摘要
大豆花叶病毒(SMV,soybean mosaic virus)病是世界大豆主产区广泛存在且普遍发生的主要病害之一,对大豆的产量和品质均可造成严重危害。本文综合分析了近年来通过遗传定位发现的大豆花叶病毒抗性基因及其紧密连锁的分子标记,探讨了分子标记在提高大豆抗病育种中的应用,总结了RSC3(w)、RSC14-r和RSC18等抗大豆花叶病毒基因的物理位置及其候选基因。基于候选基因测序、实时荧光定量PCR、病毒介导基因沉默(VIGS,virus induced gene silencing)和基因编辑CRISPR/Cas9等技术梳理出GsCAD1、GmCAL和GmMLRK1等一系列直接或间接参与大豆花叶病毒抗性的相关基因,为大豆抗大豆花叶病毒基因调控网络的完善奠定了基础。本综述总结分析了大豆与大豆花叶病毒的相互作用机制,聚焦分析大豆抗性基因Rsv3等对大豆花叶病毒抗病机制研究进展,并对抗大豆花叶病毒育种的研究方向提出了展望,以期为大豆抗性基因分子标记的应用和分子调控机制的研究提供参考。
大豆花叶病毒(SMV,soybean mosaic virus)病感染大豆后主要引起褪绿、皱缩和矮化等花叶症状及顶枯等坏死症状,是世界大豆主产区广泛存在且普遍发生的主要病害之一,对大豆产量和品质均可造成严重危害。由于其分布广、危害重、化学药剂难以防治,大豆花叶病毒病一直是大豆种植区域需要解决的重要问题之一。对大豆花叶病毒防治最为经济有效的手段是寻找优异的抗大豆花叶病毒基因,发掘有效的分子标记,通过分子生物育种技术培育抗病大豆新品种。
美国等国外学者在通过接种大豆花叶病毒鉴定筛选出Tousan140、Columbia和SL-1104等抗病材料的基础
近年,随着大豆产业的蓬勃发展以及分子生物技术的进步,对大豆花叶病毒抗性基因的研究取得了一系列新的进
大豆对大豆花叶病毒存在质量抗性和数量抗性2种类型的抗性位点,王大刚
在2号染色体上,基于抗性基因位点Rsv4的标记定

图 1 大豆抗大豆花叶病毒基因在2号染色体上的物理位置及候选基因
Fig. 1 Candidate genes, physical maps of SMV resistance loci on chromosome 2
虚线箭头部分表示大豆花叶病毒抗性基因的物理区间;最下面的框内是大豆花叶病毒抗性候选基因的个数及范围。下同
The dashed lines arrow indicated that the physical distance of SMV resistance gene; the number and range of SMV resistance candidate genes in the bottom box. The same as below
染色体 Chr. | 抗性基因位点 Resistance gene loci | 标记及物理距离(kb) The flanking markers and physical distance | 候选基因 Putative candidate gene | 参考文献 References |
---|---|---|---|---|
2 | Rsv4 | Rsv4-86105snp_42~Rsv4-RC-3_55, 9.8 | NM_001249088、NM_001253944 |
[ |
2 | RSC3(w) | BARCSOYSSR_02_0610~ZL-52, 175.0 | - |
[ |
2 | RSC7 | BARCSOYSSR_02_0667~BARCSOYSSR_02_0670, 77.0 | Glyma.02G127700、Glyma.02G127800 |
[ |
2 | RSC13 | BARCSOYSSR_02_0610~BARCSOYSSR_02_0621, 191.0 | Glyma.02G121500、Glyma.02G121600、Glyma.02G121900、Glyma.02G122000、Glyma.02G122200 |
[ |
2 | RSC11K | Gm02_BLOCK_11273955_11464884~Gm02_BLOCK_11486875_11491354, 217.0 | Glyma.02G119700 |
[ |
2 | RSC9 | BARCSOYSSR_02_0610~BARCSOYSSR_02_0618, 163.0 |
Glyma.02G122000、 LOC100812666 |
[ |
3 | qTsmv-3 | Sat_379~Chr03-4, 86.0 | Glyma.03G005500 |
[ |
6 | RSC14-r | BARCSOYSSR_06_0786~BARCSOYSSR_06_0790, 136.8 | Glyma.06G176000、Glyma.06G176100 |
[ |
13 | Rsv1-r | SNP-38~SNP-50, 154.5 | Glyma.13G184800、Glyma.13G184900 |
[ |
13 | RSC18 | Gm13_bin65, 415.357 | Glyma.13G150000、Glyma.13G151100、Glyma.13G21640 |
[ |
13 | Rsvg2 | BARCSOYSSR_13_1138~BARCSOYSSR_13_1139, 2.83 | Glyma.13G191400 |
[ |
13 | qSMV13 | ss715614844~ss715614864, 97.2 | Glyma13G184200 |
[ |
13 | GmRmv | dCAPS3029~dCAPS3045, 157.0 | Glyma.13G190000、Glyma.13G190300、Glyma.13G190400 |
[ |
-表示无
- indicated no
此外,王大刚
在6号染色体上,继Yang

图 2 大豆抗大豆花叶病毒基因在3号和6号染色体上的物理位置及候选基因
Fig. 2 Candidate genes, physical maps of SMV resistance loci on chromosome 3 and 6
在大豆13号染色体上(

图 3 大豆抗大豆花叶病毒基因在13号染色体上的物理位置及候选基因
Fig. 3 Candidate genes, physical maps of SMV resistance loci on chromosome 13
此外,在13号染色体上定位的抗性基因还有Rsvg2和RSC3
基于全基因组关联分析(GWAS,genome wide association study)的方法,Che
Che
核苷酸结合位点-富亮氨酸重复结构域类基因家族是目前从植物中克隆得到抗性基因数目最多的一类,也是植物基因组中最大的基因家族之一,在真核生物中广泛存在。通过构建大豆花叶病毒抗性品种早熟18的细菌人工染色体(BAC,bacterial artificial chromosome)文库并进行测序,Ma
基因名称 Gene name | 版本 (Wm82.a4.v1) Version (Wm82.a4.v1) | 染色体位置 (bp) Chr. location | 氨基酸 AA | 基因注释 Gene annotation (BLASTX) | 研究方法 Research methods | 参考文献 References |
---|---|---|---|---|---|---|
GsCAD1 | Glyma.01G025800 | Gm01: 2712068~2715389 | 231 | 肉桂醇脱氢酶 | 转基因 |
[ |
GmCAL | Glyma.02G121600 | Chr02: 11802163~11806533 | 243 | MADS-box蛋白 | 转基因、基因沉默 |
[ |
GmMLRK1 | Glyma.02G122000 | Gm02: 11833114~11836011 | 847 | 凝集素类受体激酶 | 转基因、基因编辑 |
[ |
GmPAP2.1 | Glyma.06G028100 | Gm06: 2182332~2187155 | 474 | 紫色酸性磷酸酶 | 转基因、基因沉默 |
[ |
GmKR3 | Glyma.06G267300 | Gm06: 45145421~45149155 | 636 | TIR-NB-LRR蛋白 | 转基因 |
[ |
GmGSL7c | Glyma.08G308200 | Gm08: 42057929~42095863 | 1412 | 胼胝质合酶 | 基因沉默 |
[ |
GmST1 | Glyma.13G191400 | Gm13: 29886351~29887777 | 344 | 磺基转移酶 | 转基因 |
[ |
RSC3Q | Glyma.13G263800 | Gm13: 36098210~36100800 | 357 | 2OG-Fe(II)的氧化还原酶 | 基因沉默 |
[ |
Rsc4-3 | Glyma.14G204700 | Chr.14: 47831268~47846928 | 1307 | NB-LRR蛋白 | 转基因、基因编辑 |
[ |
NBS_C | Glyma.14G204700 | Chr.14: 47831268~47846928 | 1307 | NB-LRR蛋白 | 序列比对、转基因、基因沉默 |
[ |
NBS_D | Glyma.14G205000 | Chr.14: 47855677~47868591 | 1292 | NB-LRR蛋白 | 序列比对 |
