摘要
大豆雄性不育系对发挥大豆杂种优势具有重要价值,然而传统的三系杂交存在恢复系来源受限等问题,而环境敏感型细胞核雄性不育系在不同条件下育性可以改变。本文对ms3(Washington)、ms3(Flanagan)和ms3(Plainview)3个独立突变体的表型和突变位点展开了进一步研究,分别进行了不育表型鉴定、高通量测序、分子标记设计及突变位点验证、分析突变对MS3蛋白结构的影响、ms3(Plainview)花药半薄切片等实验。实验结果表明突变体花粉大量败育,只有零星被I2-KI染液染成黑色的不规则花粉粒。高通量测序结果显示,ms3(Washington)和 ms3(Flanagan)在MS3第3个外显子的PHD编码区域出现了大片段插入,导致MS3蛋白PHD结构域被破坏,这个等位基因命名为ms3-1;ms3(Plainview)在MS3第1个外显子缺失了一个A,导致移码突变,开放读码框仅编码40个氨基酸,蛋白功能完全丧失,这个等位基因命名为ms3-2。半薄切片结果显示,在花药发育中后期ms3(Plainview)的绒毡层和花粉发育出现异常。综上,本研究的结果为ms3的应用和MS3基因改造提供了材料和依据。
大豆起源于中国,是重要的粮食作物,为人类提供植物蛋白和油
迄今为止,在大豆中已经鉴定出大约30个细胞核雄性不育系,其中ms0、ms1~ms9、msp、msNJ、ms1
最近三年对大豆细胞核雄性不育位点的鉴定和功能报道显示,ms1、ms2、ms4、ms6都是稳定的细胞核雄性不育突变体,只有ms3是一个条件敏感型细胞核雄性不育突变体。然而,ms3突变体最早于1971年在Calland×Cutler的F3群体中发现,此突变体命名为ms3(Washington),又称为T27
为探究ms3(Washington),ms3(Flanagan)和ms3(Plainview)中的MS3位点的突变类型,本文对ms3(Washington),ms3(Flanagan)和ms3(Plainview)的材料分别进行了高通量测序,对相应的ms3不育位点进行了鉴定,并对ms3新的等位ms3(Plainview)突变体进行了表型分析。
本实验从美国国家植物种质中心(U.S. National Plant Germplasm System)获得了3种ms3的杂合子后代T273H (PI 548250)、T284H(PI 548261)和T291H(PI 548268),并从中分离出纯合突变体ms3(Washington)、ms3(Flanagan)和ms3(Plainview)及相应的纯合野生型MS3(Washington),MS3(Flanagan)和MS3(Plainview),用于进一步研究。
以上材料于2023年5月中下旬种植于陕西省西安市碑林区(108.93 °E, 34.23 °N),种植方式采用室外营养土培养(5~6株/盆,规格5.5 cm×5.5 cm×6 cm,口径5.5 cm,底径3.5 cm,高度6 cm),日照时长在12 h 10 min 至14 h 30 min。
体式显微镜观察:分别取纯合突变体ms3(Washington)、ms3(Flanagan)和ms3(Plainview)及相应的纯合野生型MS3(Washington)、MS3(Flanagan)和MS3(Plainview)初开的花朵(盛开不到3小时),置于体式显微镜(目镜放大倍数10×,物镜放大倍数0.7~4.5×)下进行解剖观察及拍照。观察内容包括野生型和突变体的完整花朵以及去掉萼片和花瓣之后的雄雌蕊部分,每种类型的材料观察3株,每株观察3~5朵。
花粉育性观察(碘染):从开放前一天的花苞中取出花药,置于滴有I2-KI溶液(碘化钾2g,蒸馏水300 ml,碘1g)的载破片上,用镊子夹碎花药释放花粉,用I2-KI溶液染色。染色后样品置于光学显微镜(目镜放大倍数10×,物镜放大倍数20×)下,观察花粉在I2-KI溶液中的染色情况,判断花粉育性。
大豆基因组DNA(gDNA)的高通量测序样品用植物基因组DNA试剂盒(CW0531M,康为世纪)提取,ms3(Washington)、ms3(Flanagan)、ms3(Plainview)和Williams 82的叶片DNA利用经典CTAB
之前报道表明ms3是由于Glyma.02g107600基因突变而导致的,该基因在Williams 82参考基因组(Wm82.a2.v1)中的位置为Gm02:10,270,908~10,267,934 bp。为了探明3个ms3突变体在Glyma.02g107600位点发生了何种变异,本研究对3个突变体材料进行了二代高通量测序。首先通过观察花粉育性区分不育单株,分别选取ms3(Flanagan)和ms3(Plainview)各8株,ms3(Washington)12株,取植株顶端大小一致的幼嫩叶片 1~2片,提取gDNA并进行质检,质检合格后,应用华大DNBSEQ测序平台进行PE150测序,测序深度为30×。得到测序文件后,将过滤掉低质量和接头污染的clean reads用BWA(Burrows-Wheeler Aligner )软件比对到参考基因组Wm82.a2.v1上。比对得到的bam格式文件通过IGV (Integrative Genomics Viewer)工具进行查看,SNP和InDels用GATK进行检
