摘要
黑米和红米特种稻是一类由于色素沉积而导致种皮表现出黑(紫)色或红色的特殊稻种资源,其营养物质丰富,除了含有比白米更多的蛋白质、矿物质及膳食纤维外,还富含花青素(原花青素)、黄酮类、萜类等生理活性物质,其营养物质及价值都远超白米,因此受到越来越多稻米消费者的青睐。我国黑米和红米资源丰富,合理利用这些营养丰富的黑米和红米资源,创制优异的黑米和红米新种质并培育出新品种,对于推动特种稻产业发展意义重大。本文分4个阶段概括了黑米和红米的研究历史并介绍了我国黑米和红米资源的分布情况,综述了黑米和红米的品质、产量、抗性及开发利用等方面的研究进展,重点阐述了黑米和红米在品质差异及形成机制上的最新研究进展。最后总结了黑米和红米当前研究的薄弱之处并提出了对黑米和红米未来研究方向的展望,为黑米和红米的新品种培育及进一步开发利用提供参考。
水稻是全球最重要的粮食作物之一,大约有50%以上的人口以水稻为主食。近年来,随着人民生活水平提高及对健康饮食的要求,人们对于稻米的需求逐渐改变,兼具营养及色、香、味的稻米成为人们对稻米的新追求。特种稻是指拥有特定遗传性状和特殊用途的稻谷,这种稻谷主要分为三类,即有色稻米、香稻米和专用稻
黑米和红米是我国劳动人民在耕作过程中发现并不断培育得到的特殊水稻品种,种植历史悠久。有关黑米的记载最早可见于《诗经·大雅·生民》中“诞降嘉种,维秬维柸,维糜维芑。恒之柜柸,是获是苗
第一阶段是从黑米和红米种植到最后一个封建王朝的没落,此时的黑米和红米凭借优良的营养品质及药用功能深受人们追捧,在历朝历代多作为皇室贡
第二阶段为20世纪40-60年代,由于稻米食用者饮食习惯的倾向以及黑米和红米与落粒性、易倒伏等不利性状连锁遗传,因此白米稻成为主要的栽培
第三阶段为20世纪70年代到20世纪末,研究者对黑米和红米等特种稻逐渐关注起来。此时的黑米和红米研究主要集中在种质资源的收集以及种皮颜色基因的定位研究,并基于种质资源培育出了一批如黑糯141、鸭血糯等黑米或红米品种在生产上推广应用。
第四阶段为20世纪末至今,研究者对于有色米中富含的生理活性物质的研究,人们逐渐发现黑米和红米中含有比白米更丰富的营养物质以及白米不具有的药用功能物
中国地域辽阔,横跨多个气候带,拥有多样的自然环境,这使得我国成为了世界上黑米和红米的重要产地之一。黑米和红米是由野生稻经过长期的自然选择和人工驯化培育而来,在漫长的农业发展历程中,我国各地利用当地的野生稻资源培育形成了众多具有独特的外观和营养价值的黑米或红米地方品种。我国黑米资源丰富,种类多样,涉及水稻和陆稻、籼稻和粳稻、糯型和粘型等多个类型。1995年调查显示我国黑米资源总计373
中国幅员辽阔、气候条件多样,同样为红米的演化与生长提供了得天独厚的环境,孕育了丰富的红米资源。1995年调查显示我国共有红米资源8963份,其中多为地方品
性状 Characters | 黑米资源 Black rice resources | 红米资源 Red rice resources |
---|---|---|
亚种类型 Subspecies type | 粳稻偏多 | 以籼稻为主 |
水旱性 Paddy and upland field | 以水稻为主,具有少量的陆稻类型 | 以水稻为主,具有少量的陆稻类型 |
粘糯性 Viscidity | 糯稻偏多 | 以粘稻为主 |
株高(cm) Plant Height | 100~180 | 80~140 |
生育期 Growth period | 以晚稻为主 | 以中晚稻为主 |
抗性 Resistance | 对白背飞虱、苗瘟、白叶枯具有一定抗性,对褐飞虱具有较强抗性,部分资源具有一定的抗盐、抗旱能力 | 对苗瘟具有一定抗性,对白叶枯、褐飞虱具有较强抗性,部分资源具有一定的抗盐、抗旱能力 |
以上数据来源于中国作物种质资源信息网
The above data is from the China Crop Germplasm Resources Information Network
黑米和红米中含有丰富的营养成分,除氨基酸、淀粉、蛋白质、矿物质元素等常规营养元素外,黑米和红米中还含有相比白米更多的维生素、花青素等营养元素(
序号 No. | 种质名称 Germplasm name | 总淀粉含量(%) Total starch content | 蛋白质含量(%) Protein content | 膳食纤维含量(%) Dietary fiber content | 总酚含量 (mg GAE/g) Phenolics content | 总黄酮含量 (mg CE/g) Total flavonoids content | 花青苷含量 (mg/g) Anthocyanin content |
---|---|---|---|---|---|---|---|
1 | 红米 1 | 74.94 | 9.00 | 4.38 | 4.12 | 2.69 | 0.46 |
2 | 红米 2 | 79.50 | 9.40 | 4.43 | 4.88 | 2.98 | 0.25 |
3 | 曹妃红 | 78.59 | 8.86 | 4.24 | 4.16 | 3.15 | 0.07 |
4 | 吉稻 | 77.78 | 8.31 | 3.96 | 6.06 | 4.31 | 8.17 |
5 | 惠生黑稻 | 78.48 | 8.78 | 3.63 | 2.54 | 2.96 | 2.28 |
6 | 黑粘香 | 78.39 | 8.11 | 3.64 | 5.38 | 4.20 | 6.62 |
7 | 吉黑稻 | 78.61 | 6.40 | 3.68 | 2.52 | 2.72 | 2.66 |
8 | 陕黑 | 78.20 | 7.15 | 4.62 | 6.52 | 4.46 | 10.08 |
GAE:总酚含量以没食子酸当量表示;CE:总黄酮含量以儿茶素当量表示
GAE:The phenolics content is expressed as gallic acid extract eqnivalent;CE:The total flaronids content is expressed as catechin extract eqnivalent
黑米由于其丰富的营养物质一直被当作优质稻米食用,目前对于黑米品质的研究包括蛋白质、淀粉等常规营养物质含量和维生素、色素等微量营养元素或活性物质含量两个方面。研究发现我国黑米品种的总淀粉含量为71.11%~78.61%,脂肪含量在2.02%~2.40%,蛋白质含量在6.40%~15.11%,膳食纤维含量在3.62%~4.62
黑米的黑色外观是由色素在种皮中积累导致的,Oki
