摘要
花香和花色是花卉作物重要的观赏性状,是决定花卉品质、影响花卉经济价值的关键因素,因此,培育花色丰富、花香怡人的花卉新品种长期以来都是园艺工作者的主要育种目标。香雪兰作为球根切花品种的代表,其花朵颜色鲜艳、香气怡人,是研究植物花色花香的良好材料。本文综述了香雪兰花色花香合成代谢通路以及转录调控的研究进展,重点介绍了控制香雪兰花色苷合成的关键结构基因FhCHS1、FhDFR、Fh3GT、Fh5GT和萜类物质合成的关键结构基因FhTPS1~FhTPS14,此外还介绍了野生种TPS基因的天然等位基因变体序列之间的微小氨基酸差异驱动的酶的催化活性和产物特异性,为阐明花香种间遗传差异奠定了基础。花色苷的合成除了受到结构基因的调控,也受到MYB-bHLH-WD40的调控,花香的合成则受到FhMYB21L2和FhMYC2的调控,此外FhMYB21L2协同调控了黄酮醇合酶基因FhFLS2的表达,最后展望了花色苷和萜类物质合成的潜在应用前景。
在植物的演化过程中,花器官是重要的性状变革,极大地促进了被子植物的繁荣。为了保证有性繁殖,被子植物进化出了复杂的花部器官特征,如花色、花香、花型和花蜜等,这些特征通常被称为传粉综合
花色是观赏植物最重要的特征之一,一般来说,花朵中的色素可分为叶绿素(Chlorophyll)、类黄酮(Flavonoid)、类胡萝卜素(Carotenoid)和甜菜碱(Betaine
花香的起源是生物进化中的一个重要事件,花香作为吸引传粉者的嗅觉信号,通过介导植物与传粉者互作影响物种形成,是被子植物繁荣的重要驱动
香雪兰(Freesia hybrida),又名小苍兰,是鸢尾科(Iridaceae)香雪兰属(Freesia klatt)的多年生草本植物,Klat
香雪兰因其花色鲜艳、香气宜人受到广泛喜爱。其花朵颜色多种多样,花色最早采用皇家园艺学会比色卡对其进行描述,通过对白色、橙黄色、紫红和蓝紫色系的香雪兰花色进行检测,结果表明香雪兰花色大致包含白色、橙色、红色、蓝色、紫

图1 不同花色香雪兰的园艺种和野生种
Fig.1 Horticultural and wild species of fragrant snow orchids of different flower colors
Freessia vridis:野生种;其余的都为园艺种Freessia vridis:Wild species;The rest are horticultural species

图2 香雪兰Red Rive
Fig.2 The main floral color and floral scent detected in the flower organs of Red Rive
此外,经过百余年的驯化,香雪兰的花香仍然得以留存,以栽培种香雪兰Red Rive
在过去的几十年里,以矮牵牛(Petunia hybrida)、金鱼草(Antirrhinum majus L.)、拟南芥(Arabidopsis thaliana)等双子叶和玉米(Zea mays)等单子叶植物为模型,解析了花青素的生物合成途

图3 香雪兰Red Rive
Fig.3 Anthocyanin anabolic pathway of Red Rive
Phenylalanine:苯丙氨酸;Cinnamic acid:肉桂酸; p-Coumaric acid:对香豆酸;p-Coumaroyl-CoA:香豆酰辅酶A;Malonyl-COA:丙二酰辅酶A; Naringenin chalcone:柚皮素查尔酮;Naringenin:柚皮素; Eriodictyol:圣草酚; Dihydrokaempferol:二氢山奈酚; Flavonol:黄酮醇; Dihydroquercetin:二氢槲皮素; Dihydromyricetin:二氢杨梅素; Leucodelphinidin:无色飞燕草素; Leucopelargonidin:无色天竺葵素; Leucocyanidin:无色矢车菊素; Delphinidin:飞燕草素; Cyanidin:矢车菊素; Delphinidin-3-glucoside:飞燕草素-3-O-葡萄糖苷; Cyanidin-3-glucoside:矢车菊素-3-O-葡萄糖苷; Malvidin-3-glucoside:锦葵素-3-O-葡萄糖苷; Petunidin-3-glucoside:矮牵牛素-3-O-葡萄糖; Peonidin-3-glucoside:芍药素-3-O-葡萄糖苷;PAL:苯丙氨酸解氨酶;C4H:肉桂酸4-羟氢化酶;4CL:4香豆酰辅酶A连接酶;CHS:查耳酮合酶;CHI:查耳酮异构酶;F3H:黄烷酮3-羟化酶;F3'H:黄烷酮3'-羟化酶;F3'5'H:黄酮-3',5'-羟基化酶;DFR:二氢黄酮醇还原酶;LDOX:无色花青素双加氧酶;3GT:类黄酮3-O-葡萄糖基转移酶;MT:甲基转移酶
查耳酮合酶是催化类黄酮生物合成途径中的第1个关键限速酶。多重序列比对表明,FhCHS1氨基酸序列中发现了保守的查耳酮合酶活性位点残基和查耳酮合酶特征序列。体外异源表达FhCHS1恢复了拟南芥 tt4 突变体种皮、子叶和下胚轴的色素沉着表型,过表达FhCHS1的转基因矮牵牛花色从白色变为粉红色。综上FhCHS1基因在香雪兰黄酮类化合物的生物合成中发挥着重要作
相比于花色苷合成通路的上游结构基因,下游结构基因发挥着更重要的作用,其中二氢黄酮醇-4-还原酶作为NADPH依赖型还原酶超家族的一员,在花青素生物合成途径起关键作用。二氢黄酮醇-4-还原酶是一种关键的氧化还原酶,迄今为止,已从多种双子叶植物中分离出二氢黄酮醇还原酶基因,例如百脉根(Lotus japonicus
花青素往往以糖苷的形式稳定地储存在液泡中,因此糖基化对花青素的合成至关重要。花青素糖苷通常是由UDP-类黄酮糖基转移酶(UFGT,uridine diphosphate glycosyltransferase)催化合成的。 在香雪兰中首先分离得到了编码UDP-类黄酮糖基转移酶的基因Fh3GT1,初步证明其参与花青素3-O-葡萄糖苷的生物合成。Fh3GT1可以识别多种类黄酮底物,UDP-葡萄糖和UDP-半乳糖都可以作为Fh3GT1糖基供体,但是Fh3GT1催化UDP-半乳糖的活性相对较低。此外,Fh3GT1能够以糖依赖性方式在3-、4-'和7-位上糖基化飞燕草素。将Fh3GT1基因引入拟南芥UGT78D2突变体后,因类黄酮3-O-葡萄糖基转移酶功能丧失而导致突变体中的花青素和黄酮醇无法积累的表型得以成功恢复,表明Fh3GT1在体内作为类黄酮3-O-葡萄糖基转移酶发挥作用。此外,矮牵牛稳转实验结果也表明,Fh3GT1的过表达上调了矮牵牛类黄酮合成途径相关基因的表达。 这些结果表明,Fh3GT1是一种使用UDP-葡萄糖作为糖基供体的类黄酮3-O-糖基转移酶,可能参与香雪兰中的类黄酮的糖基化修
此外,花青素的糖基化和黄酮醇的糖基化可能是由不同的3-O-葡萄糖基转移酶控制的,Fh3GT1的表达模式和酶学特征与黄酮醇的积累并不能很好地吻合,因此从香雪兰中克隆出了Fh3GT1的旁系同源基因Fh3GT2、Fh3GT3、Fh3GT4,进一步实验证明只有Fh3GT2具有催化活性,并且Fh3GT2主要催化山奈酚糖基化,而Fh3GT1主要催化槲皮素和花青素的糖基化。原生质体瞬时转染实验表明,Fh3GT2可以被调控黄酮醇表达的转录因子FhMYBF1和调控花青素表达的转录因子FhPAP1激活,而Fh3GT1只能被FhPAP1激活。综上,香雪兰3-O-葡萄糖苷转移酶功能出现了一定程度的分
除了花青素,类胡萝卜素在香雪兰的着色也发挥着辅助作用,藏红花醛和藏红花素也是类胡萝卜素的衍生物,具有许多重要的应用价值。藏红花醛赋予藏红花辛辣的香气,可用作食用香
除了上述结构基因外,植物中类黄酮生物合成所涉及的转录调控机制也得到了广泛的研究。3个不同的转录因子基因家族,包括R2R3-MYB、碱性螺旋-环-螺旋(bHLH,basic Helix-Loop-Helix)和WD40重复序列(WD40),组成一个调节类黄酮代谢的蛋白复合物,称为MBW复合