[ |
NBS_E | Glyma.14G205300 | Chr.14: 47895256~47907012 | 1302 | NB-LRR蛋白 | 序列比对 |
[ |
GmPR1-6 | Glyma.15G062400 | Gm15: 4787447~4788213 | 164 | 病程相关蛋白 | 基因沉默 |
[ |
GmSZFP | Glyma.18G003600 | Gm18: 299768~302374 | 356 | C2H2型锌指蛋白 | 基因沉默 |
[ |
转录因子在植物抗病过程中具有重要的作用,Ren
此外,大豆氧化还原酶、磺基转移酶、类受体激酶、胼胝质合酶和异黄酮合成酶等也参与了大豆对大豆花叶病毒的抗性反
过表达来源于粟酒裂殖酵母菌的核糖核酸酶基因PAC1的转基因大豆接种大豆花叶病毒后,大豆花叶病毒的积累及症状发展显著的被抑制,且其同时可增强对菜豆普通花叶病毒(BCMV,bean common mosaic virus)、西瓜花叶病毒(WMV,watermelon mosaic virus)和菜豆荚斑驳病毒(BPMV,bean pod mottle virus)等多种病毒的抗性,为抵抗RNA病毒提供了有效的控制策
Widyasari
在Seo

图 4 Rsv3介导对大豆花叶病毒抗性的调控网
Fig. 4 Proposed signaling network for Rsv3-mediated resistance to soybean mosaic virus
左边表示Rsv3介导的抗性反应;右边表示感病反应,施用外源脱落酸后产生部分抗性
The left represents the Rsv3-mediated resistance; The right represents the susceptibility, and showed partial resistance with exogenous ABA
转基因过表达研究表明GmKR3增强了大豆对病毒的抗性,而转录组测序以及基因定量表达分析发现抗性的增强至少有一部分是通过脱落酸信号转导实现
大豆花叶病毒抗性基因Rsc4-3编码螺旋卷曲-核苷酸结合位点-富亮氨酸重复结构域类抗病蛋
不同于Rsv3介导的抗病途径,Rsv4介导大豆抗病毒免疫途径,该基因不仅对大豆花叶病毒具有抗性,且对马铃薯Y病毒属的病毒也存在广谱抗性。当真核正链RNA病毒在宿主细胞形成的膜室复合物中复制其基因组时,双链RNA(dsRNA,double-stranded RNA)复合物在膜室内复制形成,从而逃避抗病毒免疫监测。大豆中的Rsv4基因具有广谱的抗性,在感病品种Enrei中包含两个串联重复的同源开放阅读框(NM_001249088和NM_001253944)编码RNase H蛋白,而在大豆花叶病毒抗性品种Peking中,有3.6 kb的核苷酸序列缺失,导致只有一个开放阅读
此外,茉莉酸途径、水杨酸信号通路和胼胝质沉积途径可能参与了大豆其他相关基因对大豆花叶病毒的抗性反应。Zhao
Helm
冀豆17对大豆花叶病毒N3表现抗病,而对SC8表现感病,当N3株系侵染冀豆17时,涉及硝酸还原酶(NR,nitrate reductase)和一氧化氮合酶(NOS,nitric oxide synthase)途径的一氧化氮(NO,nitric oxide)被诱导产生,并在细胞膜和细胞壁上产生丰富的H2O2,促进胼胝质积
刘士超
王大刚
蔡晗
加强抗病品种选育,提高作物抗病性是防治作物病害的主要途径之一。从诸多大豆种质资源中鉴定新的大豆花叶病毒抗性位点对抗大豆花叶病毒育种至关重要。我国是大豆发源地和大豆分布区域最广的国家,从南到北拥有数量十分丰富的野生大豆种质资
随着大豆全基因组测序的完善和优化,分子设计育种技术成为大豆抗病育种的关键之一。而新的抗性基因的发掘可以持续为不断变化的大豆花叶病毒株系提供有效的抗性位点。近年,新发掘的与大豆花叶病毒抗性基因位点共分离或紧密连锁的分子标记为辅助抗病育种奠定了基
尽管已经定位了许多大豆花叶病毒抗性位点,但多数的推广品种是否携带抗性基因,携带多少抗性基因仍然需要进一步明确。此外,随着突破现有抗性基因的新大豆花叶病毒株系的出
抗性基因的标记定位对锁定关键基因具有重要作用,然而在同一基因区域中存在较为紧密连锁的抗性基因为研究单个基因的功能及作用机理提出了难题。通过扩大后代分离群体的构建及精细定位,利用完整的大豆基因组序列和蛋白质组学、代谢组学等技术对单个抗性基因进行分子克隆具有一定的可行性,而抗性基因功能的明确也为利用抗大豆花叶病毒分子育种奠定扎实的基因基础。
抗病育种最好的结果是选育出对多个病毒或株系均具有抗性的品种,而利用新的分子生物技术,如病毒介导基因沉默、转基因过表达、基因编辑CRISPR/Cas9等为实现这一目标提供了可
分子标记,特别是与抗性基因紧密连锁或共分离的分子标记,在大豆抗病种质鉴
参考文献
Gunduz I, Buss G R, Chen P Y, Tolin S A. Characterization of SMV resistance genes in Tousan 140 and Hourei soybean. Crop Science, 2002, 42 (1): 90-95 [百度学术]
Bachkar C B, Balgude Y S, Shinde P B, Deokar C. Screening of soybean genotypes against soybean mosaic virus under natural and glass house conditions. International Journal of Chemical Studies, 2019, 7 (1): 2267-2269 [百度学术]
Ilut D C, Lipka A E, Jeong N, Bae D N, Kim D H, Kim J H, Redekar N, Yang K, Park W, Kang S T, Kim N, Moon J K, Saghai Maroof M A, Gore M A, Jeong S C. Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. Theoretical & Applied Genetics, 2016, 129 (3): 453-468 [百度学术]
Adhimoolam K, Li K, Jiang H, Ren R, Li G, Zhi H J, Chen S Y, Gai J Y. Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean. Molecular Genetics & Genomics, 2017, 292 (4): 811-822 [百度学术]
Tran P T, Widyasari K, Seo J K, Kim K H. Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus. Virology, 2018, 513: 153-159 [百度学术]
Alazem M, Widyasari K, Kim K H. An avirulent strain of soybean mosaic virus reverses the defensive effect of abscisic acid in a susceptible soybean cultivar. Viruses, 2019, 11 (9): 879 [百度学术]
Widyasari K, Tran P T, Shin J Y, Son H Y, Kim K H. Overexpression of purple acid phosphatase GmPAP2.1 confers resistance to soybean mosaic virus in a susceptible soybean cultivar. Journal of Experimental Botany, 2022, 73 (5): 1623-1642 [百度学术]
Eid M A, Momeh G N, El-Shanshoury A E R R, Allam N G, Gaafar R M. Comprehensive analysis of soybean cultivars’ response to SMV infection: Genotypic association, molecular characterization, and defense gene expressions. Journal of Genetic Engineering and Biotechnology, 2023, 21: 102 [百度学术]
李凯, 刘志涛, 李海朝, 张锴, 王成坤, 任锐, 卢为国, 智海剑. 国家大豆区域试验品种对SMV和SCN的抗性分析. 大豆科学, 2013, 32 (5): 670-675 [百度学术]
Li K, Liu Z T, Li H C, Zhang K, Wang C K, Ren R, Lu W G, Zhi H J. Resistance to soybean mosaic virus and soybean cyst nematode of soybean cultivars from China national soybean uniform trials. Soybean Science, 2013, 32 (5): 670-675 [百度学术]
