摘要
玉米籽粒氮含量与品质紧密相关,其遗传机制的解析对玉米品质育种具有重要意义。本研究以252份玉米自交系为关联群体,利用贝叶斯信息与连锁不平衡迭代嵌套式模型(BLINK,bayesian-information and linkage-disequilibrium iteratively nested keyway)、固定随机循环概率模型(FarmCPU,fixed and random model circulating probability unification)、一般线性模型(GLM,general linear model)、混合线性模型(MLM,mixed linear model)、多位点混合线性模型(MLMM,multiple loci mixed model)和逐步排它性混合线性模型(SUPER,settlement of MLM under progressively exclusive relationship)等方法分别对其籽粒氮含量进行全基因组关联分析。共鉴定到13个与籽粒氮含量显著关联的SNP(P<3.64E-07)。BLINK、FarmCPU、GLM、MLM、MLMM和SUPER方法分别检测到6个、3个、7个、4个、2个和4个SNP位点。其中,S3_8879213在5种方法中均能检测到,S9_146173702在4种方法中均能检测到,S5_114774030和S7_182217338在3种方法中均能检测到,S1_10906326和S1_177528813 在2种方法中均能检测到。共挖掘25个相关候选基因,其中Zm00001eb275080和Zm00001eb330700可能是影响玉米籽粒氮含量的重要候选基因。
玉米(Zea mays L.)作为我国第一大作物,在粮食、饲料和加工等行业发挥重要作用,有效保障国民经济和粮食安
玉米籽粒氮含量是受多基因控制的数量性状,挖掘相关性状QTL是解析其遗传机制的重要基础。Hirel小组利用重组自交系群体,分别对玉米氮效率的相关酶、籽粒产量及氮含量(籽粒、秸秆、整株等)等性状进行遗传分析,发现许多生理性状及产量性状的QTL与氮含量相关基因存在共定
玉米种质资源是新品种选育的物质基础,不同基因型玉米种质资源的籽粒蛋白质含量间存在显著差
试验采用的关联群体来源于本课题组收集和自选材料,其中包括国内优异自交系107份,国外过保护期自交系132份,优异自选系13份,共252份。于2022年夏季分别种植在河南省农业科学院基地(河南新乡原阳)和周口郸城县农业科学研究所基地(河南周口郸城)。采用随机区组试验设计,2行区,双粒播,行距60 cm,株距25 cm,每行15株,3个重复。
于收获期连续收获每个小区每个穗行中部植株果穗3穗,自然晾干,脱取每个果穗的中部籽粒,混合均匀后粉碎。基于本课题组前期构建的近红外籽粒氮浓度预测模型,每份样品选取5 g,利用赛默飞傅立叶变换近红外光谱仪(Antaris II)测定关联群体材料2个环境3个重复的籽粒氮浓度,并乘以多重复单籽粒重的平均值,计算籽粒氮含量。利用Microsoft Excel 2010整理数据,IBM SPSS 20.0进行基本描述、方差等表型性状数据分析。
采用GBS(Genotyping by sequencing)简化测序的方法对252份自交系进行基因型分型,测序仪为Illumina HiSeq PE150,双端测序。利用BWA软件比对到B73(RefGen V5)版参考基因组(https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-57/plants/gff3/zea_mays/Zea_mays.Zm-B73-REFERENCE-NAM-5.