对香雪兰的WD40基因(命名为 FhTTG1)进行克隆与功能鉴定。FhTTG1可以与FhbHLH蛋白(FhTT8L和FhGL3L)相互作用,构成MBW复合物。此外,还发现FhTTG1向细胞核的运输依赖于FhbHLH转录因子。当FhTTG1与MYB和bHLH共转染时,可以显著激活花青素或原花青素生物合成相关基因启动子,这表明FhTTG1作为MBW复合体的成员来控制香雪兰中花青素、原花青素以及毛状体的生物合
FhPAP1基因分别在香雪兰、拟南芥和烟草中过表达时,可以激活ABG以及TT8 进化枝FhTT8L、AtTT8和NtAN1基因的表达,并且FhPAP1可以与FhTT8L和FhTTG1相互作用形成保守的MBW复合物,与来自拟南芥的直系同源物共享相似的靶基因。不同的是,FhPAP1比拟南芥和烟草中的同源物表现出更高的反式激活能力,这体现在其对ABG基因的强激活作用上。此外,还发现FhPAP1可能是野生香雪兰物种驯化和快速进化过程中被选择的基因,用以产生强烈的花朵色素沉着。虽然MBW复合物的功能在单子叶植物和核心双子叶植物之间高度保守,但MYB转录因子的激活能力存在差异,并在被子植物的花色驯化和进化中发挥重要作
在MBW复合体中,MYB转录因子通常起着特异性调控花色的作用,MYB转录因子可以分为MYB激活子和MYB抑制子两类,二者通过MBW复合物形成一个激活抑制的反馈调控网络来平衡花色苷的含量(

图4 香雪兰Red Rive
Fig.4 Transcriptional regulation of anthocyanin synthesis of Red Rive
W:FhTTG1蛋白;B:FhTT8L蛋白;绿色椭圆M:FhPAP1蛋白;紫色椭圆M:FhMYB27蛋白;蓝色椭圆M:FhMYB蛋白;箭头均表示激活作用,粉色表示以MBW复合物发挥功能,绿色表示以FhPAP1单独发挥作用;短线表示抑制作用
W: FhTTG1 protein;B: FhTT8L protein;Green elliptical M: FhPAP1 protein;Purple elliptical M: FhMYB27 protein;Blue elliptical M: FhMYBx protein;The arrows indicate activation,pink indicates the function of MBW complex, green indicates the function of FhPAP1 alone;Short lines indicate inhibition
除了FhPAP1, FhMYB5也可以促进花青素和原花青素的合成,香雪兰原生质体单独转染FhMYB5时,晚期类黄酮生物合成基因(例如FhDFR和FhLDOX)略有上调,而当 FhMYB5与FhTT8L或FhGL3L共转染时,早期和晚期类黄酮生物合成基因均显着上调。此外,FhMYB5在烟草和拟南芥中的过表达也可以显着上调类黄酮途径相关基因的表
萜类化合物具有异戊二烯的结构单元,由两种常见的五碳前体即异戊烯焦磷酸(IPP, isopentenyl pyrophosphate)及其同分异构体二甲基烯丙基二磷酸(DMAPP,dimethylallyl diphosphate)构成(

图5 萜类物质合成代谢通路
Fig.5 Terpenoid anabolic pathway
Acetyl-CoA:乙酰辅酶A;Acetoacety-CoA:乙酰乙酰辅酶A;HMG-CoA:3-羟基-3-甲基戊二酸单酰辅酶A还原酶;Mevalonate:甲羟戊酸;MVP:甲羟戊酸-5-磷酸;MVPP:甲羟戊酸-5-二磷酸;IPP:异戊烯基焦磷酸;DMAPP:二甲基烯丙基焦磷酸;FPP:法呢基二磷酸;Sesquiterpenes:倍半萜烯;Pyruvate:丙酮酸;G3P:甘油醛-3-磷酸;DXP:1-脱氧-木酮糖-5-磷酸;MEP:2C-甲基-D-赤藓醇-4-磷酸;CDP-ME:4-二磷酸胞苷-2-C-甲基赤藓;CDP-MEP:4-二磷酸胞苷-2-C-甲基-D-赤藓醇-2-磷酸;MECDP:2C-甲基-D-赤藓醇环二磷酸;HMBPP:1- 羟基-2-甲基-2-(E)-丁烯基 4-二磷酸;GGPP:香叶基香叶基二磷酸;GPP:香叶基二磷酸;Carotenoids:类胡萝卜素;Monoterpenes:单萜;Volatile carotenoid Derivatives:挥发性类胡萝卜素衍生物;AACT:乙酰乙酰CoA硫解酶;HMGS:羟甲基戊二酰CoA合酶;HMGR:羟甲基戊二酰CoA还原酶;MK:MVA激酶;PMK:二氧磷基MVA激酶;MPD:MVA焦磷酸脱羧酶;DXS:脱氧木酮糖-5-磷酸合酶;DXR:脱氧木酮糖磷酸盐还原异构酶;CMS:4-二磷酸胞苷-2-C-甲基-D-赤藓醇合酶;CMK:4-二磷酸胞苷-2-C-甲基赤藓糖激酶;MCS:2-甲基赤藓糖-2,4-环二磷酸合酶;HDS:1-羟基-2-甲基-2-(E)-丁烯基4-二磷酸合酶;IPK: 异戊烯基单磷酸激酶;IDI: 异戊烯基二磷酸异构酶;IDS:异戊二烯二磷酸合酶;FPPS:法呢基二磷酸合酶;GPPS: 香叶基二磷酸合酶;GGPPS: 香叶基香叶基二磷酸合酶;TPS: 萜烯合酶;红色字体代表催化反应的酶,实线箭头表示直接催化,虚线箭头表示间接催化
The red font represents the enzyme that catalyzed the reaction, the solid arrow indicates direct catalysis, and the dotted arrow indicates indirect catalysis
根据序列和功能的相关性,TPS基因家族在系统发育上分为7个亚家族(TPS-a~TPS-h
除了香雪兰栽培种外,对8种野生种香雪兰的TPS基因进行了功能鉴定,并深入地研究了主要TPS等位基因以及关键氨基酸残基的功能。如

图6 野生种香雪兰萜类物质合成代谢通路(稍有改动
Fig.6 Anabolic pathway of terpenoids in the wild species of the Freesia genus (Slight changes)
E-nerolidol:E-橙花叔醇;α-gurjunene:α-古芸烯;α-bergamotene:α-香柠檬烯;α-selinene:α-芹子烯;α-copaene:α-蒎烯;β-caryophyllene:β-石竹烯;(+)-△-cadinene:(+)-△-杜松烯;(Z)-β-ocimene:(Z)-β-柠檬烯;γ-terpinene:γ-松油烯;Myrcene:月桂烯;Linalool:芳樟醇;Nerol:橙花醇;Geraniol:牻牛儿醇;α-terpineol:α-松油醇;Sabinene:烩烯;(1R)-(+)-α-pinene:右旋α-蒎烯;CCDs:类胡萝卜素裂解双加氧酶;紫色箭头表示花香成分为倍半萜,蓝色箭头表示花香成分为类胡萝卜素衍生物,绿色箭头表示花香成分为单萜;实线箭头表示直接催化,虚线箭头表示间接催化,短线表示不能催化;黄色横线代表FfeTPS6蛋白,绿色横线代表FcoTPS6蛋白;花朵比例尺长度为1 cm
The purple arrow indicates that the floral component is sesquiterpens, the blue arrow indicates that the floral component is carotenoid derivatives, the green arrow indicates that the floral component is monoterpens, the solid arrow indicates direct catalysis, the dotted arrow indicates indirect catalysis, and the short line indicates that it cannot be catalyzed, the yellow horizontal line represents FfeTPS6 protein, the green horizontal line represents FcoTPS6 protein, and the length of the flower scale bar is 1 cm