红米的品质研究与黑米类似,同样集中在红米所含有的各类物质。我国红米资源总淀粉含量为74.73%~78.59%,脂肪含量在1.50%~2.58%,蛋白质含量在8.78%~9.40%,膳食纤维含量在4.24%~4.79
红米的红色外皮由原花青素(单宁)决
黑米和红米不仅外表颜色不同,在营养物质及生理活性物质含量方面也有较大差异。研究表明黑米或红米等有色米的总淀粉含量在73.5%~79.6%,对比常规白米,黑米和红米中含有更容易消化的淀
黑米和红米中的多种生理活性物质导致了黑米和红米具有不同的功能特性。研究表明总多酚含量与黑米和红米的抗氧化活性密切相
目前,关于黑米和红米品质形成机制的研究主要集中在其色素形成方面。黑米的黑色种皮由花青素决定,目前有关花青素的合成途径已经较为清晰。花青素合成开关由Pb基因控制,合成途径中有多个基因参与,其转录调控主要是通过1个复合体MBW实
红米的红色种皮由原花青素决定,相较于黑米中的花青素,原花青素的研究较少。目前研究表明单个基因Rc就可以调控原花青素的生物合
在黑米或红米营养品质遗传机制研究方面,已通过全基因组关联分析在有色米中鉴定出了与谷物蛋白或铁含量等品质相关联的QTL位
黑米和红米虽然营养品质突出,但大部分营养物质都位于果皮及糊粉层内,导致黑米和红米的食用以糙米为主,但糙米口感较硬,香味及适口性均不如平时所食用的精米。另外,黑米和红米具有良好的抗性,但其在种植过程中株型高、易倒伏、栽培周期长、产量低。综述黑米或红米除营养品质外的其他方面的研究进展以及加工利用现状,对于开发高产优质的黑米或红米品种,推进黑米和红米产业发展具有重要意义。
在黑米和红米的种质创制方面,少数研究者通过诱变处理以获得产量提高的黑米或红米品系。如以红米品种Thani 1为材料,诱变衍生出多个红米突变株系,比较发现其中两个红米突变株系产量相对于野生型显著提高,并且对品质无显著影
在黑米和红米培育方面,已利用传统育种技术培育出比一般黑糯米营养物质含量和产量更高的特种稻品种黑糯17
黑米和红米丰富的代谢物质和矿物质元素为黑米或红米提供了远超常规白米的抗胁迫能
由于黑米和红米的营养物质、花青素或原花青素含量丰富,更有白米中不具备的部分维生素,因此近年来基于黑米或红米优良品质进行的加工利用研究也越来越多。目前关于黑米和红米的开发利用研究主要包含以下四个方面:(1)直接利用黑米或红米作为粥食或杂粮米饭的传统应用方式,但黑米和红米普遍粗糙,口感较差,目前适合用于此类食用方式的黑米或红米品种仍然较少。(2)用于食品开发,目前已经有大量利用黑米或红米开发的食品,如黑(红)米糕、黑(红)米酒、黑(红)米饮料
大多数黑米和红米品种通过野生稻驯化而来,在我国不同地域自然条件下表现出丰富的遗传变异,通常具有较强的抗性,富含各类营养物质,但口感普遍较差。此外,黑米和红米植株通常较高,容易倒伏,生育周期较长,产量相对较低。目前,对黑米和红米的研究主要侧重于研究其本身的品质特征,尤其是对其色素和黄酮类物质的研究较为深入,但其他活性物质如多糖和萜类化合物的研究关注较少。另外,目前通过与高产品种杂交仍是提高黑米或红米产量的主要途径,对黑米和红米产量性状形成机制关注较少,导致黑米和红米产量性状的基础研究工作较为薄弱。在黑米和红米加工利用方面,由于黑米和红米的淀粉特性,在面包等产品的开发利用时,黑米或红米只作为部分添加剂,黑米或红米作为主料开发的产品仍旧较少。因此,后续黑米和红米研究可从以下四个方面入手:(1)黑米和红米抗性、品质及色素形成相关重要基因的挖掘与功能验证。利用我国丰富的黑米和红米资源,结合其独特的表型,利用多组学技术等深入挖掘黑米或红米中调控抗性、品质及色素形成相关的重要基因并进行功能验证,将其应用到黑米或红米甚至常规白米中,可以为水稻高抗和优质育种提供重要的遗传资源,进一步通过分子标记辅助选择和回交技术实现黑米或红米相关关键基因或基因组区域进入白米高产水稻品种。(2)加强黑米和红米的优异种质创制和育种利用。保留黑米和红米地方种质资源的优点,利用传统育种和现代育种技术综合弥补种质资源存在的缺陷或不足,并结合市场消费者需求灵活创制黑米和红米优异新种质,促进其在生产中的推广和应用。(3)利用分子育种技术对黑米和红米现有品种进行遗传改良。利用单倍型技术、分子标记辅助育种技术、基因编辑技术等来精确调控黑米或红米现有品种的淀粉、蛋白质、代谢物及香味等途径相关关键基因的表达,以改善黑米和红米的口感和食味品质。探究制约黑米和红米产量不足的关键因素及与品质可能存在的矛盾,从而培育优质与高产协调的黑米或红米新品种。(4)利用现代育种技术对黑米和红米资源进行系统开发与利用。利用野生稻从头驯化、多基因编辑、染色体片段替换、单倍体技术等多种现代育种手段在黑米或红米品种中聚集有利等位基因,实现对黑米或红米品种的全面改良,综合协调黑米和红米产量、品质、抗性、生育期等性状,解决黑米和红米因产量低、应用成本高、淀粉特性差而只能作为添加剂的开发窘境,为黑米和红米生产和食品开发做出更大的贡献。
参考文献
赵则胜. 特种稻研究与利用. 北方水稻,2007(6): 1-6 [百度学术]
Zhao Z S. Research and utilization of special rice. Northern Rice, 2007(6): 1-6 [百度学术]
赵则胜. 中国特种稻. 上海: 上海科学技术出版社, 1995 [百度学术]
Zhao Z S. Special rice in China. Shanghai: Shanghai Science and Technology Press, 1995 [百度学术]
徐庆国. 特异稻米育种技术及开发前景探讨. 作物研究,1995(2): 3-6 [百度学术]
Xu Q G. Discussion on the breeding technology and development prospect of specific rice. Crop Research, 1995(2): 3-6 [百度学术]
王滨. 洋县黑米:“米中三珍”之冠. 黑龙江粮食, 2018(11): 37-41 [百度学术]
Wang B. Yangxian black rice: The crown of "three treasures in rice". Heilongjiang Grain, 2018(11): 37-41 [百度学术]
王彩霞. 有色米的品质特性与种皮颜色性状的分子遗传学研究. 杭州:浙江大学, 2007 [百度学术]