0.57.chr.gff3.gz)。采用SAMTOOLS软件进行群体SNP的检测,以缺失率小于0.10、杂合率小于0.10、最小等位基因频率大于0.05为筛选标准,共获得137492个高质量SNP用于全基因组关联分
利用GAPIT(Genome associated prediction integrated tool)软件包完成6种不同模型的2个环境下关联群体平均籽粒氮含量的全基因组关联分析,分别为贝叶斯信息与连锁不平衡迭代嵌套式模型(BLINK, bayesian-information and linkage-disequilibrium iteratively nested keyway)、固定随机循环概率模型(FarmCPU,fixed and random model circulating probability unification)、一般线性模型(GLM,general linear model)、混合线性模型(MLM,mixed linear model)、多位点混合线性模型(MLMM,
multiple loci mixed model)和逐步排它性混合线性模型(SUPER, settlement of MLM under progressively
exclusive relationship),显著临界值设置为P=0.05/137492=3.64E-07。
采用玉米籽粒氮含量显著性SNP位点上下游各50 kb的区段用于该位点候选基因预测(参照B73(RefGenV5)基因组序列信息),区段内候选基因筛选和功能注释通过MaizeGDB数据库(https://maizegdb.org/)完成,并利用DAVID数据库(https://david.ncifcrf.gov/)在线进行GO和KEGG富集分析。候选基因在缺氮和施氮处理下的基因表达谱分析数据引自PRJNA587226 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA587226),并利用R语言heatmap包,K-means聚类方式作图。
2个环境下关联群体籽粒氮含量结果表明,其变异范围在3.03~9.31 mg之间,不同自交系籽粒氮含量间存在广泛的遗传变异。从直方图的拟合曲线上来看,在2个环境条件下,关联群体籽粒氮含量均符合正态分布(

图1 不同环境籽粒氮含量频次分布
Fig. 1 Frequency distribution of grain nitrogen content in different environments
利用6种不同的全基因组关联分析方法,对2个环境的玉米关联群体籽粒氮含量进行SNP显著位点挖掘,共检测到13个与籽粒氮含量显著关联的SNP位点(
SNP名称 SNP name | 染色体 Chr. | 位置(bp) Position | 方法 Methord | 环境 Environment | P值 P value | 候选基因 Candidate gene |
---|---|---|---|---|---|---|
S1_10906326 | 1 | 10906326 | BLINK | 郸城 | 4.74E-09 | Zm00001eb003910,Zm00001eb003920,Zm00001eb003930 |
FarmCPU | 2.61E-15 | |||||
S1_177528813 | 1 | 177528813 | GLM | 郸城 | 1.50E-07 | Zm00001eb031710,Zm00001eb031700,Zm00001eb031720 |
SUPER | 1.88E-08 | |||||
S2_26621756 | 2 | 26621756 | BLINK | 原阳 | 1.62E-10 | Zm00001eb076310 |
S3_8879213 | 3 | 8879213 | BLINK | 原阳 | 4.39E-14 | Zm00001eb121990,Zm00001eb122000,Zm00001eb121920 |
GLM | 4.50E-09 | |||||
MLM | 4.13E-09 | |||||
MLMM | 7.52E-09 | |||||
SUPER | 7.76E-08 | |||||
S3_224090740 | 3 | 224090740 | GLM | 郸城 | 3.11E-08 | Zm00001eb159780 |
S4_221605237 | 4 | 221605237 | GLM | 郸城 | 9.00E-08 | Zm00001eb202470 |
S5_61436895 | 5 | 61436895 | BLINK | 原阳 | 2.13E-12 | Zm00001eb227670,Zm00001eb227680,Zm00001eb227690 |
S5_114774030 | 5 | 114774030 | GLM | 原阳 | 5.93E-08 | Zm00001eb235460 |
MLM | 7.08E-08 | |||||
SUPER | 1.79E-08 | |||||
S6_106080325 | 6 | 106080325 | SUPER | 原阳 | 4.82E-09 | Zm00001eb275080 |
S7_182217338 | 7 | 182217338 | BLINK | 原阳 | 3.69E-11 | Zm00001eb330680,Zm00001eb330700,Zm00001eb330710,Zm00001eb330690,Zm00001eb330720 |
GLM | 3.91E-08 | |||||
MLM | 4.16E-08 | |||||
S8_158491327 | 8 | 158491327 | FarmCPU | 郸城 | 8.29E-08 | Zm00001eb361270 |
S9_70909760 | 9 | 70909760 | BLINK | 原阳 | 5.87E-08 | Zm00001eb383670 |