上述结果完善了香雪兰植物中的花香基因资源,对野生植物物种中TPS基因的功能多样性和进化提出了新的见解,证明TPS基因的天然变体序列之间的微小氨基酸差异驱动了酶的催化活性和产物特异性,为阐明花香种间的遗传差异奠定了基础。此外,经过功能验证的TPS蛋白以及关键氨基酸位点的鉴定也将有助于建立具有芳香气味的花卉品
芳樟醇是香雪兰花香中含量最丰富的成分,而芳樟醇的形成由单萜合酶FhTPS1催化。以往的研究表明,调控TPS基因表达的转录因子种类众多,如MY

图7 FhMYB21L2与FhMYC2协同调控香雪兰FhTPS1和FhFLS2模式图
Fig.7 FhMYB21L2 and FhMYC2 synergistically regulate FhTPS1 and FhFLS2 patterns of Sycophantasia
通过对不同野生种与园艺种的花色与花香的检测和鉴定,王丽
我国是世界上众多花卉的起源和分布中心,然而大部分花卉品种依赖于进口。用基因编辑等分子育种手段,缩短驯化周期、加快育种进程,是实现我国花卉种业快速发展的有效途径。基因编辑技术育种依赖于重要性状形成机制的解析,而花香、花色是花卉作物重要的观赏性状,其多样性决定了花卉作物的品质和经济价值。研究表明,花卉植物在驯化和进化的历程中,花香和花色经常呈现协同变化的规律,表明了二者之间可能存在的复杂的内在联系。挥发性萜类物质、花色苷和类胡萝卜素是植物界广泛存在的影响花香、花色形成的最重要的色香物质,要想厘清花香、花色之间的协同变化机制,可以从阐释3类色香物质生物合成的协同调控机制入手。近年来,上述3类色香物质的合成和调控机制一直是植物分子生物学和观赏园艺领域的研究焦点,然而大部分工作都是单独聚焦个别物质开展,难以解释其控制的花香花色的协同变化机制。因此,需要寻找一种代表性观赏花卉研究并揭示花香花色协同形成的调控机制,为利用基因编辑技术进行花卉作物新品种培育提供靶点。
香雪兰作为单子叶球根草本花卉,目前已建立了组织和细胞水平的瞬时转化体
参考文献
Amrad A, Moser M, Mandel T, de Vries M, Schuurink R C, Freitas L, Kuhlemeier C. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Current Biology, 2016, 26 (24): 3303-3312 [百度学术]
Chandler S F, Brugliera F. Genetic modification in floriculture.Biotechnology Letters, 2011, 33(2): 207-211 [百度学术]
Maleka M F, Albertyn J, Spies J J. The floriculture industry and flower pigmentation. Philosophical Transactions in Genetics, 2013, 2: 55-110 [百度学术]
Davies K M, Schwinn K E. Molecular biology and biotechnology of flower pigments. In Plant Developmental Biology - Biotechnological Perspectives, 2010, 2: 161-187 [百度学术]
黎洁, 李霆格, 王童欣, 王健. 植物花青素和甜菜色素互斥机理研究进展. 植物遗传资源学报, 2023, 24(6): 1515-1526 [百度学术]
Li J, Li T G, Wang T X, Wang J. Review of the mutually exclusive mechanism between the anthocyanins and betalains pigments in plants. Journal of Plant Genetic Resource,2023, 24(6): 1515-1526 [百度学术]
Zhou X W, Fan Z Q, Chen Y, Zhu Y L, Li J Y, Yin H F. Functional analyses of a flavonol synthaselike gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation. Journal of Biosciences, 2013, 38: 593-604 [百度学术]
Huits H S, Cerats A C, Kreike M M. Cenetic control of dihydroflavonol 4-reductase gene expression in Petuniahybrida. The Plant Journal, 1994, 6(3): 295 -310 [百度学术]
Bieza K, Lois R. An arabidopsis mutant tolerant to lethal ultraviole-B levels shows constitutively elevaled accumulation offlavonoids and other phenolics. Plant Physiology, 2001, 126(3): 1105-1115 [百度学术]
Mo Y, Nacel C, Taylor L P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols infunctional pollen. Proceedings of the National Academy of Science of the USA, 1992, 89(15): 7213-7217 [百度学术]
范文广, 柴佳靖, 李保豫, 田亚琴, 田辉, 任海伟, 白鹏, 潘香逸. 百合花青苷分子调控研究进展. 植物遗传资源学报, 2023, 24(5): 1236-1247 [百度学术]
Fan W G, Chai J J, Li B Y, Tian Y Q, Tian H, Ren H W, Bai P, Fan X Y. Advances in molecular regulation of anthocyanin biosynthesis in Lilium. Journal of Plant Genetic Resources,2023, 24(5): 1236-1247 [百度学术]
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62: 2465-2483 [百度学术]
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18: 477-483 [百度学术]
Morita Y, Takagi K, Fukuchi-Mizutani M, Ishiguro K, Tanaka Y, Nitasaka E, Nakayama M, Saito N, Kagami T, Ilda S. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. The Plant Journal, 2014, 78: 294-304 [百度学术]