Wang C X. Molecular genetics study on quality characteristics and seed coat color characters of colored rice. Hangzhou:Zhejiang University, 2007 [百度学术]
孙义伟. 谈谈黑米的开发和利用. 江西农业科技, 1992(2): 30-31 [百度学术]
Sun Y W. Talk about the development and utilization of black rice. Jiangxi Agricultural Science and Technology, 1992(2): 30-31 [百度学术]
闵宗殿. 太湖地区历史上的优质水稻品种资源. 古今农业, 1994(1): 50-57 [百度学术]
Min Z D. Historical high-quality rice variety resources in Taihu Lake area. Ancient and Modern Agriculture, 1994(1): 50-57 [百度学术]
隋新,吕进义,李盛,马先红. 黑米饮品的研究进展. 保鲜与加工, 2017, 17(3): 129-132 [百度学术]
Sui X, Lv J Y, Li S, Ma X H. Research progress of black rice beverages. Preservation and Processing, 2017, 17(3): 129-132 [百度学术]
Porteres R. Taxonomie Agrobotanique des Riz cultives O. sativa L. et O. glaberrima Steudel. Journal Dagriculture Traditionnelle et de Botanique Appliquee, 1956, 3(7): 341-384 [百度学术]
吕文英. 米类食品中锌、铁、钙、锰、铜等元素含量测定与研究. 矿质元素与健康研究,2000,17(4): 46-47 [百度学术]
Lv W Y. Determination and study of zinc, iron, calcium, manganese, copper and other elements in rice food. Research on Mineral Elements and Health, 2000, 17(4): 46-47 [百度学术]
Thilakarathna S H, Rupasinghe H P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9): 3367-3387 [百度学术]
Chen X, Zhou X, Yang Z, Gu C, Tao Y, Guo Q, Guo D, Zhang H, Xu P, Liao Y, Wang Y, Duan Q, Ran X, Wang L, Li Y, Wu X. Analysis of quality involving in minerals, amylose, protein, polyphenols and antioxidant capacity in different coloured rice varieties. Food Science and Technology Research, 2019, 25(1): 141-148 [百度学术]
Frei M, Becker K. Fatty acids and all-trans-β-carotene are correlated in differently colored rice landraces. Journal of the Science of Food and Agriculture, 2005, 85(14): 2380-2384 [百度学术]
Kim T J, Kim S Y, Park Y J, Lim S H, Ha S H, Park S U, Lee B, Kim J K. Metabolite profiling reveals distinct modulation of complex metabolic networks in non-pigmented, black, and red rice (Oryza sativa L.cultivars). Metabolites, 2021, 11(6): 367 [百度学术]
张启发. 保障粮食安全,促进营养健康:黑米主食化未来可期. 华中农业大学学报,2021,40(3):1-2 [百度学术]
Zhang Q F. Ensure food security, promote nutrition and health: The future of black rice staple food. Journal of Huazhong Agricultural University, 2021,40(3):1-2 [百度学术]
Xie L, Wu D, Fang Y, Ye C, Zhu Q, Wei X, Fan L. Population genomic analysis unravels the evolutionary roadmap of pericarp color in rice. Plant Communications, 2023, (6): 100778 [百度学术]
Sedeek K, Zuccolo A, Fornasiero A, Weber A M, Sanikommu K, Sampathkumar S, Rivera L F, Butt H, Mussurova S, Alhabsi A, Nurmansyah N, Ryan E P, Wing R A, Mahfouz M M. Multi-omics resources for targeted agronomic improvement of pigmented rice. Nature Food, 2023, 4(5): 366-371 [百度学术]
Chattopadhyay K, Bagchi T B, Sanghamitra P, Sutapa S, Anilkumar, Bishnu C M, Awadhesh K, Nutan M, Shuvendu S M,Soumya K S. Mapping genetic determinants for grain physicochemical and nutritional traits in brown and pigmented rice using genome-wide association analysis. Euphytica, 2023, 219(5): 57 [百度学术]
