTP2-2 proteins
▼所示为8个半胱氨酸残基保守位点
▼ show 8 conserved sites of cysteine residues

图3 nsLTP2-1和nsLTP2-2蛋白系统进化分析
Fig.3 Phylogenetic tree analysis of nsLTP2-1 and nsLTP2-2 proteins
★La07G01538和★La07G01539分别代表nsLTP2-1和nsLTP2-2
★La07G01538 and ★La07G01539 represent nsLTP2-1 and nsLTP2-2, respectively
nsLTP2-1和nsLTP2-2基因在薰衣草不同组织中的表达量差异较大(

图4 nsLTP2-1和nsLTP2-2基因在薰衣草中不同组织部位的表达分析
Fig. 4 Expression analysis of nsLTP2-1 and nsLTP2-2 in different tissues of lavender
图A和图B分别代表nsLTP2-1和nsLTP2-2基因的相对表达水平;花萼1代表幼嫩的花萼,花萼2代表成熟的花萼;不同字母表示在 P < 0.05 水平差异显著
Figure A and figure B represent the relative expression levels of nsLTP2-1 and nsLTP2-2 genes, respectively; Calyx 1 represents the young calyx and calyx 2 represents the mature calyx;Different letters indicate significant difference at P < 0.05 level
利用不同激素和非生物胁迫处理花蕾和叶片,2个基因对各处理的响应存在显著差异(

图5 nsLTP2-1和nsLTP2-2基因在不同处理胁迫下的表达模式
Fig. 5 Expression patterns of nsLTP2-1 and nsLTP2-2 genes after different stress treatments
A 和B分别为花蕾和叶片在不同激素和非生物胁迫处理条件下nsLTP2-1的表达水平;C和D分别为花蕾和叶片在不同激素和非生物胁迫处理条件下nsLTP2-2的表达水平;*和**分别代表在P <0.05和P <0.01水平上差异显著
A and B refer to the expression of nsLTP2-1 in flower buds and leaves under different hormonal and abiotic stress treatments, respectively; C and D refer to the expression of nsLTP2-2 in flower buds and leaves under different hormonal and abiotic stress treatments, respectively;* and ** represent significant differences at P <0.05 and P <0.01 levels, respectively
黄绿色荧光蛋白融合表达的nsLTP2-1和nsLTP2-2在洋葱表皮细胞中瞬时表达的结果显示,EYFP-nsLTP2-1和EYFP-nsLTP2-2主要分布在细胞膜和细胞壁(

图6 pSAT6-EYFP-nsLTP融合蛋白亚细胞定位
Fig. 6 Subcellular localization of pSAT6-EYFP-nsLTP fusion protein
明场是在普通光源下观察;叠加场是明场和荧光场一起叠加的结果;下同
Bright field is observed under ordinary light source; Superposition field is the result of superposition of bright field and fluorescence field;The same as below;EYFP:Yellow-green fluorescent protein
通过抗生素筛选转基因再生植株,分别选取nsLTP2-1和nsLTP2-2转基因植株各5株,经qRT-PCR分析显示转基因植株的表达量远超过野生型(

图7 qRT-PCR检测野生型烟草(WT)和转基因烟草中nsLTP的表达量
Fig. 7 qRT-PCR detection of nsLTP expression levels in wild-type tobacco (WT) and transgenic tobacco
nsLTP2-1-1~nsLTP2-1-5代表nsLTP2-1的5株转基因植株;nsLTP2-2-1~nsLTP2-2-5代表nsLTP2-2的5株转基因植株
nsLTP2-1-1-nsLTP2-1-5 represented 5 transgenic plants of nsLTP2-1; nsLTP2-2-1-nsLTP2-2-5 represents 5 transgenic plants of nsLTP2-2;WT:Wild type