Mol J, Jenkins G, Schafer E, Weiss D, Walbot V. Signal per-ception, transduction, and gene expression involved in anthocyanin biosynthesis.Critical Reviews in Plant Sciences,1996,15:525-557 [百度学术]
Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions.Plant Signaling & Behavior, 2015,10(1):e970440 [百度学术]
杜丹妮, 张超, 高树林, 董丽. 低温对牡丹切花花色和花青素苷合成的影响. 植物遗传资源学报, 2016, 17(2): 295-302 [百度学术]
Du D N, Zhang C, Gao S L, Dong L. Effect of low temperature on flower color and anthocyanin biosynthesis in Tree Peony(paeonia suffruticosa) 'Luoyang Hong' cut Flower. Journal of Plant Genetic Resources, 2016, 17(2): 295-302 [百度学术]
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesisin plants. Current Opinion in Plant Biology,2014,19:81-90 [百度学术]
Ji X H, Wang Y T, Zhang R, Wu S J, An M M, Li M, Wang C Z,Chen X L, Zhang Y M, Chen X S. Effect of auxin,cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of redfleshed apple (Malus sieversii f. niedzwetzkyana).Plant Cell, Tissue and Organ Culture, 2015,120:325-337 [百度学术]
Lewis D R, Ramirez M V, Miller N D, Vallabhaneni P, Ray K W, Helm R F, Winkel B S, Muday G K. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.Plant Physiology, 2011,156(1):144-164 [百度学术]
Han J, Li T, Wang X, Zhang X, Bai X, Shao H, Wang S, Hu Z, Wu J, Leng P. AmMYB24 regulates floral terpenoid biosynthesis induced by blue light in snapdragon flowers. Frontiers in Plant Science, 2022, 13:885168 [百度学术]
Jakobsen H B, Olsen C E. Influence of climatic factors on emission of flower volatiles in situ. Planta,1994,192:365-371 [百度学术]
Klatt F W. Revisio Iridearum: Freesia Eckl. Linnaea,1866,34:672-674 [百度学术]
Brown N E. Freesia Klatt and its history. Journal of South African Botany,1935, 1: 1-31 [百度学术]
Burman N L. Flora Indica: Cui accedit series zoophytorum indicorum, nec non prodromus florae capensis.Prodromus florae capensis. Amsterdam: Cornelius Haak,Leiden, 1768:937-942 [25] Klatt F W. Freesia leichtlinii F. W. Klatt. Gartenflora ,1874, 23: 289-290 [百度学术]
Wongchaochant S, Inamoto K, Doi M. Analysis of flower scent of Freesia species and cultivars. Acta Horticulturae, 2005, 673: 595-601 [百度学术]
Manning J C, Goldblatt P, Duncan G D, Forest F, Kaiser R, Tatarenko I. Botany and horticulture of the genus Freesia (Iridaceae). Strelitzia 27. South African National Biodiversity Institute, Pretoria,2010: 114 [百度学术]
Ryndin A V, Kulyan R V, Slepchenko N A.Subtropical and flower crops breeding at the Subtropical Scientific Centre. Vavilovskii Zhurnal Genet Selektsii, 2021, 25(4): 420-432 [百度学术]
徐怡倩, 袁媛, 陶秀花, 杨娟, 失益敏, 唐东芹. 小苍兰花瓣主要花色苷组分研究. 植物研究, 2016, 36(2): 184-189 [百度学术]
Xu Y Q, Yuan Y, Tao X H, Yang J, Shi Y M, Tang D Q. Main anthocyanin profiles in petals of Freesia hybrida. Bulletin of Botanicaal Research, 2016, 36(2): 184-189 [百度学术]
Sun W, Liang L, Meng X Y, Li Y Q, Gao F, Liu X, Wang S C, Gao X, Wang L. Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida. Frontiers in Plant Science, 2016, 7: 410 [百度学术]
Zhu J , Guo X , Li X , Tang D Q. Composition of flavonoids in the petals of Freesia and prediction of four novel transcription factors involving in Freesia flavonoid pathway. Frontiers in Plant Science, 2021, 12: 2539-2539 [百度学术]
Tang D L, Sun Y, Li X, Yan Z, Shi Y M. De novo sequencing of the Freesia hybrida petal transcriptome to discover putative anthocyanin biosynthetic genes and develop EST-SSR markers. Acta Physiologiae Plantarum, 2018, 40: 168 [百度学术]