张名位,赖来展,杨雄. 中国黑米种质资源的评价与利用研究进展. 湖北农学院学报,1995,15(4): 310-318 [百度学术]
Zhang M W, Lai L Z, Yang X. Research progress on evaluation and utilization of black rice germplasm resources in China. Journal of Hubei Agricultural University, 1995, 15(4): 310-318 [百度学术]
马先红,许海侠,韩昕纯. 黑米的营养保健价值及研究进展. 食品工业,2018,39(3): 264-267 [百度学术]
Ma X H, Xu H X, Han X C. Nutritional and health value of black rice and research progress. Food Industry, 2018, 39(3): 264-267 [百度学术]
游俊梅,陈惠查,阮仁超. 贵州黑糯米种质资源性状评价. 广东农业科学,2006(8): 3-4,76 [百度学术]
You J M, Chen H C, Ruan R C. Evaluation on germplasm resources and traits of black glutinous rice in Guizhou. Guangdong Agricultural Sciences, 2006 (8): 3-4,76 [百度学术]
吴邦琮. 黑糯141亩产400斤群体结构及栽培技术. 耕作与栽培,1993(1): 47-48 [百度学术]
Wu B Z. Population structure and cultivation technique of black glutinous rice 141 with a yield of 400 catties per mu. Tillage and Cultivation, 1993(1): 47-48 [百度学术]
杨忠义,曹永生,苏艳,卢义轩,刘晓莉,李华惠. 云南作物资源特征特性及生态地理分布研究I. 云南地方稻种资源中特种稻资源. 植物遗传资源学报,2006,7(3): 331-337 [百度学术]
Yang Z Y, Cao Y S, Su Y, Lu Y X, Liu X L, Li H H. Study on characteristics and ecogeographical distribution of crop resources in Yunnan I. Special rice resources among local rice resources in Yunnan. Journal of Plant Genetic Resources, 2006, 7(3): 331-337 [百度学术]
郑兴飞,董华林,高艳琼,费震江,李珍连,游艾青,张兴中,徐得泽. 我国红米资源研究进展与开发前景. 农业科技通讯,2019(6): 4-6 [百度学术]
Zheng X F, Dong H L, Gao Y Q, Fei Z J, Li Z L, You A Q, Zhang X Z, Xu D Z. Research progress and development prospect of red rice resources in China. Agricultural Science and Technology Bulletin, 2019 (6): 4-6 [百度学术]
游俊梅,陈惠查,金桃叶,阮仁超. 贵州有色稻米种质资源的评价和利用. 种子,1998 (4): 52-54,67 [百度学术]
You J M, Chen H C, Jin T Y, Ruan R C. Evaluation and utilization of colored rice germplasm resources in Guizhou. Seed, 1998 (4): 52-54,67 [百度学术]
黎毛毛,余丽琴,付军如,彭小松,朱昌兰,贺晓鹏,熊玉珍,贺浩华. 江西红米稻种资源主要农艺性状及营养特性分析与评价. 植物遗传资源学报,2008,9(4): 480-484 [百度学术]
Li M M, Yu L Q, Fu J R, Peng X S, Zhu C L, He X P, Xiong Y Z, He H H. Analysis and evaluation of main agronomic traits and nutritional characteristics of red rice seed resources in Jiangxi province. Journal of Plant Genetic Resources, 2008, 9(4): 480-484 [百度学术]
徐清宇,余静,朱大伟,郑小龙,孟令启,朱智伟,邵雅芳. 基于主成分分析和聚类分析的不同水稻品种营养品质评价研究. 中国稻米,2022,28(6): 1-8 [百度学术]
Xu Q Y, Yu J, Zhu D W, Zheng X L, Meng L Q, Zhu Z W, Shao Y F. Study on nutritional quality evaluation of different rice varieties based on principal component analysis and cluster analysis. China Rice, 2022, 28(6): 1-8 [百度学术]
于玲,刘志敏,曾海英,吕桂方,许雯雯. 不同大米营养价值分析. 现代食品,2020,12(24): 183-186 [百度学术]
Yu L, Liu Z M, Zeng H Y, Lv G F, Xu W W. Analysis of nutritional value of different rice. Modern Food, 2020, 12(24): 183-186 [百度学术]
赵芸卉,李海洋,徐姗娜,马玉凤. 洋县五彩稻米的营养成分测定. 现代农业科技,2016,(12): 289-290 [百度学术]