为了验证ms3的突变位点,利用大豆基因组DNA(gDNA)进行PCR扩增。首先,ms3-2突变无法使用常规分子标记进行判断,需采用PCR-Sanger测序结合法。因此设计1对特异性扩增突变位点的引物MS3-2F/MS3-2R,获得目的片段(1500 bp左右),切下目的条带送至生工生物公司(西安),利用上游引物MS3-2F进行Sanger测序。第二,针对ms3-1有大片段序列插入的特点,设计2对引物,1对检测MS3(MS3WT-1F/MS3WT-1R),另1对特异性检测ms3-1(MS3WT-1F/MS3MU-1R)。引物使用SnapGene软件设计,引物序列见
引物名称 Primer name | 引物序列(5'-3') Primer sequences(5'-3') |
---|---|
MS3-2F | GATAGAAGCTACACAAGTTCC |
MS3-2R | GAGTCGATGCCTTCTACTAAC |
MS3WT-1F | TAGGAAACTACTTGGTTCGTCG |
MS3WT-1R | GGGCTTCATCATTTGGAATTCG |
MS3MU-1R | GGCTATCAAACTAGTTTGACTC |
登录Alphafold网站(https://alphafold.ebi.ac.uk/),输入MS3氨基酸序列在线预测蛋白三级结构,下载预测文件,使用软件PyMOL进行编辑,分析突变对MS3蛋白结构的影响。
ms3(Plainview)具有一个新的等位突变,且是一个功能完全丧失型突变体。为了解析MS3蛋白完全丧失后对花药发育有何影响,对ms3(Plainview)和对应野生型MS3(Plainview)各发育时期的花药进行半薄切片和显微观察。采集 MS3(Plainview)和ms3(Plainview) 的花序置于FAA溶液(乙醇∶乙酸∶甲醛∶水=5∶1∶1∶3)中抽气30 min以上,更换新鲜的FAA固定液4 ℃长期保存。固定后的花序经梯度乙醇溶液(50%、60%、70%、85%、95%)脱水,每梯度脱水10 min,然后用无水乙醇脱水处理两次,每次 30 min。完全脱水后的材料经饱和番红乙醇溶液(番红1.5 g、无水乙醇100 ml)染色2 h,采用 Heraeus Kulzer Technovit H7100-GMA试剂盒(海德创业生物科技有限公司)进行渗透和包埋处理,具体操作步骤如下:用树脂和无水乙醇等体积混合配制预渗透液,将材料浸没在预渗透液中处理2 h。倒掉预渗透液,将材料浸没在渗透液(1 g 硬化剂 I 溶解于100 ml 树脂)中 4 ℃过夜处理。用镊子将材料摆放在包埋板孔中,使花苞的顶端朝向包埋板孔的两端,吸取聚合液(15 ml 渗透液混合1 ml 硬化剂 II)于包埋板孔中至聚合液完全覆盖材料。将包埋板置于42 ℃ 烘箱中约 30 min,待聚合液凝固后,再将包埋板置于 65 ℃烘箱中,放置 48 h以上。用 Leica RM2265 半薄切片机将包埋后的材料切成 2 μm 的薄片,固定于载玻片上,用0.5%甲苯胺蓝染液染色,经过中性树胶封片后在光学显微镜下拍照观察。
3个ms3突变体与其对应的野生型在花的外观形态一致,没有明显区别(

图1 ms3三个等位突变和对应野生型的表型
Fig.1 Phenotypic of three allelic mutations of ms3 and corresponding wild type
A、B、E、F、I、J:标尺=1 mm;C、D、G、H、K、L:标尺=100 μm。红色箭头和蓝色箭头分别指示正常的(左侧)和异常的(右侧)花药表型(B、F、J);红色三角箭头和蓝色三角箭头分别指示I2-KI染色正常(C、G、K)与异常(D、H、L)的花粉粒;橙色三角箭头指示I2-KI染色正常,但形态异常的花药粒(H)
A,B,E,F,I,J: Scale bar=1 mm; C,D,G,H,K,L: Scale bar=100 μm. The red and blue arrows indicate normal (left) and abnormal (right) anther phenotypes (B, F, J); Red and blue arrowhead indicate normal (C, G, K) and abnormal (D, H, L) pollen grains with I2-KI staining; The orange arrowhead indicates normal stained pollen grains with abnormal morphology (H)
高通量测序的比对结果显示,ms3(Washington)和 ms3(Flanagan)突变体序列在Gm02:10,268,024~10,268,032 bp处出现了异常堆积,没有reads可以横跨这个区间,造成了一个断点,说明该处有序列插入(

图2 3个ms3突变体中的等位变异
Fig. 2 Characterization of mutant alleles in three ms3 lines
A:ms3(Washington)和 ms3(Flanagan)的突变位点;红色矩形框标注异常堆积。B:ms3(Plainview)的突变位点;红色箭头指示的是碱基缺失。C:ms3(Washington)和 ms3(Flanagan)突变位点reads分析。蓝色的矩形框指示的是插入位点的正向重复序列。红色小写字母指示的是突变体中的插入序列