Gao F, Liu B, Li M, Gao X, Fang Q, Liu C, Ding H, Wang L, Gao X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia× hybrida. Journal of Experimental Botany, 2018, 69: 4249-4265 [百度学术]
林榕燕, 钟淮钦, 黄敏玲, 罗远华, 林兵. 小苍兰品种花香成分分析.福建农业学报, 2016, 31(11): 1216-1220 [百度学术]
Lin R Y, Zhong H Q, Huang M L, Luo Y H, Lin B.Aromatics in Flowers of Freesia hybrida. Fujian Journal of Agricultural Sciences, 2016, 31(11): 1216-1220 [百度学术]
Weng S, Fu X, Gao Y, Liu T, Sun Y, Tang D. Identification and evaluation of aromatic volatile compounds in 26 cultivars and 8 hybrids of Freesia hybrida.Molecules, 2021, 26(15): 4482 [百度学术]
Srinivasan A , Ahn M S , Jo G S , Jo J N, Seo K H, Kim W H, Kang Y I, Lee Y R, Choi Y J. Analysis of relative scent intensity, volatile compounds and gene expression in Freesia "Shiny Gold". Plants, 2020, 9(11): 1597 [百度学术]
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 2011, 181: 219-229 [百度学术]
Pourcel L, Bohorquez-Restrepo A, Irani N G, Grotewold E. Anthocyanin biosynthesis, regulation, and transport: New insights from model species. Recent Advances in Polyphenol Research, 2012, 3: 143-160 [百度学术]
Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 1995, 7: 1071-1083 [百度学术]
Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology, 2001, 12: 155-160 [百度学术]
Nakatsuka A, Izumi Y, Yamagish M. Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the Asiatic hybrid lily. Plant Science, 2003, 165: 759-767 [百度学术]
蒋会兵, 夏丽飞, 田易萍, 戴伟东, 孙云南, 陈林波.基于转录组测序的紫芽茶树花青素合成相关基因分析. 植物遗传资源学报, 2018, 19(5): 967-978 [百度学术]
Jiang H B, Xia L F, Tian Y P, Dai W D, Sun Y N, Chen L B, Transcriptome analysis of anthocyanin synthesis related genes in purple Bud Tea Plant. Journal of Plant Genetic Resources, 2018, 19(5): 967-978 [百度学术]
Martens S, Mithöfer A. Flavones and flavone synthases. Phytochemistry, 2005, 66: 2399-2407 [百度学术]
Yoshida K, Iwasaka R, Shimada N, Ayabe S I, Aoki T, Sakuta M. Transcriptional control of the dihydroflavonol 4-reductase multigene family in Lotus japonicus. Journal of Plant Research, 2010, 123: 801-805 [百度学术]
Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L. Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. Public Library of Science ONE, 2015, 10(3): e0119054 [百度学术]
Shimada N, Sasaki R, Sato S, Kaneko T, Tabata S, Aoki T, Ayabe S. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. Journal of Experimental Botany, 2005, 56: 2573-2585 [百度学术]
Singh K, Kumar S, Yadav S K, Ahuja P S. Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]. Plant Biotechnology Reports, 2009, 3: 95-101 [百度学术]
Xie D Y, Jackson L A, Cooper J D, Ferreira D, Paiva N L. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiology, 2004, 134: 979-994 [百度学术]
Fischer T C, Halbwirth H, Meisel B, Stich K, Forkmann G. Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Archives of Biochemistry and Biophysics, 2003, 412: 223-230 [百度学术]
Lo Piero A R, Puglisi I, Petrone G. Gene characterization, analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from Citrus sinensis (L.) Osbeck. Phytochemistry, 2006, 67(7): 684-695 [百度学术]
Wang H, Fan W, Li H, Yang J, Huang J, Zhang P. Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. Public Library of Science ONE, 2013, 8(11): e78484 [百度学术]
Cheng H, Li L, Cheng S, Cao F, Xu F, Yuan H,Wu C, Eugene A P. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway. Public Library of Science ONE, 2013, 8(8): e72017 [百度学术]