图8 转基因烟草叶片腺毛尼罗红染色结果
Fig. 8 Nile red fluorescent staining of transgenic tobacco leaf glandular hairs
尼罗红是指在荧光场下的结果
Nile red refers to the result under the fluorescence field
非特异性脂质转移蛋白在植物界广泛分布,目前从玉
以往的研究已证实,nsLTPs在细胞壁的形
参考文献
Kader J C. Protein and intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by protein isolated from potato tuber. Biochimica Biophysica Acta, 1975, 380: 31-44 [百度学术]
Sossountzov L, Ruiz-Avila L, Vignols F, Jolliot A, Arondel V, Tchang F, Grosbois M, Guerbette F, Miginiac E, Delseny M, Puigdomenèch P, Kader J C. Spatial and temporal expression of a maize lipid transfer protein gene. Plant and Cell Physiology, 1991, 3:923-933 [百度学术]
Boutrot F, Guirao A, Alary R, Joudrier P, Gautier M F. Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochemical Biophysica Acta, 2005, 1730: 114-125 [百度学术]
Boutrot F, Chantret N, Gautier M F. Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLTP)gene families and identification of wheat nsLTP genes by EST data mining. BMC Genomics, 2008, 9: 86 [百度学术]
Adhikari P B, Han J Y, Ahn C H, Choi Y E. Lipid Transfer Proteins (AaLTP3 and AaLTP4) are involved in sesquiterpene lactone secretion from glandular trichomes in Artemisia annua. Plant and Cell Physiology, 2019, 60(12): 2826-2836 [百度学术]
Gincel E, Simorre J P, Caille A, Marion D, Ptak M, Vovelle F. Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional H-NMR data.European Journal of Biochemistry, 1994, 226: 413-422 [百度学术]
Gomar J, Petit M C, Sodano P, Sy D, Marion D, Kader J C, Vovelle F, Ptak M. Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Science, 1996, 5(4): 565-577 [百度学术]
Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat, J. Plant non-specific lipid transfer proteins: An overview. Plant Physiology and Biochemistry, 2022, 171(15): 115-127 [百度学术]
Hairat S, Baranwal V K, Khurana P. Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles. Plant Physiology and Biochemistry, 2018, 130: 418-430 [百度学术]
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. Journal of Experimental Botany, 2015, 66(19): 5663-5681 [百度学术]
Nieuwland J, Feron R, Huisman B A H, Fasolino A, Hilbers C W, Derksen J, Mariani C. Lipid transfer proteins enhance cell wall extension in tobacco. The Plant Cell, 2005, 17(7): 2009-2019 [百度学术]
Zhang Y, Wang D, Li H, Bai H, Sun M, Shi L. Formation mechanism of glandular trichomes involved in the synthesis and storage of terpenoids in lavender. BMC Plant Biology, 2023, 23: 307 [百度学术]
Li J, Wang Y, Dong Y, Zhang W, Wang D, Bai H. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Horticulture Research, 2021, 8: 53 [百度学术]
Sun W J, Zhan J Y, Zheng T R, Sun R, Wang T, Tang Z Z, Bu T L, Li C L, Wu Q, Chen H. The jasmonate-responsive transcription factor CbWRKY24 regulates terpenoid biosynthetic genes to promote saponin biosynthesis in Conyza blinii H Lév. Journal of Genetics and Genomics, 2018, 97(5): 1379 -1388 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
吴超, 戴梦怡, 张超, 石从广, 任明杰, 马晶晶, 申亚梅. FLS基因调控玉兰与紫玉兰花色形成的机制研究. 核农学报, 2023, 37(10): 1947 -1956 [百度学术]
Wu C, Dai M Y, Zhang C, Shi C G, Ren M J, Ma J J, Shen Y M. Study on the mechanism of FLS gene regulating flower color formation in Yulania denudata and Y. liliiflora. Journal of Nuclear Agricultural Sciences, 2023, 37(10): 1947-1956 [百度学术]
Chen L N, Dou P T, Chen Y K, Yang H Q. Mutant IAA21 genes from Dendrocalamus sinicus Chia et JL Sun inhibit stem and root growth in transgenic tobacco by interacting with ARF5. Plant Physiology and Biochemistry, 2023, 201: 107827 [百度学术]