S9_146173702 | 9 | 146173702 | FarmCPU | 郸城 | 1.86E-07 | Zm00001eb397820 |
GLM | 7.65E-08 | |||||
MLM | 1.89E-07 | |||||
MLMM | 7.63E-09 |
其中位于第1号染色体标记S1_10906326和S1_177528813、第3号染色体的标记S3_8879213、第5号染色体标记S5_114774030、第7号染色体标记S7_182217338和第9号染色体标记S9_146173702在多种方法中均能检测到,为主效SNP位点(

图2 原阳籽粒氮含量显著SNP的曼哈顿图和QQ图
Fig. 2 Manhattan plots and quantile-quantile plots for significant SNP for grain nitrogen content in Yuanyang

图3 郸城籽粒氮含量显著SNP的曼哈顿图和QQ图
Fig. 3 Manhattan plots and quantile-quantile plots for significant SNP for grain nitrogen content in Dancheng
根据检测到的13个显著SNP位点,共挖掘到25个籽粒氮含量相关候选基因(

图4 GO通路富集分析
Fig. 4 GO enrichment analysis

图5 KEGG通路富集分析
Fig. 5 KEGG enrichment analysis
其中,第1号染色体Bin1.01区域候选基因Zm00001eb003910(lbd1)编码LBD转录因子1;Zm00001eb003920(rtcs1)编码RTCS LOB结构域蛋白;Zm00001eb003930(pco140232)编码类HR病斑诱导蛋白。Bin1.05区域候选基因Zm00001eb031700(arftf34)编码ARF转录因子34。第3号染色体Bin3.03区域候选基因Zm00001eb121990(IDP7678)编码1-氨基环丙烷-1-羧酸氧化酶;Zm00001eb122000(uaz277(201))编码F-box结构域蛋白;Zm00001eb121920(si946086a04)编码多核苷酸5'-羟基激酶NOL9。Bin3.09区域Zm00001eb159780(cenpc1)编码着丝粒蛋白C1。第5染色体Bin5.09区域候选基因Zm00001eb227670(ppr288)编码五肽重复蛋白288。第6号染色体Bin6.02区域候选基因Zm00001eb275080(wrky114)编码WRKY转录因子114。第7号染色体Bin7.05区域候选基因Zm00001eb330680(bzip58)编码bZIP转录因子58;Zm00001eb330700编码液泡分选受体1;Zm00001eb330710(wrky17)编码WRKY转录因子17;Zm00001eb330690(abi32)编码休眠调节蛋白;Zm00001eb330720编码E3泛素蛋白连接酶。第9号染色体Bin9.06区域候选基因Zm00001eb397820(kao2)编码异贝壳杉烯酸氧化酶2。
基于氮响应转录组数据进行候选基因预测,发现Zm00001eb275080和Zm00001eb330700这2个候选基因对氮处理表现出极显著的表达水平差
候选基因 Candidate genes | 缺氮1 Nitrogen deficiency 1 | 缺氮2 Nitrogen deficiency 2 | 缺氮3 Nitrogen deficiency 3 | 施氮1 Nitrogen application1 | 施氮2 Nitrogen application2 | 施氮3 Nitrogen application3 | 倍性变化 Fold change | P值 P_value |
---|---|---|---|---|---|---|---|---|
Zm00001eb003910 | 4.39 | 4.45 | 4.62 | 2.61 | 2.64 | 2.53 | 0.58 | 0.00 |
Zm00001eb003920 | 2.36 | 1.87 | 2.06 | 1.57 | 1.02 | 1.75 | 0.69 | 0.03 |
Zm00001eb031710 | 2.49 | 1.22 | 2.63 | 2.28 | 2.18 | 0.99 | 0.86 | 0.37 |
Zm00001eb031700 | 0.97 | 1.19 | 0.00 | 0.00 | 0.47 | 1.45 | 0.89 | 0.46 |
Zm00001eb031720 | 0.97 | 0.55 | 1.08 | 1.58 | 1.65 | 1.71 | 1.90 | 0.02 |
Zm00001eb121990 | 4.02 | 3.55 | 4.18 | 5.42 | 5.51 | 5.46 | 1.39 | 0.01 |
Zm00001eb122000 | 4.35 | 3.89 | 4.54 | 4.30 | 4.20 | 4.25 | 1.00 | 0.48 |
Zm00001eb121920 | 4.33 | 3.69 | 4.41 | 4.21 | 3.83 | 3.96 | 0.97 | 0.25 |
Zm00001eb159780 | 2.18 | 1.61 | 2.37 | 2.38 | 2.19 | 2.14 | 1.09 | 0.26 |
Zm00001eb202470 | 1.91 | 1.08 | 1.71 | 1.95 | 2.07 | 1.96 | 1.27 | 0.14 |
Zm00001eb227670 | 0.88 | 0.26 | 0.89 | 0.09 | 0.61 | 0.64 | 0.66 | 0.28 |
Zm00001eb227680 | 1.53 | 1.16 | 1.71 | 1.97 | 1.58 | 1.56 | 1.16 | 0.17 |
Zm00001eb227690 | 4.31 | 4.83 | 4.72 | 4.46 | 4.09 | 4.32 | 0.93 | 0.17 |