Zhao Y H, Li H Y, Xu S N, Ma Y F. Determination of nutrient composition of colored rice in Yangxian County. Modern Agricultural Science and Technology, 2016, (12): 289-290 [百度学术]
师江,李倩,李维峰,陈云兰,黄艳丽,刘兴勇. 不同产地紫米营养成分比较及其相关性分析. 热带作物学报,2022,43(11): 2324-2333 [百度学术]
Shi J, Li Q, Li W F, Chen Y L, Huang Y L, Liu X Y. Comparison and correlation analysis of nutritional components of purple rice from different producing areas. Journal of Tropical Crops, 2022, 43(11): 2324-2333 [百度学术]
Pradipta S, Ubaidillah M, Siswoyo T A. Physicochemical, functional and antioxidant properties of pigmented rice. Current Research in Nutrition and Food Science Journal, 2020, 8(3): 837-851 [百度学术]
Fitri I G S, Nurhasanah, Handoyo T. Genetic and phytochemical analysis of Indonesian black rice cultivars. Journal of Crop Science and Biotechnology, 2021, 24(5): 567-578 [百度学术]
Oki T, Masuda M, Kobayashi M, Nishiba Y, Furuta S, Suda I, Sato T. Polymeric procyanidins as radical-scavenging components in red-hulled rice. Journal of Agricultural and Food Chemistry, 2002, 50(26): 7524-7529 [百度学术]
王艳龙,陈进,韩豪,李新生,黄重,张选明,沙志鸿. 黑米花青苷药理学作用研究进展. 大麦与谷类科学,2016,33(3): 5-8 [百度学术]
Wang Y L, Chen J, Han H, Li X S, Huang Z, Zhang X M, Sha Z H. Advances in pharmacologic effects of black rice anthocyanin. Barley and Cereal Science, 2016, 33(3): 5-8 [百度学术]
Ling W H, Wang L L, Ma J. Supplementation of the black rice outer layer fraction to rabbits decreases atherosclerotic plaque formation and increases antioxidant status. The Journal of Nutrition, 2002, 132(1): 20-26 [百度学术]
Kong S, Lee J. Antioxidants in milling fractions of black rice cultivars. Food Chemistry, 2010, 120(1): 278-281 [百度学术]
熊艳珍,黄紫萱,马慧琴,程建峰. 黑米的营养功能及综合利用研究进展. 食品工业科技,2021,42(7): 408-415 [百度学术]
Xiong Y Z, Huang Z X, Ma H Q, Cheng J F. Research progress on nutritional function and comprehensive utilization of black rice. Science and Technology of Food Industry, 2021, 42(7): 408-415 [百度学术]
Ziegler V, Ferreira C D, Hoffmann J F, Chaves F C, Vanier N L, Oliveira M, Elias M C. Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months. Food Chemistry, 2018, 242: 427-434 [百度学术]
Ding C, Liu Q, Li P, Pei Y, Tao T, Wang Y, Yan W, Yang G, Shao X. Distribution and quantitative analysis of phenolic compounds in fractions of Japonica and Indica rice. Food Chemistry, 2019, 274: 384-391 [百度学术]
Dipti S S, Bergman C, Indrasari S D, Herath T, Hall R, Lee H, Habibi F, Bassinello P Z, Graterol E, Ferraz J P, Fitzgerald M. The potential of rice to offer solutions for malnutrition and chronic diseases. Rice, 2012, 5(1): 16 [百度学术]
Shen Y, Jin L, Xiao P, Lu Y, Bao J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science, 2009, 49(1): 106-111 [百度学术]
Wang H, Liu D, Ji Y, Liu Y, Xu L, Guo Y. Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high-fat and cholesterol diet. Molecular Nutrition & Food Research, 2020, 64(8): 1900876 [百度学术]