王大刚, 李凯, 智海剑. 大豆抗大豆花叶病毒病基因研究进展. 中国农业科学, 2018, 51 (16): 3040-3059 [百度学术]
Wang D G, Li K, Zhi H J. Progresses of resistance on soybean mosaic virus in soybean. Scientia Agricultura Sinica, 2018, 51 (16): 3040-3059 [百度学术]
Widyasari K, Alazem M, Kim K H. Soybean resistance to soybean mosaic virus. Plants, 2020, 9: 219 [百度学术]
Usovsky M, Chen P Y, Li D X, Wang A M, Shi A N, Zheng C M, Shakiba E, Lee D H, Canella Vieira C, Lee Y C, Wu C J, Cervantez I N, Dong D K. Decades of genetic research on soybean mosaic virus resistance in soybean. Viruses, 2022, 14 (6): 1122 [百度学术]
Choi B K, Koo J M, Ahn H J, Yum H J, Choi C W, Ryu K H, Chen P Y, Tolin S A. Emergence of Rsv-resistance breaking soybean mosaic virus isolates from Korean soybean cultivars. Virus Research, 2005, 112 (1-2): 42-51 [百度学术]
Gagarinova A G, Babu M, Poysa V, Hill J H, Wang A M. Identification and molecular characterization of two naturally occurring soybean mosaic virus isolates that are closely related but differ in their ability to overcome Rsv4 resistance. Virus Research, 2008, 138 (1-2): 50-56 [百度学术]
Wang Y, Hajimorad M R. Gain of virulence by soybean mosaic virus on Rsv4-genotype soybeans is associated with a relative fitness loss in a susceptible host. Molecular Plant Pathology, 2016, 17 (7): 1154-1159 [百度学术]
Ma F F, Wu M, Liu Y N, Feng X Y, Wu X Z, Chen J Q, Wang B. Molecular characterization of NBS-LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus. Theoretical & Applied Genetics, 2018, 131 (2): 253-265 [百度学术]
Ishibashi K, Saruta M, Shimizu T, Shu M, Anai T, Komatsu K, Yamada N, Katayose Y C, Ishikawa M, Ishimoto M, Kaga A. Soybean antiviral immunity conferred by dsRNase targets the viral replication complex. Nature Communications, 2019, 10 (1): 4033 [百度学术]
Che Z J, Yan H L, Liu H L, Yang H, Du H P, Yang Y M, Liu B H, Yu D Y. Genome-wide association study for soybean mosaic virus SC3 resistance in soybean. Molecular Breeding, 2020, 40: 69 [百度学术]
Zhao X, Jing Y, Luo Z H, Gao S N, Teng W L, Zhan Y H, Qiu L J, Zheng H K, Li W B, Han Y P. GmST1, which encodes a sulfotransferase, confers resistance to soybean mosaic virus strains G2 and G3. Plant Cell Environment, 2021, 44 (8): 2777-2792 [百度学术]
Yin J L, Wang L Q, Jin T T, Nie Y, Liu H, Qiu Y L, Yang Y H, Li B W, Zhang J J, Wang D G, Li K, Xu K, Zhi H J. A cell wall-localized NLR confers resistance to soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. Molecular Plant, 2021, 14 (11): 1881-1900 [百度学术]
Zhang J, Liu N, Yan A H, Sun T J, Sun X Z, Yao G B, Xiao D Q, Li W L, Hou C Y, Yang C Y, Wang D M. Callose deposited at soybean sieve element inhibits long-distance transport of soybean mosaic virus. Applied Microbiology and Biotechnology Express, 2022, 12 (1): 66 [百度学术]
DeMers L C, Redekar N R, Kachroo A, Tolin S A, Li S, Saghai Maroof M A. A transcriptional regulatory network of Rsv3-mediated extreme resistance against soybean mosaic virus. PLoS ONE, 2020, 15 (4): e0231658 [百度学术]
Wang D G, Ma Y, Yang Y Q, Liu N, Li C Y, Song Y P, Zhi H J. Fine mapping and analyses of RSC8 resistance candidate genes to soybean mosaic virus in soybean. Theoretical & Applied Genetics, 2011, 122 (3): 555-565 [百度学术]
李春燕, 杨永庆, 王大刚, 李华伟, 郑桂杰, 王涛, 智海剑. 大豆对SMV株系SC10的抗性遗传及抗病基因的定位研究. 中国农业科学, 2012, 45 (21): 4335-4342 [百度学术]
Li C Y, Yang Y Q, Wang D G, Li H W, Zheng G J, Wang T, Zhi H J. Studies on mapping and inheritance of resistance genes to SMV strain SC10 in soybean. Scientia Agricultura Sinica, 2012, 45 (21): 4335-4342 [百度学术]
Yan H L, Wang H, Cheng H, Hu Z B, Chu S S, Zhang G Z, Yu D Y. Detection and fine-mapping of SC7 resistance genes via linkage and association analysis in soybean. Journal of Integrative Plant Biology, 2015, 57 (8): 722-729 [百度学术]
Zhao L, Wang D G, Zhang H Y, Shen Y C, Yang Y Q, Li K, Wang L Q, Yang Y H, Zhi H J. Fine mapping of the RSC8 locus and expression analysis of candidate SMV resistance genes in soybean. Plant Breeding, 2016, 135 (6): 701-706 [百度学术]
Yang Q H, Gai J Y. Identification, inheritance and gene mapping of resistance to a virulent soybean mosaic virus strain SC15 in soybean. Plant Breeding, 2011, 130 (2): 128-132 [百度学术]