Zm00001eb235460 | 4.55 | 4.50 | 4.66 | 4.01 | 4.23 | 4.02 | 0.89 | 0.03 |
Zm00001eb275080 | 1.17 | 0.73 | 0.87 | 5.02 | 5.25 | 5.09 |
5.5 | 0.00 |
Zm00001eb330680 | 2.99 | 2.17 | 0.00 | 3.21 | 3.41 | 3.15 | 1.89 | 0.11 |
Zm00001eb330700 | 0.57 | 0.26 | 0.41 | 2.90 | 2.62 | 2.74 |
6.6 | 0.00 |
Zm00001eb330710 | 3.48 | 3.00 | 3.57 | 3.91 | 4.02 | 3.95 | 1.18 | 0.05 |
Zm00001eb330690 | 3.61 | 2.04 | 3.47 | 4.09 | 4.12 | 4.09 | 1.35 | 0.09 |
Zm00001eb330720 | 1.64 | 0.64 | 2.53 | 3.00 | 3.20 | 3.05 | 1.93 | 0.06 |
Zm00001eb383670 | 5.70 | 6.33 | 5.96 | 5.26 | 5.21 | 5.16 | 0.87 | 0.03 |
Zm00001eb397820 | 4.42 | 3.74 | 4.46 | 5.66 | 5.66 | 5.67 | 1.35 | 0.01 |
倍性变化指不同处理间的差异倍数
Fold change refers to the multiple of differences between different treatments

图6 候选基因在缺氮和施氮处理下的基因表达谱
Fig. 6 Gene expression profiles of candidate genes under nitrogen deficiency and nitrogen application treatments
Def.:缺氮处理;N.:施氮处理;1~3为重复
Def.:Nitrogen deficiency treatment; N.:Nitrogen application treatment;1-3 indicates repetition
籽粒氮含量(蛋白质含量)是影响玉米品质的重要性状之一,深入研究其遗传机制对于玉米品质育种具有重要意义。不同基因型玉米种质资源籽粒氮含量间存在显著差
本研究利用BLINK、FarmCPU、GLM、MLM、MLMM和SUPER方法共发现13个与籽粒氮含量显著关联的SNP(P<3.64E-07),主要分别分布于染色体Bin1.01、Bin1.05、Bin3.03、Bin3.09、Bin4.09、Bin5.09、Bin6.02、Bin7.05和Bin9.06等区间。其中,Bin3.03区间内的位点S3_8879213在GLM、MLM、BLINK、SUPER和MLMM方法中均能检测到,Bin9.03区间内位点S9_146173702在GLM、MLM、FarmCPU和MLMM方法中均能检测到,Bin5.09区间内位点S5_114774030在GLM、MLM和SUPER方法中均能检测到,Bin7.05区间内位点S7_182217338在GLM、MLM和BLINK方法中均能检测到,Bin1.01区间内位点S1_10906326在BLINK和FarmCPU方法中均能检测到,Bin1.05区间内位点S1_177528813在GLM和SUPER方法中均能检测到。推测这6个区间为重要的籽粒氮含量基因组区间,而区间内位点S3_8879213、S9_146173702、S5_114774030、S7_18221733、S1_10906326和S1_177528813可能是控制籽粒氮含量的重要位点。但是6种全基因组关联分析方法,在2个不同试验点间未定位到共同的SNP位点。
本研究共挖掘玉米籽粒氮含量相关候选基因25个,其中,Zm00001eb121990、Zm00001eb122000、Zm00001eb121920、Zm00001eb397820、Zm00001eb330680、Zm00001eb330700、Zm00001eb330710、Zm0000 1eb031720、Zm00001eb031730、Zm00001eb330690、Zm00001eb330720、Zm00001eb003910、Zm00001eb003920和Zm00001eb003930为不同方法共定位SNP位点区间内发现的候选基因。候选基因Zm00001eb121990主要参与乙烯生物合成途径,Caicedo
为了进一步筛选到与玉米氮代谢过程相关度较高的候选基因,本研究通过比较25个候选基因在经过硝酸盐补充处理后的表达水平,发现候选基因Zm00001eb275080和Zm00001eb330700的表达水平存在显著变化。其中Zm00001eb275080编码wrky114转录因子,有报道推测WRKY转录因子可能参与水稻氮源调节过
参考文献
戴景瑞, 鄂立柱. 百年玉米, 再铸辉煌-中国玉米产业百年回顾与展望. 农学学报, 2018,8 (1): 83-88 [百度学术]
Dai J R, E L Z. From the past centennial progress to more brilliant achievements in the future: The history and prospects of maize industrialization in china. Journal of Agriculture, 2018, 8(1): 83-88 [百度学术]
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959 [百度学术]
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959 [百度学术]
Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 2005, 86: 83-145 [百度学术]