Kopec A, Zawistowski J, Kitts D D. Benefits of anthocyanin-rich black rice fraction and wood sterols to control plasma and tissue lipid concentrations in wistar kyoto rats fed an atherogenic diet. Molecules, 2020, 25(22): 5363 [百度学术]
Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. The Plant Cell, 2005, 17(11): 2966-2980 [百度学术]
Gunaratne A, Wu K, Li D, Bentota A, Corke H, Cai Y Z. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chemistry, 2013, 138(23): 1153-1161 [百度学术]
Praphasawat R, Palipoch S, Suwannalert P, Payuhakrit W, Kunsorn P, Laovitthayanggoon S, Thakaew S, Munkong N, Klajing W. Red rice bran extract suppresses colon cancer cells via apoptosis induction/cell cycle arrest and exerts antimutagenic activity. Experimental Oncology, 2023, 45(2): 220-230 [百度学术]
Hosoda K, Sasahara H, Matsushita K, Tamura Y, Miyaji M, Matsuyama H. Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1213 [百度学术]
Park J Y, Oh S H, Han S I, Lee Y Y, Lee B W, Ham H, Choi Y H, Oh S K, Cho J H, Song Y C. Starch structure and physicochemical properties of colored rice varieties. Korean Journal of Crop Science, 2016, 61(3): 153-162 [百度学术]
Yang X, Ye Z Q, Shi C H, Zhu M L, Graham R D. Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains. Journal of Plant Nutrition, 1998, 21(7): 1453-1462 [百度学术]
Koh H J, Won Y J, Wan G W, Heu M H. Varietal variation of pigmentation and some nutritive characteristics in colored rices. Korean Journal of Crop Science, 1996, 41(5): 600-607 [百度学术]
Seo W D, Kim J Y, Han S I, Ra J E, Lee J H, Song Y C, Park M J, Kang H W, Oh S K, Jang K C. Relationship of radical scavenging activities and anthocyanin contents in the 12 colored rice varieties in Korea. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54: 693-699 [百度学术]
Chen X, Yang Y, Yang X, Zhu G, Lu X, Jia F, Diao B, Yu S, Ali A, Zhang H, Xu P, Liao Y, Sun C, Zhou H, Liu Y, Wang Y, Zhu J, Xiang Q, Wu X. Investigation of flavonoid components and their associated antioxidant capacity in different pigmented rice varieties. Food Research International, 2022, 161: 111726 [百度学术]
Batubara I, Maharni M, Sadiah S. The potency of white rice (Oryza sativa), black rice (Oryza sativa L. indica), and red rice (Oryza nivara) as antioxidant and tyrosinase inhibitor// Margareta Rahayuningsih. Journal of Physics: Conference Series. IOP Publishing:Zaenuri, 2017: 012017 [百度学术]
Zhang L, Cui D, Ma X, Han B, Han L. Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics. Food Chemistry, 2023, 15(399): 133926 [百度学术]
Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2004, 39(3):366-380 [百度学术]
Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell, 2001, 13(9): 2099-2114 [百度学术]
Liu Y, Lin-Wang K, Espley R V, Wang L, Yang H, Yu B, Dare A, Varkonyi-Gasic E, Wang J, Zhang J, Wang D, Allan A C. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany, 2016, 67(8): 2159-2176 [百度学术]