Ren R, Liu S C, Adhimoolam K, Wang T, Niu H P, Yin J L, Yang Y H, Wang L Q, Yang Q H, Zhi H J, Li K. Fine-mapping and identification of a novel locus RSC15 underlying soybean resistance to soybean mosaic virus. Theoretical & Applied Genetics, 2017, 130 (11): 2395-2410 [百度学术]
李凯, 任锐, 王涛, 高乐, 落金艳, 刘士超, 智海剑, 盖钧镒. 大豆对大豆花叶病毒SC18株系的抗性遗传和基因定位. 大豆科学, 2017, 36 (2): 187-192 [百度学术]
Li K, Ren R, Wang T, Gao L, Luo J Y, Liu S C, Zhi H J, Gai J Y. Genetic analysis and mapping of soybean mosaic virus resistance genes to SC18 in soybean. Soybean Science, 2017, 36 (2): 187-192 [百度学术]
Ma Y, Wang D G, Li H C, Zheng G J, Yang Y Q, Li H W, Zhi H J. Fine mapping of the RSC14Q locus for resistance to soybean mosaic virus in soybean. Euphytica, 2011, 181 (1): 127-135 [百度学术]
Yang Y Q, Zheng G J, Han L, Wang D G, Yang X F, Yuan Y, Huang S H, Zhi H J. Genetic analysis and mapping of genes for resistance to multiple strains of soybean mosaic virus in a single resistant soybean accession PI96983. Theoretical & Applied Genetics, 2013, 126 (7): 1783-1791 [百度学术]
Zheng G J, Yang Y Q, Ma Y, Yang X F, Chen S Y, Ren R, Wang D G, Yang Z L, Zhi H J. Fine mapping and candidate gene analysis of resistance gene RSC3Q to soybean mosaic virus in Qihuang 1. Journal of Integrative Agriculture, 2014, 13 (12): 2608-2615 [百度学术]
Li K, Ren R, Adhimoolam K, Gao L, Yuan Y, Liu Z T, Zhong Y K, Zhi H J. Genetic analysis and identification of two soybean mosaic virus resistance genes in soybean [Glycine max (L.) Merr]. Plant Breeding, 2015, 134 (6): 684-695 [百度学术]
Klepadlo M, Chen P Y, Shi A N, Mason R E, Korth K L, Srivastava V S, Wu C J. Two tightly linked genes for soybean mosaic virus resistance in soybean. Crop Science, 2017, 57 (4): 1-10 [百度学术]
Li C, Adhimoolam K, Yuan Y, Yin J L, Ren R, Yang Y Q, Zhi H J. Identification of candidate genes for resistance to soybean mosaic virus strain SC3 by using fine mapping and transcriptome analyses. Crop & Pasture Science, 2017, 68 (2): 156-166 [百度学术]
Adhimoolam K, Li K, Li C, Yin J L, Li N, Yang Y H, Song Y P, Ren R, Zhi H J, Gai J Y. Fine-mapping and identifying candidate genes conferring resistance to soybean mosaic virus strain SC20 in soybean. Theoretical & Applied Genetics, 2018, 131 (2): 461-476 [百度学术]
Ma F F, Wu X Y, Chen Y X, Liu Y N, Shao Z Q, Wu P, Wu M, Liu C C, Wu W P, Yang J Y, Li D X, Chen J Q, Wang B. Fine mapping of the Rsv1-h gene in the soybean cultivar Suweon 97 that confers resistance to two Chinese strains of the soybean mosaic virus. Theoretical & Applied Genetics, 2016, 129 (11): 2227-2236 [百度学术]
Suh S J, Bowman B C, Jeong N, Yang K, Kastl C, Tolin S A, Saghai Maroof M A, Jeong S C. The Rsv3 locus conferring resistance to soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes. Plant Genome, 2011, 4 (1): 55-64 [百度学术]
Wang D G, Ma Y, Liu N, Yang Z L, Zheng G J, Zhi H J. Fine mapping and identification of the soybean RSC4 resistance candidate gene to soybean mosaic virus. Plant Breeding, 2011, 130 (6): 653-659 [百度学术]
Luan H X, Zhong Y K, Wang D G, Ren R, Gao L, Zhi H J. Genetic analysis and fine-mapping of soybean mosaic virus SC7 and SC13 resistance genes in soybean (Glycine max). Crop & Pasture Science, 2020, 71: 477-483 [百度学术]
Shen Y C, Xie L J, Chen B Y, Cai H, Chen Y Y, Zhi H J, Li K. Fine mapping of the RSC9 gene and preliminary functional analysis of candidate resistance genes in soybean (Glycine max). Plant Breeding, 2022, 141 (1): 49-62 [百度学术]
Che Z J, Zhang S Y, Pu Y X, Yang Y M, Liu H L, Yang H, Wang L, Zhang Y H, Liu B H, Zhang H Y, Wang H, Cheng H, Yu D Y. A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus. Journal of Experimental Botany, 2023, 74 (8): 2692-2706 [百度学术]
Saghai Maroof M A, Tucker D M, Skoneczka J A, Bowmen B C, Tripathy S, Tolin S A. Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4. Plant Genome, 2010, 3 (1): 14-22 [百度学术]
Jiang H, Jia H Y, Hao X S, Li K, Gai J Y. Mapping locus RSC11K and predicting candidate gene resistant to Soybean mosaic virus strain SC11 through linkage analysis combined with genome resequencing of the parents in soybean. Genomics, 2022,114 (4): 110387 [百度学术]