Hirel B, Bertin P, Quillere´ I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology, 2001, 125(3): 1258-1270 [百度学术]
Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. Journal of Experimental Botany, 2004, 55(396): 295-306 [百度学术]
Hirel B, Le Gouis J, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 2007, 58(9): 2369-2387 [百度学术]
Coque M, Martin A, Veyrieras J B, Hirel B, Gallais A. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theoretical and Applied Genetics, 2008, 117(5): 729-747 [百度学术]
Wassom J J, Wong J C, Martinez E, King J J, DeBaene J, Hotchkiss J R, Mikkilineni V, Bohn M O, Rocheford T R. QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois high Oil × B73 backcross-derived lines. Crop Science, 2008, 48(1): 243-252 [百度学术]
Zhang H D, Jin T T, Huang Y Q, Chen J T, Zhu L Y, Zhao Y F, Guo J J. Identification of quantitative trait loci underlying the protein, oil and starch contents of maize in multiple environments. Euphytica, 2015, 205:169-183 [百度学术]
Yang Z, Li X, Zhang N, Jiang H W, Gao J, Kuai B K, Ding Y L, Huang X Q. Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross. Genetics and Molecular Research, 2016, 15(3):1-10 [百度学术]
赵志鑫, 崔婷婷, 何坤辉, 兰天茹, 常立国, 刘建超.多环境下玉米籽粒品质性状的QTL定位.农业生物技术学报,2018, 26(12): 2027-2035 [百度学术]
Zhao Z X, Cui T T, He K H, Lan T R, Chang L G, Liu J C. Mapping QTL for grain quality traits in maize (Zea mays) under multi-environments. Journal of Agricultural Biotechnology, 2018, 26(12): 2027-2035 [百度学术]
李冉冉,张秀英,李婷,杨炳鹏,于芮苏,李冬梅,李勤,徐淑兔. 不同授粉方式下玉米籽粒品质性状的QTL定位. 西北农林科技大学学报,2021,49(11):115-124 [百度学术]
Li R R, Zhang X Y, Li T, Yang B P, Yu R S, Li D M, Li Q, Xu S T. QTL mapping of maize grain quality under different pollination methods. Journal of Northwest A&F University, 2021, 49(11):115-124 [百度学术]
张静, 王彩红, 赵永锋, 祝丽英, 黄亚群, 郭晋杰, 陈景堂. 玉米种质资源子粒容重和品质性状差异性分析. 植物遗传资源学报, 2016, 17(5): 832-839 [百度学术]
Zhang J, Wang C H, Zhao Y F, Zhu L Y, Huang Y Q, Guo J J, Chen J T. Difference analysis of kernel test weight and nutritional quality traits in maize (Zea mays L.) germplasm resources. Journal of Plant Genetic Resources, 2016, 17(5):832-839 [百度学术]
杨露. 玉米籽粒品质性状的全基因组关联分析. 郑州: 河南农业大学, 2020 [百度学术]
Yang L. Genome-wide association analysis of quality traits in maize kernels. Zhengzhou: Henan Agricultural University, 2020 [百度学术]
赵海军,史佳晴,王彬,郭益洋,胡小丽,韩赞平. 150 份玉米自交系籽粒及其品质性状的综合评价.河南农业科学, 2023, 52(5): 33-39 [百度学术]
Zhao H J, Shi J Q, Wang B, Guo Y Y, Hu X L, Han Z P. Comprehensive evaluation of grain and its quality traits of 150 maize inbred lines. Journal of Henan Agricultural Sciences, 2023, 52(5): 33-39 [百度学术]
马娟, 王利锋, 曹言勇, 李会勇. 玉米出籽率全基因组关联分析.植物遗传资源学报,2021,22 (2):448-454 [百度学术]