石健, 张雯婕, 冯汛, 胡雨婷, 瑶池. 尼罗红荧光染色法的优化及应用. 工业安全与环保, 2016, 42(4): 61-64 [百度学术]
Shi J, Zhang W J, Feng X, Hu Y T, Yao C. The optimization and application of Nile red fluorescent determination. Industrial Safety and Environmental Protection, 2016, 42(4): 61-64 [百度学术]
Shin H R, Citron Y R, Wang L, Tribouillard L, Goul C S, Stipp R, Sugasawa Y, Jain A, Samson N, Lim C Y, Davis O B, David C C, Nomura M Q D K, ParkR P E, Covey D, Evers M L A, Zoncu R. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to TORC1. Science, 2022, 377(6612): 1290-1298 [百度学术]
Li F, Fan K, Guo X, Liu J, Zhang K, Lu P. Genome-wide identification, molecular evolution and expression analysis of the non-specific lipid transfer protein (nsLTP) family in Setaria italica. BMC Plant Biology, 2022, 22: 547 [百度学术]
马婧, 刘群, 李名扬, 王晓斌, 眭顺照. 2个蜡梅nsLTP基因启动子的克隆及其在烟草中的瞬时表达分析. 植物遗传资源学报, 2012, 13(4): 601-608 [百度学术]
Ma J, Liu Q, Li M Y, Wang X B, Sui S Z. Cloning and transient expression assay of two nsLTP gene promoters from Chimonanthus praecox in tobacco. Journal of Plant Genetic Resources, 2012, 13(4): 601-608 [百度学术]
王露, 赵天祎, 蔡明. 植物腺毛中防御物质的合成与调控及转运研究进展. 西北植物学报, 2021, 41(2): 338-347 [百度学术]
Wang L, Zhao T Y, Cai M. Advances in synthesis, regulation and transportation of defensive substances produced in plant glandular trichomes. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(2): 338-347 [百度学术]
王艺颖, 袁军, 谭晓风, 卢梦琪, 周奥,周俊琴. 油茶SOD基因克隆及不同授粉处理下的表达分析. 植物遗传资源学报, 2023, 24(1): 226-236 [百度学术]
Wang Y Y, Yuan J, Tan X F, Lu M Q, Zhou A, Zhou J Q. Cloning and expression analysis of SOD genes under different pollination treatments in Camellia oleifera Abel. Journal of Plant Genetic Resources, 2023, 24(1): 226-236 [百度学术]
Edqvist J, Blomqvist K, Nieuwland J, Salminen T A. Plant lipid transfer proteins: Are we finally closing in on the roles of these enigmatic proteins?Journal of Lipid Research, 2018, 59(8): 1374-1382 [百度学术]
Almagro Armenteros J J, Sønderby C K, Sønderby S K, Nielsen H, Winther O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics, 2017, 33(21): 3387-3395 [百度学术]
Pagnussat L A, Lombardo C, Regente M, Pinedo M, Martin M, de la Canal L. Unexpected localization of a lipid transfer protein in germinating sunflower seeds. Journal of Plant Physiology, 2009, 166(8): 797-806 [百度学术]
Hwang H S, Adhikari P B, Jo H J, Han J Y, Choi Y E. Enhanced monoterpene emission in transgenic orange mint (Mentha× piperita f. citrata) overexpressing a tobacco lipid transfer protein (NtLTP1). Planta, 2020, 252: 44 [百度学术]
Choi Y E, Lim S, Kim H J, Han J Y, Lee M H, Yang Y, Kim J A, Kim Y S. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. The Plant Journal, 2012, 70(3): 480-491 [百度学术]
Hallahan D L. Monoterpenoid biosynthesis in glandular trichomes of labiate plants. Advances in Botanical Research, 2000, 31: 77-120 [百度学术]
Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. The Plant Cell, 2007, 19(11): 3692-3704 [百度学术]
Duan Y, Shang X, He Q, Zhu L, Li W, Song X, Guo W. LIPID TRANSFER PROTEIN4 regulates cotton ceramide content and activates fiber cell elongation. Plant Physiology, 2023, 193(3): 1816-1833 [百度学术]
张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制. 生物技术通报, 2022, 38(8): 32-40 [百度学术]
Zhang C, Wu Y G, Yu J, Yang D M, Yao G L, Yang H G, Zhang J F, Chen P. Molecular mechanism of terpenoids synthesis intermediated by light and jasmonates signals. Biotechnology Bulletin, 2022, 38(8): 32-40 [百度学术]