王大刚, 陈圣男, 黄志平, 于国宜, 吴倩, 胡国玉, 李杰坤. 皖豆33对SMV株系SC3的抗性遗传分析及分子标记定位. 中国油料作物学报, 2019, 41 (4): 531-536 [百度学术]
Wang D G, Chen S N, Huang Z P, Yu G Y, Wu Q, Hu G Y, Li J K. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC3 in soybean cultivar Wandou 33. Chinese Journal of Oil Crop Sciences, 2019, 41 (4): 531-536 [百度学术]
陈珊宇, 王大刚, 郑桂杰, 马莹, 杨中路, 曹栋栋, 黄玉韬, 智海剑. 野生大豆对大豆花叶病毒株系SC13的抗性遗传和基因定位. 植物遗传资源学报, 2020, 21 (1): 139-145 [百度学术]
Chen S Y, Wang D G, Zheng G J, Ma Y, Yang Z L, Cao D D, Huang Y T, Zhi H J. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC13 in Glycine soja. Journal of Plant Genetic Resources, 2020, 21 (1): 139-145 [百度学术]
Yang Q H, Jin H X, Yu X M. Fu X J, Zhi H J, Yuan F J. Rapid identification of soybean resistance genes to soybean mosaic virus by SLAF-seq bulked segregant analysis. Plant Molecular Biology Reporter, 2020, 38: 666-675 [百度学术]
Lin J, Lan Z J, Hou W H, Yang C Y, Wang D G, Zhang M C, Zhi H J. Identification and fine-mapping of a genetic locus underlying soybean tolerance to SMV infections. Plant Science, 2019, 292: 110367 [百度学术]
Ren R, Yin J L, Zheng H F, Wang T, Liu S C, Adhimoolam K, Yang Q H, Gao L, Zhi H J, Li K. Characterization of broad-spectrum resistance to soybean mosaic virus in soybean [Glycine max (L.) Merr.] cultivar ‘RN-9’. Plant Breeding, 2018, 137 (4): 605-613 [百度学术]
Wu M, Liu Y N, Zhang C, Liu X T, Liu C C, Guo R, Niu K X, Zhu A Q, Yang J Y, Chen J Q, Wang B. Molecular mapping of the gene(s) conferring resistance to soybean mosaic virus and bean common mosaic virus in the soybean cultivar Raiden. Theoretical & Applied Genetics, 2019, 132: 3101-3114 [百度学术]
Liu S L, Cheng Y B, Ma Q B, Mu L, Jiang Z, Xia Q J, Nian H. Fine mapping and genetic analysis of resistance genes, RSC18, against soybean mosaic virus. Journal of Integrative Agriculture, 2022, 21 (3): 644-653 [百度学术]
Chu J H, Li W L, Piao D R, Lin F, Huo X B, Zhang H, Du H, Kong Y B, Jin Y, Li X H, Zhang C Y. Identification of a major QTL related to resistance to soybean mosaic virus in diverse soybean genetic populations. Euphytica, 2021, 217: 176 [百度学术]
Wang D G, Chen S N, Huang Z P, Lin J. Identification and mapping of genetic locus conferring resistance to multiple plant viruses in soybean. Theoretical & Applied Genetics, 2022, 135: 3293-3305 [百度学术]
Li Y, Liu X L, Deng W J, Liu J H, Fang Y, Liu Y, Ma T S, Zhang Y, Xue Y G, Tang X F, Cao D, Zhu Z F, Luan X Y, Cheng X F. Fine mapping the soybean mosaic virus resistance gene in soybean cultivar Heinong 84 and development of CAPS markers for rapid identification. Viruses, 2022, 14 (11): 2533 [百度学术]
Yuan Y, Yang Y Q, Shen Y C, Yu K S, Wang L Q, Ren R, Yin J L, Zhi H J. Mapping and functional analysis of candidate genes involved in resistance to soybean (Glycine max) mosaic virus strain SC3. Plant Breeding, 2020, 139 (3): 618-625 [百度学术]
武小霞, 张清秀, 李淑萍, 潘校成, 陈庆山, 刘春燕. 大豆抗花叶病毒病QTL定位及其对花叶病毒病的响应. 东北农业大学学报, 2019, 50 (8): 1-7 [百度学术]
Wu X X, Zhang Q X, Li S P, Pan X C, Chen Q S, Liu C Y. QTL mapping of soybean resistance to soybean mosaic virus and its response to mosaic virus disease. Journal of Northeast Agricultural University, 2019, 50 (8): 1-7 [百度学术]
牛景萍, 杨彩妮, 赵晋忠, 陈钰涛, 王迎新, 李丽, 王敏, 岳爱琴, 杜维俊. 大豆抗大豆花叶病毒SC7和SC15株系基因的全基因组关联分析. 中国油料作物学报, 2024, 46 (1): 166-174 [百度学术]
Niu J P, Yang C N, Zhao J Z, Chen Y T, Wang Y X, Li L, Wang M, Yue A Q, Du W J. Genome-wide association mapping of resistance to soybean mosaic virus SC7 and SC15 in soybean. Chinese Journal of Oil Crop Sciences, 2024, 46 (1): 166-174 [百度学术]
Xun H W, Yang X D, He H L, Wang M, Guo P, Wang Y, Pang J S, Dong Y S, Feng X Z, Wang S C, Li B. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. Plant Molecular Biology, 2019, 99 (1-2): 95-111 [百度学术]
向文扬, 杨永庆, 任秋燕, 晋彤彤, 王丽群, 王大刚, 智海剑. 大豆抗SC3候选基因的克隆及分析. 作物学报, 2019, 45 (12): 1822-1831 [百度学术]
Xiang W Y, Yang Y Q, Ren Q Y, Jin T T, Wang L Q, Wang D G, Zhi H J. Cloning and analysis of candidate gene resistant to SC3 in soybean. Acta Agronomica Sinica, 2019, 45 (12): 1822-1831 [百度学术]
王大刚, 陈圣男, 杨勇, 李杰坤, 吴倩, 胡国玉, 黄志平. 大豆RSC4抗病候选基因Glyma.14G204700的克隆及其生物信息学分析. 植物保护学报, 2022, 49 (4): 1013-1021 [百度学术]