Ma J, Wang L F, Cao Y Y, Li H Y. Genome-wide association studies for kernel ratio in maize. Journal of Plant Genetic Resources, 2021,22(2):448-454 [百度学术]
Jia T J, Wang L F, Li J J, Ma J, Cao Y Y, Lübberstedt T, Li H Y. Integrating a genome‑wide association study with transcriptomic analysis to detect genes controlling grain drying rate in maize (Zea may L.) . Theoretical and Applied Genetics, 2020,133:623-634 [百度学术]
Wang Y C, Xu J Y, Ge M, Ning L H, Hu M M, Zhao H. High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize. BMC Genomics, 2020, 21(1):353 [百度学术]
Caicedo M, Munaiz E D, Malvar R A, Jiménez J C, Ordas B. Precision mapping of a maize MAGIC population identified a candidate gene for the senescence-associated physiological traits. Frontiers in Genetics, 2021, 12:716821 [百度学术]
Heindl K, Martinez J. Nol9 is a novel polynucleotide 5′-kinase involved in ribosomal RNA processing. The EMBO Journal, 2010, 29(24): 4161-4171 [百度学术]
Hu S, Wang C, Sanchez D L, Lipka A E, Liu P, Yin Y, Blanco M, Lübberstedt T. Gibberellins promote brassinosteroids action and both increase heterosis for plant height in maize (Zea mays L.) . Frontiers in Plant Science, 2017, 8:1039 [百度学术]
Nelissen H, Rymen B, Jikumaru Y, Demuynck K, Van Lijsebettens M, Kamiya Y, Inzé D, Beemster GT. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Current Biology, 2012, 22(13):1183-1187 [百度学术]
崔荣秀, 张议文, 陈晓倩, 谷彩红, 张荃. 植物bZIP参与胁迫应答调控的最新研究进展.生物技术通报, 2019, 35(2):143-155 [百度学术]
Cui R X, Zhang Y W, Chen X Q, Gu C H, Zhang Q. The latest research progress on the stress responses of bZIP involved in plants. Biotechnology Bulletin , 2019, 35(2):143-155 [百度学术]
Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. Journal of Experimental Botany, 2013, 64(11):3453-3466 [百度学术]
Basnet B, Khanal S. Quantitative trait loci and candidate genes for iron and zinc bio-fortification in genetically diverse germplasm of maize (Zea mays L.): A systematic review. Heliyon, 2022, 8(12): e12593 [百度学术]
Wang Z Y, Gehring C, Zhu J H, Li F M, Zhu J K, Xiong L M. The Arabidopsis vacuolar sorting receptor1 is required for osmotic stress-induced abscisic acid biosynthesis. Plant Physiology, 2015, 167:137-152 [百度学术]
Lin J W, Li S K, Liang G Y, Liu M L, Jin T C, Qu Z W, Li H G, Chen S S, Li C, Zhang A, Ruan Y Y, Cui Z H. Genetic basis of maize ear angle revealed by high-density single nucleotide polymorphism markers in four recombinant inbred line populations. Euphytica, 2020, 216: 132 [百度学术]
黄幸, 丁峰, 彭宏祥, 潘介春, 何新华, 徐炯志, 李琳. 植物WRKY转录因子家族研究进展. 生物技术通报, 2019, 35(12):129-143 [百度学术]