A: Mutation sites in ms3 (Washington) and ms3 (Flanagan); The red rectangle indicates abnormal mapping of reads. B: The mutation site in ms3 (Plainview); The red arrow points to a base deletion. C: The reads analysis around the MS3 mutated site of ms3(Washington)and ms3(Flanagan). The blue rectangles indicate the forward repeat sequence of insertion sites. The red lowercase letters represent the insertion sequence of the mutant

图3 ms3等位突变位点的鉴定
Fig.3 Identification of ms3 allelic mutation sites
A:MS3的基因和蛋白结构模式图。红色箭头指示的是突变位点。黑色矩形框指示的是外显子区域。绿色矩形框指示的是MS3蛋白PHD(Plant homeobox domain)结构域。B:PCR测序结果显示ms3(Plainview)的突变位点。红色矩形框表示MS3 (Plainview)、ms3 (Plainview)和杂合子之间的序列差异。C:共显性的方法鉴定ms3(Washington),ms3(Flanagan)存在大片段的插入。Marker:DL2000 。Het:杂合子
A: Gene and protein structure model of MS3.The red arrow indicates the mutation site. The black rectangular box indicates the exon region. The green rectangle indicates the MS3 protein PHD (Plant homeobox domain) domain. B: PCR sequencing showed the mutation site of ms3(Plainview). The red rectangular box indicates the sequence difference among the MS3 (Plainview), ms3 (Plainview) and heterozygotes. C: The co-dominant method identified the presence of large fragment insertion in ms3(Washington) and ms3 (Flanagan). Marker: DL2000. Het: Heterozygote
ms3(Plainview)的测序数据显示,它与ms3(Washington)和 ms3(Flanagan)不同,在Gm02:10,268,024~10,268,032 bp处序列正常(
高通量测序结果确定了ms3(Washington)、ms3(Flanagan)和ms3(Plainview)的突变位点,并将ms3(Washington)和ms3(Flanagan)的等位突变命名为ms3-1,ms3(Plainview)的等位突变命名为ms3-2。ms3-1在MS3第3个外显子的PHD编码区域存在一个大片段插入,ms3-2则在MS3第1个外显子缺失了一个碱基A。
本研究针对ms3-1和ms3-2突变位点的特性分别设计分子标记对这两个等位的基因型进行检测。通过ms3-2突变体的Sanger测序峰图可以清晰地看出在MS3(Plainview)样本中第一个外显子区域有7个碱基A,而在ms3(Plainview)样本中该区域只有6个碱基A,而杂合子在第7个碱基的位置是一个双峰(A/G),说明ms3(Plainview)在第一个外显子上缺少了一个碱基A(
Glyma.02g107600(MS3)由3个外显子和2个内含子构成(

图4 MS3蛋白三级结构
Fig.4 Tertiary structure of MS3 protein
被红色虚线圆圈标出的深蓝色区域显示了MS3蛋白的PHD结构域;五角星分别指示两个突变蛋白的氨基酸突变起始位点
The dark blue area marked by a red dashed circle shows the PHD domain of the MS3 protein; The pentagram indicates the amino acid mutation initiation sites of the two mutant proteins respectively
花药发育至四分体时期(S8期),ms3(Plainview)与MS3(Plainview)开始出现不同,主要表现在ms3(Plainview)绒毡层开始出现小的空泡化,但此时,四分体的形态没有明显区别,四分体被花粉囊腔内填充的胼胝质包裹(

图5 MS3(Plainview)和ms3(Plainview)突变体花药半薄切片
Fig.5 Anther semi-thin sections of MS3(Plainview) and ms3(Plainview)
红色箭头分别标注的是正常的(A~C)和异常的(E~F)绒毡层细胞。黑色箭头指示的是饱满的(B~C)和空泡化的(E~F)小孢子。紫色箭头指示的是绒毡层中出现的异常颗粒(E~F)。比例尺=25 μm