Wang D G, Chen S N, Yang Y, Li J K, Wu Q, Hu G Y, Huang Z P. Cloning and bioinformatics analysis of RSC4 resistance candidate gene Glyma.14G204700 in soybean. Journal of Plant Protection, 2022, 49 (4): 1013-1021 [百度学术]
Ren Q Y, Jiang H, Xiang W Y, Nie Y, Xue S, Zhi H J, Li K, Gai J Y. A MADS-box gene is involved in soybean resistance to multiple soybean mosaic virus strains. The Crop Journal, 2021, 10 (3): 802-808 [百度学术]
赵玎玲, 王梦璇, 孙天杰, 苏伟华, 赵志华, 肖付明, 赵青松, 闫龙, 张洁, 王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能. 中国农业科学, 2022, 55 (14): 2685-2695 [百度学术]
Zhao D L, Wang M X, Sun T J, Su W H, Zhao Z H, Xiao F M, Zhao Q S, Yan L, Zhang J, Wang D M. Cloning of the soybean single zinc finger protein gene GmSZFP and its functional analysis in SMV-host interactions. Scientia Agricultura Sinica, 2022, 55 (14): 2685-2695 [百度学术]
苏伟华, 赵志华, 齐梦楠, 孙天杰, 王冬梅, 张洁. 病程相关蛋白基因GmPR1-6的克隆及其在大豆抵抗SMV侵染过程中的功能初探. 河北农业大学学报, 2023, 46 (4): 8-15 [百度学术]
Su W H, Zhao Z H, Qi M N, Sun T J, Wang D M, Zhang J. Cloning and functional analysis of pathogenesis-related protein gene GmPR1-6 in soybean resistance to SMV. Journal of Hebei Agricultural University, 2023, 46 (4): 8-15 [百度学术]
任秋燕, 盖钧镒, 李凯. 大豆GmMADS基因的克隆及表达分析. 大豆科学, 2020, 39 (1): 30-38 [百度学术]
Ren Q Y, Gai J Y, Li K. Cloning and expression analysis of soybean stress-tolerant gene GmMADS. Soybean Science, 2020, 39 (1): 30-38 [百度学术]
Yuan Y, Yang Y Q, Yin J L, Shen Y C, Li B W, Wang L Q, Zhi H J. Transcriptome-based discovery of genes and networks related to RSC3Q-mediated resistance to soybean mosaic virus in soybean. Crop & Pasture Science, 2021, 71: 987-995 [百度学术]
方飞, 杨云华, 王丽群, 晋彤彤, 向文扬, 智海剑. 大豆类受体激酶基因GmNIK的克隆与表达分析. 大豆科学, 2019, 38 (5): 704-711 [百度学术]
Fang F, Yang Y H, Wang L Q, Jin T T, Xiang W Y, Zhi H J. Cloning and analysis of receptor-like kinase gene GmNIK in soybean. Soybean Science, 2019, 38 (5): 704-711 [百度学术]
王梦璇, 孙希哲, 孙天杰, 张洁, 王冬梅. GmGSL7c在大豆抗SMV过程中的作用. 河北大学学报:自然科学版, 2021, 41 (1): 47-54 [百度学术]
Wang M X, Sun X Z, Sun T J, Zhang J, Wang D M. Effect of GmGSL7c in SMV infected soybean. Journal of Hebei University:Natural Science Edition, 2021, 41 (1): 47-54 [百度学术]
Yang X D, Niu L, Zhang W, He H L, Yang J, Xing G J, Guo D Q, Zhao Q Q, Zhong X F, Li H Y, Li Q, Dong Y S. Increased multiple virus resistance in transgenic soybean overexpressing the double-strand RNA-specific ribonuclease gene PAC1. Transgenic Research, 2019, 28: 129-140 [百度学术]
牛陆, 赵倩倩, 杨静, 邢国杰, 张伟, 贺红利, 杨向东. 过表达酵母PAC1增强转基因大豆对大豆花叶病毒的抗性. 中国农业科学, 2018, 51 (2): 217-225 [百度学术]
Niu L, Zhao Q Q, Yang J, Xing G J, Zhang W, He H L, Yang X D. Over-expression of yeast PAC1 confers enhanced resistance to soybean mosaic virus in transgenic soybean. Scientia Agricultura Sinica, 2018, 51 (2): 217-225 [百度学术]
Zhang P P, Du H Y, Wang J, Pu Y X, Yang C Y, Yan R J, Yang H, Cheng H, Yu D Y. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soybean isoflavone content and resistance to soybean mosaic virus. Plant Biotechnology Journal, 2020, 18 (6): 1384-1395 [百度学术]
Jiang H, Gu S Y, Li K, Gai J Y. Two TGA transcription factor members from hyper-susceptible soybean exhibiting significant basal resistance to soybean mosaic virus. International Journal of Molecular Sciences, 2021, 22 (21): 11329 [百度学术]
Xun H W, Qian X Y, Wang M, Yu J X, Zhang X, Pang J S, Wang S C, Jiang L L, Dong Y S, Liu B. Overexpression of a cinnamyl alcohol dehydrogenase-coding gene, GsCAD1, from wild soybean enhances resistance to soybean mosaic virus. International Journal of Molecular Sciences, 2022, 23 (23): 15206 [百度学术]
Seo J K, Kwon S J, Cho W K, Choi H S, Kim K H. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Scientific Reports, 2014, 4: 5905-5913 [百度学术]
Alazem M, Tseng K C, Chang W C, Seo J K, Kim K H. Elements involved in the Rsv3-mediated extreme resistance against an avirulent strain of soybean mosaic virus. Viruses, 2018, 10 (11): 581 [百度学术]
Zhao Q Q, Li H N, Sun H Y, Li A G, Liu S X, Yu R N, Cui X Q, Zhang D J, Wuriyanghan H D. Salicylic acid and broad spectrum of NBS-LRR family genes are involved in SMV- soybean interactions. Plant Physiology and Biochemistry, 2018, 123: 132-140 [百度学术]