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 2015, 20(3): 176-185 [百度学术]
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465-2483 [百度学术]
Zheng J, Wu H, Zhu H, Huang C, Liu C, Chang Y, Kong Z, Zhou Z, Wang G, Lin Y, Chen H. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytologist, 2019, 223(2): 705-721 [百度学术]
Meng L, Qi C, Wang C, Wang S, Zhou C, Ren Y, Cheng Z, Zhang X, Guo X, Zhao Z, Wang J, Lin Q, Zhu S, Wang H, Wang Z, Lei C, Wan J. Determinant factors and regulatory systems for anthocyanin biosynthesis in rice apiculi and stigmas. Rice, 2021, 14(1): 37 [百度学术]
Zheng J, Wu H, Zhao M, Yang Z, Zhou Z, Guo Y, Lin Y, Chen H. OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice. Molecular Breeding, 2021, 41(8): 51 [百度学术]
Luo J, Huang W, Yan J, Fang Z, Ren M. The GzMYB-7D1 gene of Guizimai No.1 wheat is essential for seed anthocyanins accumulation and yield regulation. Plant Science, 2022, 320: 111293 [百度学术]
Sweeney M T, Thomson M J, Pfeil B E, McCouch S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell, 2006, 18(2): 283-294 [百度学术]
Li S, Zachgo S. TCP 3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. The Plant Journal, 2013, 76(6): 901-913 [百度学术]
Chen M H, Pinson S R M, Jackson A K, Edwards J D. Genetic loci regulating the concentrations of anthocyanins and proanthocyanidins in the pericarps of purple and red rice. The Plant Genome, 2023, 16(2): 20338 [百度学术]
Zhou Z, Li H, Wei R, Li D, Lu W, Weng Z, Yang Z, Guo Y, Lin Y, Chen H. RNA-seq reveals transcriptional differences in anthocyanin and vitamin biosynthetic pathways between black and white rice. Gene, 2022, 844: 146845 [百度学术]
Li B, Jia Y, Xu L, Zhang S, Long Z, Wang R, Guo Y, Zhang W, Jiao C, Li C, Xu Y. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. Plant Biotechnology Journal,2024, 22(5):1282-1298 [百度学术]
Yamsaray M, Sreewongchai T, Phumichai C, Chalermchaiwat P. Yield and nutritional properties of improved red pericarp Thai rice varieties. Science Asia, 2023, 49(2): 155-160 [百度学术]
Soonsuwon W, Chadakan N, Ali A, Nualsri C. Improving yield components and overall yield in M2-M4 phenotypic mutants, induced by {EMS}, of upland red rice (Oryza sativa L.) cv. Dawk Kha 50. Science Asia, 2023, 49(4): 491-496 [百度学术]
Lu Y, Zuo Z, Yang Z. Toward breeding pigmented rice balancing nutrition and yield. Trends in Plant Science, 2023, 6(23): 1360-1385 [百度学术]
吴九根,张文胜. 特种稻黑糯178的选育及米质分析. 广东农业科学, 1994 (6): 5-7 [百度学术]
Wu J G, Zhang W S. Breeding and rice quality analysis of special rice Heinuo 178. Guangdong Agricultural Science, 1994 (6): 5-7 [百度学术]
Shi T, Gao Y, Xu A, Wang R, Lyu M, Sun Y, Chen L, Liu Y, Luo R, Wang H, Liu J. A fast breeding strategy creates fragrance- and anthocyanin-enriched rice lines by marker-free gene-editing and hybridization. Molecular Breed, 2023, 43(4): 23 [百度学术]