Huang Y, Gou J, Jia Z, Yang L, Sun Y, Xiao X, Song F, Luo K, Brett N. Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa. Public Library of Science ONE, 2012, 7: e30364 [百度学术]
Li Y, Liu X, Cai X, Shan X, Gao R, Yang S, Han T, Wang S, Wang L, Gao X. Dihydroflavonol 4-Reductase genes from Freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids. Frontiers in Plant Science, 2017, 8: 428 [百度学术]
Sun W, Meng X, Liang L, Li Y, Zhou T, Cai X, Wang L, Gao X. Overexpression of a Freesia hybrida flavonoid 3-O-glycosyltransferase gene, Fh3GT1, enhances transcription of key anthocyanin genes and accumulation of anthocyanin and flavonol in transgenic petunia (Petunia hybrida). In Vitro Cellular & Developmental Biology-Plant, 2017, 53(5): 478-488 [百度学术]
Meng X, Li Y, Zhou T, Sun W, Shan X, Gao X, Wang L. Functional differentiation of duplicated flavonoid 3-o-glycosyltransferases in the flavonol and anthocyanin biosynthesis of Freesia hybrida. Frontiers in Plant Science, 2019, 10: 1330 [百度学术]
Ju Z, Sun W, Meng X Y, Liang L J, Li Y Q, Zhou T T, Shen H, Gao X, Wang L. Isolation and functional characterization of two 5-o-glucosyltransferases related to anthocyanin biosynthesis from Freesia hybrida. Plant Cell, Tissue and Organ Culture, 2018, 135: 99-110 [百度学术]
Caballero-Ortega H , Pereda-Miranda R , Abdullaev F I .HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry, 2007, 100(3): 1126-1131 [百度学术]
Frusciante S , Diretto G , Bruno M , Ferrante B, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 2014, 111(33): 12246-12251 [百度学术]
He S Y, Qian Z Y, Wen N, Tang F T, Xu G L, Zhou C H. Influence of Crocetin on experimental atherosclerosis in hyperlipidamic-diet quails. European Journal of Pharmacology, 2007, 12;554(2-3):191-5 [百度学术]
Nam K N, Park Y M, Jung H J, Lee J Y, Min B D, Park S U, Jung W S, Cho K H, Park J H, Kang I, Hong J W, Lee E H. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. European Journal of Pharmacology, 2010, 648(1-3): 110-616 [百度学术]
Bie X, Chen Y, Zheng X, Dai H. The role of crocetin in protection following cerebral contusion and in the enhancement of angiogenesis in rats. Fitoterapia, 2011, 82(7): 997-1002 [百度学术]
Fang Q, Li Y, Liu B, Meng X, Yang Z, Yang S, Bao T, Kimani S, Gao X, Wang L. Cloning and functional characterization of a carotenoid cleavage dioxygenase 2 gene in safranal and crocin biosynthesis from Freesia hybrida. Plant Physiology and Biochemistry, 2020, 154: 439-450 [百度学术]
Ma D, Constabel C P. MYB repressors as regulators of phenylpropanoid metabolism in Plants. Trends in Plant Science. 2019, 24(3): 275-289 [百度学术]
Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant Journal, 2004, 39(3): 366-380 [百度学术]
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal, 2008, 53(5): 814-827 [百度学术]
Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta, 2013, 1829(11): 1236-1247 [百度学术]
Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytologist, 2014, 202(1): 132-144 [百度学术]
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483 [百度学术]
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 2015, 20(3): 176-185 [百度学术]
Li Y, Shan X, Gao R, Yang S, Wang S, Gao X, Wang L. Two IIIf clade-bHLHs from Freesia hybrida play divergent roles in flavonoid biosynthesis and trichome formation when ectopically expressed in Arabidopsis. Scientific Reports, 2016, 6: 30514 [百度学术]
Shan X, Li Y, Yang S, Gao R, Zhou L, Bao T, Han T, Wang S, Gao X, Wang L. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana. Plant Physiology and Biochemistry,2019, 141: 60-72 [百度学术]