Li N, Yin J L, Li C, Wang D G, Yang Y Q, Adhimoolam K, Luan H X, Zhi H J. NB-LRR gene family required for Rsc4-mediated resistance to soybean mosaic virus. Crop & Pasture Science, 2016, 67 (5): 541-552 [百度学术]
Helm M, Qi M S, Sarkar S Y, Yu H Y, Whitham S A, Innes R W. Engineering a decoy substrate in soybean to enable recognition of the soybean mosaic virus NIa protease. Molecular Plant-Microbe Interactions, 2019, 32 (6): 760-769 [百度学术]
Zhang Y H, Du H P, Zhao T T, Liao C M, Feng T, Qin J, Liu B H, Kong F J, Che Z J, Chen L Y. GmTOC1b negatively regulates resistance to soybean mosaic virus. The Crop Journal, 2023, 11 (6): 1762-1773 [百度学术]
Xiao D, Duan X, Zhang M, Sun T, Sun X, Li F, Liu N, Zhang J, Hou C, Wang D. Changes in nitric oxide levels and their relationship with callose deposition during the interaction between soybean and soybean mosaic virus. Plant Biology (Stuttg), 2018, 20 (2): 318-326 [百度学术]
Sun T J, Sun X Z, Li F K, Ma N, Wang M X, Chen Y, Liu N, Jin Y, Zhang J, Hou C Y, Yang C Y, Wang D M. H2O2 mediates transcriptome reprogramming during soybean mosaic virus-induced callose deposition in soybean. The Crop Journal, 2022, 10 (1): 262-272 [百度学术]
刘士超, 任锐, 王丽群, 王涛, 落金艳, 郑欢芳, 智海剑, 李凯. 分子标记在大豆种质和分离群体中对SMV抗性基因的选择效果研究. 大豆科学, 2018, 37 (1): 14-21 [百度学术]
Liu S C, Ren R, Wang L Q, Wang T, Luo J Y, Zheng H F, Zhi H J, Li K. Study on selection of SMV resistance genes in soybean germplasms and segregation populations using molecular marker. Soybean Science, 2018, 37 (1): 14-21 [百度学术]
叶俊华, 杨启台, 刘章雄, 郭勇, 李英慧, 关荣霞, 邱丽娟. 大豆引进种质抗胞囊线虫病、抗花叶病毒病和耐盐基因型鉴定及优异等位基因聚合种质筛选. 作物学报, 2018, 44 (9): 1263-1273 [百度学术]
Ye J H, Yang Q T, Liu Z X, Guo Y, Li Y H, Guan R X, Qiu L J. Genotyping of SCN, SMV resistance, salinity tolerance and screening of pyramiding favorable alleles in introduced soybean accessions. Acta Agronomica Sinica, 2018, 44 (9): 1263-1273 [百度学术]
王大刚, 陈圣男, 黄志平, 吴倩, 胡国玉, 李杰坤. 193份大豆品系对SMV抗性鉴定与分子标记检测. 分子植物育种, 2019, 17 (24): 8138-8151 [百度学术]
Wang D G, Chen S N, Huang Z P, Wu Q, Hu G Y, Li J K. Identification and molecular detection of soybean mosaic virus resistance of 193 soybean lines. Molecular Plant Breeding, 2019, 17 (24): 8138-8151 [百度学术]
Gao L, Sun S, Li K, Wang L W, Hou W H, Wu C X, Zhi H J, Han T F. Spatio-temporal characterization of changes in the resistance of widely grown soybean cultivars to soybean mosaic virus across a century of breeding in China. Crop & Pasture Science, 2018, 69 (4): 395-405 [百度学术]
蔡晗, 赵琳, 沈颖, 陈圆圆, 智海剑, 李凯. 大豆抗花叶病毒SC3株系的分子标记筛选及种质抗性鉴定, 大豆科学, 2021, 40 (1): 1-10 [百度学术]
Cai H, Zhao L, Shen Y C, Chen Y Y, Zhi H J, Li K. Molecular marker screening and resistance identification of soybean germplasm to SMV strain SC3. Soybean Science, 2021, 40 (1): 1-10 [百度学术]
Wang D G, Zhao L, Li K, Ma Y, Wang L Q, Yang Y Q, Yang Q H, Zhi H J. Marker-assisted pyramiding of soybean resistance genes RSC4, RSC8, and RSC14Q to soybean mosaic virus. Journal of Integrative Agriculture, 2017, 16 (11): 2413-2420 [百度学术]
王传之, 李智, 王敏, 樊志明, 周洪利, 杜霄力, 孙云飞, 于伟. 利用MAS选育抗大豆花叶病毒病SC7新品种阜豆169. 大豆科学, 2022, 41 (2): 244-248 [百度学术]
Wang C Z, Li Z, Wang M, Fan Z M, Zhou H L, Du X L, Sun Y F, Yu W. Breeding of the new soybean cultivar Fudou 169 resistant to soybean mosaic virus SC7 by molecular marker-assisted selection. Soybean Science, 2022, 41 (2): 244-248 [百度学术]
李向华, 王克晶. 野生大豆遗传多样性研究进展. 植物遗传资源学报, 2020, 21 (6): 1344-1356 [百度学术]
Li X H, Wang K J. Research progress of genetic diversity in wild soybean (Glycine soja Siebold & Zucc.). Journal of Plant Genetic Resources, 2020, 21 (6): 1344-1356 [百度学术]
侯文焕, 杨永庆, 林静, 张孟臣, 智海剑, 杨春燕. 不同来源大豆材料对SMV株系SC3和SC7的抗性分析. 大豆科学, 2015, 34 (5): 861-866 [百度学术]
Hou W H, Yang Y Q, Lin J, Zhang M C, Zhi H J, Yang C Y. Resistance of different origin soybeans to SMV strains SC3 and SC7. Soybean Science, 2015, 34 (5): 861-866 [百度学术]
王宇, 张锴, 孙伟明, 王帅, 曹红梅, 董秋平, 张华雪, 李凯. 冀东野生大豆对大豆花叶病毒的抗性鉴定及抗病反应. 大豆科学, 2017, 36 (1): 92-97 [百度学术]
Wang Y, Zhang K, Sun W M, Wang S, Cao H M, Dong Q P, Zhang H X, Li K. Resistance identification and response of wild soybean (Glycine soja) to soybean mosaic virus in eastern Hebei province. Soybean Science, 2017, 36 (1): 92-97 [百度学术]