Red arrows indicate the normal (A-C) and abnormal (E-F) tapetum cell. The black arrows indicate the plump and vacuolated microspores. The purple arrows point the abnormal granular particles(E-F). Scale =25 μm
通过观察ms3(Plainview)与MS3(Plainview)的花药半薄切片图像,发现ms3(Plainview)在花药发育的中后期绒毡层和花粉发育出现异常,导致花粉败育。半薄切片的结果与花药碘染后只有零星花粉粒被染成黑色的结果一致,说明MS3在绒毡层降解和小孢子发育调控过程中发挥着决定性的作用。
植物同源异型结构域PHD是锌指结构域家族的一类转录调控因子,主要在细胞核中发挥作用,可以作为激活因子或抑制因子两种形式参与转录调控作用,可以与各种组蛋白修饰酶相互作
ms3(Washington)和ms3(Flanagan)突变体在PHD结构域区域产生了大片段插入突变,导致PHD结构域的受损。ms3(Plainview)突变体则是由于第一个外显子上单碱基的缺失导致翻译提前终止,最终导致功能蛋白的缺失。本研究中,ms3(Plainview)的花粉败育现象比ms3(Washington)与ms3(Flanagan)更为严重。在观察3个突变体结实情况时发现,ms3(Washington)与ms3(Flanagan)偶尔会结1个荚,而ms3(Plainview)从未发现结荚现象。表明2种突变形式导致的突变在最终结实性上存在一定的差异性。相应地,在Hou
ms3(Washington)和ms3(Flanagan)的突变位点与Hou
上述研究表明,发生在PHD-finger结构域的突变,通常与条件敏感型不育突变体的形成密切相关。因此,ms3(Washington)和 ms3(Flanagan)作为条件敏感型不育突变体可以考虑将来作为两系杂交育种的环境敏感型细胞核雄性不育系材料使用。而ms3(Plainview)突变体的突变位点与Hou
参考文献
Li Y H, Qin C, Wang L, Jiao C Z, Hong H L, Tian Y, Li Y F, Xing G H, Wang J, Gu Y J, Gao X P, Li D L, Li H Y, Liu Z X, Jing X, Feng B B, Zhao T, Guan R X, Guo Y, Liu J, Yan Z, Zhang L J, Ge T L, Li X K, Wang X B, Qiu H M, Zhang W H, Luan X Y, Han Y P, Han D Z, Chang R Z, Guo Y L, Reif J C, Jackson S A, Liu S, Tian S L, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Science China: Life Sciences, 2023, 66(2):350-365 [百度学术]
Li J J, Nadeem M, Sun G L, Wang X B, Qiu L J. Male sterility in soybean: Occurrence, molecular basis and utilization. Plant Breeding, 2019, 138(6):659-676 [百度学术]
郭文, 代希茜, 莫楠, 张应青, 余晨, 田江, 耿智德, 李露. 东盟国家大豆种植及其大豆产品进出口结构分析.中国农学通报, 2022, 38(23):156-164 [百度学术]
Guo W, Dai X X, Mo N, Zhang Y Q, Yu C, Tian J, Geng Z D, Li L. Soybean planting and soybean commodities’ import and export trade structure in ASEAN countries. Chinese Agricultural Science Bulletin, 2022, 38(23):156-164 [百度学术]
孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展. 遗传, 2021, 43(1):52-65 [百度学术]
Sun X Y, Wang Y F, Wang Y H, Lin J Y, Li J H, Qiu Y T, Fang X L, Kong F J, Li M N. Progress on genic male sterility gene in soybean. Hereditas, 2021, 43(1):52-65 [百度学术]
Chen L T, Liu Y G. Male sterility and fertility restoration in crops. Annual review of plant biology, 2014, 65(1):579-606 [百度学术]
Huang J Z, E Z G, Zhang H L, Shu Q Y. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization. Rice (N Y), 2014, 7(1):13 [百度学术]