Li Y, Shan X, Tong L, Wei C, Lu K, Li S, Kimani S, Wang S, Wang L, Gao X. The Conserved and particular roles of the R2R3-MYB regulator FhPAP1 from Freesia hybrida in flower anthocyanin biosynthesis. Plant and Cell Physiology, 2020, 61(7): 1365-1380 [百度学术]
Li Y, Shan X, Gao R, Han T, Zhang J, Wang Y, Kimani S, Wang L, Gao X. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Communications Biology, 2020, 3(1): 396 [百度学术]
Li Y, Shan X, Zhou L, Gao R, Yang S, Wang S, Wang L, Gao X. The R2R3-MYB factor FhMYB5 from Freesia hybrida contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis. Frontiers in Plant Science, 2019, 9: 1935 [百度学术]
Kitaoka N, Lu X, Yang B, Peters R J. The application of synthetic biology to elucidation of plant mono-, sesqui- and diterpenoid metabolism. Molecular Plant, 2015, 8(1): 6-16 [百度学术]
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 2013, 64: 665-700 [百度学术]
Jia Q, Brown R, Köllner T G, Fu J, Chen X, Wong G K, Gershenzon J, Peters R J, Chen F. Origin and early evolution of the plant terpene synthase family. Proceeding of the National Academy of Sciences of the United States of America, 2022, 119(15): e2100361119 [百度学术]
Karunanithi P S, Zerbe P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Frontiers in Plant Science. 2019, 10: 1166 [百度学术]
Degenhardt J, Köllner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70(15-16): 1621-1637 [百度学术]
Falara V, Akhtar T A, Nguyen T T, Spyropoulou E A, Bleeker P M, Schauvinhold I, Matsuba Y, Bonini M E, Schilmiller A L, Last R L, Schuurink R C, Pichersky E. The tomato terpene synthase gene family. Plant Physiology, 2011, 157(2): 770-789 [百度学术]
Wurtzel E T, Kutchan T M. Plant metabolism, the diverse chemistry set of the future. Science, 2016, 353(6305): 1232-1236 [百度学术]
Hayashi K, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander L N, Yamane H, Hasebe M, Nozaki H. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiology, 2010, 153(3): 1085-1097 [百度学术]
Chen F , Tholl D , Bohlmann J , Pichersky E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal, 2011, 66(1): 212-229 [百度学术]
Kumar S, Kempinski C, Zhuang X, Norris A, Mafu S, Zi J, Bell S A, Nybo S E, Kinison S E, Jiang Z, Goklany S, Linscott K B, Chen X, Jia Q, Brown S D, Bowman J L, Babbitt P C, Peters R J, Chen F, Chappell J. Molecular diversity of terpene synthases in the Liverwort Marchantia polymorpha. The Plant Cell, 2016, 28(10): 2632-2650 [百度学术]
Yahyaa M, Matsuba Y, Brandt W, Doron-Faigenboim A, Bar E, McClain A, Davidovich-Rikanati R, Lewinsohn E, Pichersky E, Ibdah M. Identification, functional characterization, and evolution of terpene synthases from a Basal Dicot. Plant Physiology, 2015, 169(3): 1683-1697 [百度学术]
Tholl D, Lee S. Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book, 2011, 9: e0143 [百度学术]
Dornelas M C, Mazzafera P. A genomic approach to characterization of the Citrus terpene synthase gene family. Genetics and Molecular Biology, 2007, 30: 832-840 [百度学术]
Külheim C, Padovan A, Hefer C, Krause S T, Köllner T G, Myburg A A, Degenhardt J, Foley W J. The Eucalyptus terpene synthase gene family. BMC Genomics, 2015, 16(1): 450 [百度学术]
Martin D M, Aubourg S, Schouwey M B, Daviet L, Schalk M, Toub O, Lund S T, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 2010, 10: 226 [百度学术]
Nieuwenhuizen N J, Green S A, Chen X, Bailleul E J, Matich A J, Wang M Y, Atkinson R G. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiology, 2013, 161(2): 787-804 [百度学术]