Huang X, Ding F, Peng H X, Pan J C, He X H, Xu J Z, Li L. Research progress on family of plant WRKY transcription factors. Biotechnology Bulletin 2019, 35(12):129-143 [百度学术]
Xiong W D, Wang Y J, Guo Y Z, Tang W, Zhao Y R, Yang G F, Pei Y H, Chen J T, Song X Y, Sun J. Transcriptional and metabolic responses of maize shoots to long-term potassium deficiency. Frontiers in Plant Science, 2022, 13:922581 [百度学术]
Zeng R, Li Z Y, Shi Y T, Fu D Y, Yin P, Cheng J K, Jiang C F, Yang S H. Natural variation in a type-A response regulator confers maize chilling tolerance. Nature Communications, 2021, 12(1):4713 [百度学术]
Jia Z T, Giehl R F H, Hartmann A, Estevez J M, Bennett M J, von Wirén N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Current Biology, 2023, 33(18):3926-3941 [百度学术]
Wang S, Guo T, Wang Z, Kang J, Yang Q, Shen Y, Long R. Expression of three related to ABI3/VP1 genes in Medicago truncatula caused increased stress resistance and branch increase in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11:611 [百度学术]
Brühl J, Trautwein J, Schäfer A, Linne U, Bouazoune K. The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics Chromatin, 2019, 12(1):52 [百度学术]
Xu C, Luo F, Hochholdinger F. LOB domain proteins: Beyond lateral organ boundaries. Trends in Plant Science, 2016, 21(2):159-167 [百度学术]
Du X M, Fang T, Liu Y, Wang M, Zang M S, Huang L Y, Zhen S H, Zhang J, Shi Z C, Wang G Y, Fu J J, Liu Y J. Global profiling of
Shuai B, Reynaga-Peña C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiology, 2002, 129(2):747-761 [百度学术]
Xu C Z, Tai H H, Saleem M, Ludwig Y, Majer C, Berendzen K W, Nagel K A, Wojciechowski T, Meeley R B, Taramino G, Hochholdinger F. Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shoot-borne root formation. New Phytologist, 2015, 207(4):1123-1133 [百度学术]
Taramino G, Sauer M, Stauffer J L, Multani D, Niu X, Sakai H, Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. The Plant Journal, 2007, 50(4): 649-659 [百度学术]
Jiang X, Cui H T, Wang Z, Kang J M, Yang Q C, Guo C H. Genome-wide analysis of the LATERAL ORGAN BOUNDARIES Domain (LBD) members in alfalfa and the involvement of MsLBD48 in nitrogen assimilation. International Journal of Molecular Science, 2023, 24(5):4644 [百度学术]
Chen Q Y, Liu Z P, Wang B B, Wang X F, Lai J S, Tian F. Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize. Plant Cell Reports, 2015, 34(10):1761-1771 [百度学术]
Yu C, Chen H M, Tian F, Bi Y M, Rothstein J S, Leach E J, He C Y. Identification of differentially-expressed genes of rice in overlapping responses to bacterial infection by Xanthomonas oryzae pv. oryzae and nitrogen deficiency. Journal of Integrative Agriculture, 2015, 14(5): 888-899 [百度学术]