Cheng S H, Zhuang J Y, Fan Y Y, Du J H, Cao L Y. Progress in research and development on hybrid rice: A super-domesticate in China. Annals of Botany, 2007, 100(5):959-966 [百度学术]
Chen L Y, Lei D Y, Tang W B, Xiao Y H. Thoughts and practice on some problems about research and application of Two-line hybrid rice. Rice Science, 2011, 18(2):79-85 [百度学术]
杨绪磊, 郭凤兰, 高萌萌, 张泽东, 林春晶, 孙妍妍, 张井勇, 彭宝, 赵丽梅, 张春宝. 大豆CMS-RN型不育系育性恢复基因GmRf1的初步鉴定及其分子标记开发. 植物遗传资源学报, 2023, 24(4):1186-1193 [百度学术]
Yang X L, Guo F L, Gao M M, Zhang Z D, Lin C J, Sun Y Y, Zhang J Y, Peng B, Zhao L M, Zhang C B. Preliminary identification and molecular marker development of the restorer-of-fertility Gene GmRf1 of CMS-RN type sterile lines in soybean. Journal of Plant Genetic Resources, 2023, 24(4):1186-1193 [百度学术]
Nadeem M, Chen A D, Hong H L, Li D D, Li J J, Zhao D, Wang W, Wang X B, Qiu L J. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). Journal of Integrative Plant Biology, 2021, 63(6):1054-1064 [百度学术]
Nie Z X, Zhao T J, Liu M F, Dai J Y, He T T, Lyu D, Zhao J M, Yang S P, Gai J Y. Molecular mapping of a novel male-sterile gene msNJ in soybean [Glycine max (L.) Merr.]. Plant Reproduction, 2019, 32(4):371-380 [百度学术]
Song S F, Wang T K, Li Y X, Hu J, Kan R F, Qiu M D, Deng Y D, Liu P X, Zhang L C, Dong H, Li C X, Yu D, Li X Q, Yuan D Y, Yuan L P, Li L. A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene. Plant Biotechnology Journal, 2021, 19(2):251-260 [百度学术]
Jiang Y L, An X L, Li Z W, Yan T W, Zhu T T, Xie K, Liu S S, Hou Q C, Zhao L N, Wu S W, Liu X Z, Zhang S W, He W, Li F, Li J P, Wan X Y. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnology Journal, 2021, 19(9):1769-1784 [百度学术]
Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding:Progress and perspectives. Molecular Plant, 2019, 12(3):321-342 [百度学术]
Yang Y,Speth B D, Boonyoo N, Baumert E, Atkinson T R, Palmer R G, Sandhu D. Molecular mapping of three male-sterile, female-fertile mutents and generation of a comprehensive map of all known male sterility genes in soybean. Genome, 2014, 57(3):155-160 [百度学术]
张宇. 大豆雄性不育基因的克隆及其功能研究. 哈尔滨:哈尔滨师范大学,2019 [百度学术]
Zhang Y. Cloning and functional analysis of soybean male sterility gene. Harbin: Harbin Normal University, 2019 [百度学术]
李维, 余君萍, 徐敏. 大豆细胞核雄性不育的理论与应用研究进展. 陕西师范大学学报: 自然科学版, 2021,49(3):60-70 [百度学术]