Amborella G P, Victor A A, Barbazuk W B, DePamphilis C W, Der J P, Mack J L, Ma H, Palmer J D, Rounsley S, Sankoff D. The Amborella genome and the evolution of flowering plants. Science, 2013, 342(6165): 1241089 [百度学术]
Bao T, Kimani S, Li Y, Li H, Yang S, Zhang J, Wang Q, Wang Z, Ning G, Wang L, Gao X. Allelic variation of terpene synthases drives terpene diversity in the wild species of the Freesia genus. Plant Physiology, 2023, 192(3): 2419-2435 [百度学术]
Zvi M M B, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytologist, 2012, 195(2): 335-345 [百度学术]
Reeves P H, Ellis C M, Ploense S E, Wu M F, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley B J, Hodgens C, Farmer E E, Nagpal P, Reed J W. A regulatory network for coordinated flower maturation. PLoS Genetics , 2012, 8(2): e1002506 [百度学术]
Hong G J, Xue X Y, Mao Y B, Wang L J, Chen X Y. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell, 2012 , 24(6): 2635-2648 [百度学术]
Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant and Cell Physiology, 2009, 50(12): 2146-2161 [百度学术]
Nieuwenhuizen N J, Chen X, Wang M Y, Matich A J, Perez R L, Allan A C, Green S A, Atkinson R G. Natural variation in monoterpene synthesis in kiwifruit: Transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiology, 2015, 167(4): 1243-1258 [百度学术]
Zhou F, Sun T H, Zhao L, Pan X W, Lu S. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression. Frontiers in Plant Science, 2015, 6:304 [百度学术]
Yu Z X, Li J X, Yang C Q, Hu W L, Wang L J, Chen X Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L.. Molecular Plant, 2012, 5(2): 353-365 [百度学术]
Shen S L, Yin X R, Zhang B, Xie X L, Jiang Q, Grierson D, Chen K S. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange. Journal of Experimental Botany, 2016, 67(14): 4105-4115 [百度学术]
Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K, Hancock R. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany, 2017, 68(17): 4929-4938 [百度学术]
Yu Z X, Wang L J, Zhao B, Shan C M, Zhang Y H, Chen D F, Chen X Y. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant, 2015, 8(1): 98-110 [百度学术]
Spyropoulou E A, Haring M A, Schuurink R C. Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. Plant Molecular Biology, 2014, 84(3): 345-357 [百度学术]
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. Journal of Experimental Botany, 2020, 1(14):4140-4158 [百度学术]
Shan X, Li Y, Yang S, Yang Z, Qiu M, Gao R, Han T, Meng X, Xu Z, Wang L, Gao X. The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida. New Phytologist, 2020, 228(6): 1864-1879 [百度学术]
王丽. 香雪兰的快速繁殖技术. CN, CN1232167 China, 2005 [百度学术]
Wang L, Rapid propagation technology of Freesia hybrida. CN, CN1232167 China, 2005 [百度学术]
Shan X, Li Y, Zhou L, Tong L, Wei C, Qiu L, Gao X, Wang L. Efficient isolation of protoplasts from freesia callus and its application in transient expression assays.Plant Cell, Tissue and Organ Culture, 2019, 138: 529-541 [百度学术]
Uwagaki Y, Matsuda E, Komaki M, Murahama M, Otani M, Nishizawa N, Hamada T. Agrobacterium-mediated transformation and regeneration of Freesia×hybrida. Plant Biotechnology, 2015, 32(2): 165-168 [百度学术]
Li Y, Bao T, Zhang J, Li H, Shan X, Yan H, Kimani S, Zhang L, Gao X. The coordinated interaction or regulation between floral pigments and volatile organic compounds. Horticultural Plant Journal, 2024, (24): 2468-0141 [百度学术]