Lu Y, Zuo Z, Yang Z. Toward breeding pigmented rice balancing nutrition and yield. Trends in Plant Science, 2023, (23): 1360-1385 [百度学术]
Jia Y, Gealy D. Weedy red rice has novel sources of resistance to biotic stress. The Crop Journal, 2018, 6(5): 443-450 [百度学术]
Bryant R, Proctor A, Hawkridge M, Jackson A, Yeater K, Counce P, Yan W, McClung A, Fjellstrom R. Genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. Genetica, 2011, 139(11-12): 1383-1398 [百度学术]
Sathe A P, Kumar A, Mandlik R, Raturi G, Yadav H, Kumar N, Shivaraj S M, Jaswal R, Kapoor R, Gupta S K, Sharma T R, Sonah H. Role of silicon in elevating resistance against sheath blight and blast diseases in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2021, 166: 128-139 [百度学术]
Deepa K, Pillai M A, Murugesan N. Biochemical bases of resistance to brown planthopper (Nilaparvata lugens)(Stal) in different rice accessions. Agricultural Science Digest-A Research Journal, 2016, 36(2): 102-105 [百度学术]
Pati P, Jena M, Bhattacharya S, Behera S K, Pal S, Shivappa R, Dhar T. Biochemical defense responses in red rice genotypes possessing differential resistance to brown planthopper, Nilaparvata lugens (Stal). Insects, 2023, 14(7): 632 [百度学术]
Mustikarini E D, Ardiarini N R, Basuki N, Kuswanto. The improvement of early maturity red rice mutant trait for drought tolerance. International Journal of Plant Biology, 2017, 7(1): 6345 [百度学术]
朱二,陈汉明,李江英,杨红雁,黑二,李小波. 云南省有色稻米产量潜力和抗病性初探. 农业技术与装备,2021(11): 4 [百度学术]
Zhu E, Chen H M, Li J Y, Yang H Y, Hei E, Li X B. Yield potential and disease resistance of colored rice in Yunnan province. Agricultural Technology and Equipment, 2021(11): 4 [百度学术]
Kasim N, Musa Y, Mustari K, Syaiful S A, Riadi M, Sjahril R, Ahyani N. Screening of eight mutants of Sinjai lokal red rice (Oryza sativa) to salinity stress// Krasae Chanawongse. IOP Conference Series: Earth and Environmental Science. Makassar,In donesia:IOP Publishing, 2020: 012089 [百度学术]
Liu Y, Qi X, Gealy D R, Olsen KM, Caicedo AL, Jia Y. QTL analysis for resistance to blast disease in US weedy rice. Molecular Plant-Microbe Interactions, 2015, 28(7): 834-844 [百度学术]
韦剑思,林莹. 黑米营养和部分功能成分特性及综合应用研究进展. 广西农学报,2022,37(6): 86-94 [百度学术]
Wei J S, Lin Y. Research progress on nutritional and functional components of black rice and their comprehensive application. Guangxi Journal of Agronomy, 2022, 37(6): 86-94 [百度学术]
郝艳萍,李军辉,朱克庆. 红米的超微加工及其开发利用. 粮食加工,2020,45(4): 40-43 [百度学术]
Hao Y P, Li J H, Zhu K Q. Ultramicro processing of red rice and its development and utilization. Grain Processing, 2020, 45(4): 40-43 [百度学术]
Kumari R, Gupta M. Characterization of black rice (Oryza sativa L.) incorporated rusk for physicochemical, functional properties, in-vitro starch digestibility, and anti-inflammatory efficacy. Journal of the Science of Food and Agriculture, 2024,104(5):2610-2620 [百度学术]