Li W, Yu J P, Xu M. Advances in theory and application of genic male sterility in soybean. Journal of Shaanxi Normal University: Natural Science Edition, 2021, 49(3):60-70 [百度学术]
Fang X L, Sun Y Y, Li J H, Li M N, Zhang C B. Male sterility and hybrid breeding in soybean. Molecular Breeding. 2023, 43(6):47 [百度学术]
Jiang B J, Chen L, Yang C Y, Wu T T, Yuan S, Wu C X, Zhang M C, Gai J Y, Han T F, Hou W S, Sun S. The cloning and CRISPR/Cas9-mediated mutagenesis of a male sterility gene MS1 of soybean. Plant Biotechnology Journal,2021, 19(6):1098-1100 [百度学术]
Fang X L, Sun X Y, Yang X D, Li Q, Lin C J, Xu J, Gong W J, Wang Y F, Liu L, Zhao L M, Liu B H, Qin J, Zhang M C, Zhang C B, Kong F J, Li M N. MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. Science China: Life Sciences, 2021, 64(9):1533-1545 [百度学术]
Fang X L, Feng X C, Sun X Y, Yang X D, Li Q, Yang X L, Xu J, Zhou M H, Lin C J, Sui Y, Zhao L M, Liu B H, Kong F J, Zhang C B, Li M N. Natural variation of MS2 confers male fertility and drives hybrid breeding in soybean. Plant Biotechnology Journal, 2023, 21(11):2322-2332 [百度学术]
Hou J J, Fan W W, Ma R R, Li B, Yuan Z H, Huang W X, Wu Y Y, Hu Q, Lin C J, Zhao X Q, Peng B, Zhao L M, Zhang C B, Sun L J. MALE STERILITY 3 encodes a plant homeodomain-finger protein for male fertility in soybean. Journal of Integrative Plant Biology, 2022, 64(5):1076-1086 [百度学术]
Thu S W, Rai K M, Sandhu D, Rajangam A, Balasubramanian V K, Palmer R G, Mendu V. Mutation in a PHD-finger protein MS4 causes male sterility in soybean. BMC Plant Biology, 2019, 19(1):378 [百度学术]
Yu J P, Zhao G L, Li W, Zhang Y, Wang P, Fu A G, Zhao L M, Zhang C B, Xu M. A single nucleotide polymorphism in an R2R3 MYB transcription factor gene triggers the male sterility in soybean ms6 (Ames1). Theoretical and Applied Genetics, 2021, 134(11):3661-3674 [百度学术]
Palmer R G, Johns C W, Muir P S. Genetics and cytology of the ms3 male-sterile soybean. Journal of Heredity, 1980, 71(5):343-348 [百度学术]
Chaudhari H K, Davis W H. A new male-sterile strain in Wabash soybeans. Journal of Heredity, 1977, 68(4):266-267 [百度学术]
Graybosch R A, Palmer R G. Analysis of a male sterile character in soybeans. Journal of Heredity, 1987, 78(2):66-70 [百度学术]
Skorupska H T, Palmer R G. Additional sterile mutations in soybean Glycine max (L.) Merr. Journal of Heredity, 1990, 81(4):296-300 [百度学术]