陈爱国, 王岩, 孟未来, 李兆波, 崔晓光, 吴禹. 不同原生境来源野生大豆抗花叶病毒(SMV)综合评价及聚类分析. 辽宁农业科学, 2020 (1): 7-13 [百度学术]
Chen A G, Wang Y, Meng W L, Li Z B, Cui X G, Wu Y. Evaluation, cluster analysis for Glycine soja of different habitats resistant to soybean mosaic virus (SMV). Liaoning Agricultural Sciences, 2020 (1): 7-13 [百度学术]
张华, 李娜, 邢馨竹, 邵振启, 李喜焕, 张彩英. 野生大豆与栽培大豆几丁质酶基因鉴定及其表达分析. 植物遗传资源学报. 2024,https://doi.org/10.13430/j.cnki.jpgr.20231125001 [百度学术]
Zhang H, Li N, Xing X Z, Shao Z Q, Li X H, Zhang C Y. Identification and expression analysis of chitinase genes in wild and cultivated soybeans. Journal of Plant Genetic Resources, 2024, https://doi.org/10.13430/j.cnki.jpgr.20231125001 [百度学术]
赵朝森, 王瑞珍, 赵现伟. 国外大豆种质资源农艺及品质性状分析与评价. 植物遗传资源学报, 2021, 22 (3): 665-673 [百度学术]
Zhao C S, Wang R Z, Zhao X W. Analysis and evaluation of agronomic and quality traits of soybean germplasm resources from abroad. Journal of Plant Genetic Resources, 2021, 22 (3): 665-673 [百度学术]
齐广勋, 董岭超, 张伟, 袁翠平, 刘晓冬, 王英男, 董英山, 王玉民, 赵洪锟. 国外大豆种质资源对大豆花叶病毒株系3(SMV3)的抗性评价. 作物杂志, 2022 (6): 70-74 [百度学术]
Qi G X, Dong L C, Zhang W, Yuan C P, Liu X D, Wang Y N, Dong Y S, Wang Y M, Zhao H K. Evaluation of resistance to soybean mosaic virus strain 3 (SMV3) in foreign soybean germplasm resources. Crops, 2022 (6): 70-74 [百度学术]
高赛男, 赵雪, 李文滨, 李海燕, 韩英鹏. 农家大豆种质对花叶病毒病N1和N3株系的抗性鉴定. 大豆科学, 2016, 35 (1): 117-123 [百度学术]
Gao S N, Zhao X, Li W B, Li H Y, Han Y P. Identification of resistance of soybean landraces to N1 and N3 strains of soybean mosaic virus. Soybean Science, 2016, 35 (1): 117-123 [百度学术]
孟珊, 徐婷婷, 朱小品, 狄佳春, 朱银, 杨欣, 邹淑琼, 杨雪, 覃翠华, 颜伟. 江苏大豆地方种质资源表型多样性分析. 植物遗传资源学报, 2023, 24 (2): 419-436 [百度学术]
Meng S, Xu T T, Zhu X P, Di J C, Zhu Y, Yang X, Zou S Q, Yang X, Qin C H, Yan W. Diversity analysis of soybean landraces collected from Jiangsu province using phenotypic traits. Journal of Plant Genetic Resources, 2023, 24 (2): 419-436 [百度学术]
黄志平, 李杰坤, 王维虎, 胡国玉, 吴倩, 王大刚. 大豆新品系抗SMV鉴定及其抗性来源分析.大豆科学, 2017, 36 (4): 598-605 [百度学术]
Huang Z P, Li J K, Wang W H, Hu G Y, Wu Q, Wang D G. Identification of resistance and preliminary analysis of resistance sources for the soybean mosaic virus in the new soybean lines. Soybean Science, 2017, 36 (4): 598-605 [百度学术]
王大刚, 陈圣男, 李杰坤, 吴倩, 胡国玉, 黄志平. 大豆品系抗SMV评价及亲本来源分析. 大豆科学, 2018, 37 (5): 657-663 [百度学术]
Wang D G, Chen S N, Li J K, Wu Q, Hu G Y, Huang Z P. Evaluation of resistance and analysis of parental origins for soybean lines to soybean mosaic virus. Soybean Science, 2018, 37 (5): 657-663 [百度学术]
王栋, 丁汉凤, 王效睦, 孔维国, 李润芳, 李湛, 谢坤, 李群, 戴双, 张晓冬. 山东省野生大豆种质资源保护利用现状分析. 农学学报, 2016, 6 (12): 23-29 [百度学术]
Wang D, Ding H F, Wang X M, Kong W G, Li R F, Li Z, Xie K, Li Q, Dai S, Zhang X D. Protection and utilization of wild soybean germplasm resources in Shandong province. Journal of Agriculture, 2016, 6 (12): 23-29 [百度学术]
刘佳瑞, 张钰, 彭国庆, 齐照明, 陈庆山, 辛大伟, 胡利民. 基因编辑技术在大豆基因功能鉴定及遗传改良上的应用. 植物遗传资源学报, https://doi.org/10.13430/j.cnki.jpgr.20231113003 [百度学术]
Liu J R, Zhang Y, Peng G Q, Qi Z M, Chen Q S, Xin D W, Hu L M. The application of gene editing technology to soybean in gene function identification and genetic improvement. Journal of Plant Genetic Resources, https://doi.org/10.13430/j.cnki.jpgr.20231113003 [百度学术]
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 2016, 17 (7): 1140-1153 [百度学术]
王静华, 王凤敏, 秦君, 杨永庆, 闫龙, 刘兵强, 谷峰, 冯燕, 张孟臣, 赵宝华, 杨春燕. 大豆品种对花叶病毒病株系SC3的抗性鉴定与农艺性状评价. 植物遗传资源学报, 2019, 20 (4): 880-890 [百度学术]
Wang J H, Wang F M, Qin J, Yang Y Q, Yan L, Liu B Q, Gu F, Feng Y, Zhang M C, Zhao B H, Yang C Y. Test for resistance to soybean mosaic virus isolate SC3 and evaluation of agronomic characters in soybean varieties. Journal of Plant Genetic Resources, 2019, 20 (4): 880-890 [百度学术]
王帅, 张子戌, 齐广勋, 王英男, 赵洪锟, 刘晓冬, 袁翠平, 王玉民, 朴世领. 基于SSR标记分析大豆疫霉根腐病抗源的遗传多样性. 植物遗传资源学报, 2020, 21 (2): 394-402 [百度学术]
Wang S, Zhang Z X, Qi G X, Wang Y N, Zhao H K, Liu X D, Yuan C P, Wang Y M, Piao S L. Genetic diversity of resistance to Phytophthora root rot based on SSR markers. Journal of Plant Genetic Resources, 2020, 21 (2): 394-402 [百度学术]