Cervantes-Martinez I, Sandhu D, Xu M, Ortiz-Pérez E, Kato K K, Horner H T, Palmer R G. The male sterility locus ms3 is present in a fertility controlling gene cluster in soybean. The Journal of Heredity, 2009, 100(5):565-570 [百度学术]
Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocol, 2006, 1(5):2320-2325 [百度学术]
黄琬婷, 王茜, 张泽燕, 朱慧珺, 闫虎斌, 张耀文. 基于BSA-seq技术定位绿豆种皮颜色基因. 植物遗传资源学报, 2023, 24(3): 790-800 [百度学术]
Huang W T, Wang X, Zhang Z Y, Zhu H J, Yan H B, Zhang Y W. Mapping of seed coat color related genes by BSA-seq in Mung Bean (Vigna radiata L.). Journal of Plant Genetic Resources, 2023, 24(3): 790-800 [百度学术]
连娟, 刘永杰, 李丹, 公杰, 王永波, 陈现朝, 张风廷, 赵昌平, 高世庆, 赵宝存. 小麦PHD基因家族鉴定及干旱胁迫应答分析. 分子植物育种, 2023,21(18):5917-5928 [百度学术]
Lian J, Liu Y J, Li D, Gong J, Wang Y B, Chen X C, Zhang F Y, Zhao C P, Gao S Q, Zhao B C. Identification and drought stress response analysis of PHD gene family in Triticum aestivum L.. Molecular Plant Breeding, 2023, 21(18):5917-5928 [百度学术]
宋扬, 张海龙, 王明晶, 刘宇麒, 李立新. 蒺藜苜蓿锌指蛋白PHD-Finger家族鉴定和表达分析. 植物生理学报, 2021,57(7):1559-1572 [百度学术]
Song Y, Zhang H L, Wang M J, Liu Y Q, Li L X. Genome-wide identification and expressional analysis of Zinc Finger Protein PHD-Finger family in Medicago truncatula. Plant Physiology Journal, 2021, 57(7):1559-1572 [百度学术]
王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性. 遗传, 2021,43(4):323-339 [百度学术]
Wang T Y, Wang Y X, You C J. Structural and functional characteristics of plant PHD domain-containing proteins. Hereditas, 2021, 43(4):323-339 [百度学术]
Graybosch R A, Palmer R G. Male sterility in Soybean (Glycine max).II. phenotypic expression of the ms4 mutant. American Journal of Botany, 1985, 72(11):1751-1764 [百度学术]
Yang C Y, Vizcay-Barrena G, Conner K, Wilson Z A. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell, 2007, 19(11):3530-3548 [百度学术]
Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal, 2018, 16(2):459-471 [百度学术]
Li H, Yuan Z, Vizcay-Barrena G, Yang C Y, Liang W Q, Zong J, Wilson Z A, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology, 2011, 156(2):615-630 [百度学术]
Qi Y B, Liu Q L, Zhang L, Mao B Z, Yan D W, Jin Q S, He Z H. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoretical and Applied Genetics, 2014, 127(5):1173-1182 [百度学术]
Wu L Y, Jing X H, Zhang B L, Chen S J, Xu R, Duan P G, Zou D N, Huang S J, Zhou T B, An C G, Luo Y H, Li Y H. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nature Communications, 2022, 13(1):2055 [百度学术]