摘要
大豆是重要的油料作物,同时也是人类食用植物蛋白及畜牧业饲料蛋白的主要来源,在国家粮食结构和粮食安全中占有重要地位。利用简单高效的遗传定位方法,对大豆主要农艺性状进行相关基因挖掘,开发紧密连锁分子标记,有利于加快大豆的分子标记辅助选择及分子设计育种进程。集群分离分析法 (BSA,bulked segregant analysis)是一种利用样本混池的建库方式对极端性状进行QTL定位的方法,因其具有“快速、准确、经济、实用”的特点,已成为当下应用较为广泛的基因定位方法。随着高通量测序技术的兴起,基于全基因组重测序的BSA方法更为广泛地应用在粮油作物、蔬菜花卉等物种中,并且成功定位出许多农艺性状相关的基因。本文简要介绍了BSA方法及流程步骤,总结了BSA在大豆农艺性状、抗逆性状以及雄性不育性状遗传定位中研究进展,并讨论了下一代测序(NGS,next-generation sequencing)背景下BSA的机遇与挑战,以及BSA在大豆分子标记辅助选择(MAS)育种中发展趋势,以期为高产优质大豆品种的选育提供重要的理论基础。
大豆(Glycine max)是世界上种植最广泛的油料作物之一,是植物油和植物蛋白的重要来
与传统的QTL图谱方法相比,BSA只需要考虑群体中的少数极端个体,而不是考虑整个群体,简化了测序过程,显著降低了测序和分析的成
集群分离分析法主要是选择具有极端性状的两个亲本,通过杂交在后代的分离群体中筛选具有极端表型的个体,构建两个极端性状的混池,通过比较两个混池之间的差异,从而定位到与相关性状紧密关联的分子标
BSA主要分为以下5个步骤(

图1 下一代测序背景下BSA流程图
Fig.1 Flow chart of BSA in next-generation sequencing background
为了发展大豆高产潜力,我国的大豆育种家们从20世纪80年代就已经开始大豆株型育种,王金
半矮化是大豆育种中理想的农艺特征,可以提高抗倒伏能力和太阳辐射利用效率,从而提高大豆产量。张久坤
除了在大豆株高上的应用,BSA法在大豆株型其他性状上也有涉及。近年来,大豆机械化收获已经得到大面积推广应用,而大豆底荚高度是关键因素之一。赵圆圆
大豆是光周期敏感的高温短日照作物,但是大豆的种植纬度范围很广,从中国东北等高纬度地区到南美洲等热带地区均有种植。开花时间和成熟期是决定了其对所在地区的适应能力,并且是影响大豆产量和品质的重要因素。生态适应性是由控制开花和成熟的主要基因位点和数量性状位点的遗传变异决定的。孙天
大豆籽粒和荚果性状既影响大豆产量,又影响着商品性。百粒重、荚粒数、结荚率等是大豆产量构成的重要因素。王娟
在农业生产中,农民对大豆的种皮颜色、脐色以及荚色等性状有着其特别的偏好,因此深入研究这些性状的理论基础,有利于大豆高产育种以及后期品种的推广。宋
非生物胁迫主要包括盐碱、干旱、荫蔽等,严重影响大豆产量。前人们利用BSA技术定位到了大量与大豆抗逆相关的位点。Guo
大豆-玉米带状复合种植技术在保证单位面积玉米基本不减产的情况下,多增加一茬大豆的收入,是稳玉米、扩大豆的有效途径。荫蔽胁迫是制约该种植模式推广的主要因素之一。曾维英
病虫害引起的生物胁迫会导致大豆产量降低、品质受损。因此,研究大豆对非生物胁迫的应答机制对于大豆病虫害预防和抗性育种具有重要意义。BSA分析已经在大豆花叶病毒和疫霉根腐病相关基因、锈病抗性相关基因等大豆病害抗性相关基因的挖掘中得到应用。大豆花叶病毒病是大豆主要的病害之一,严重发生可导致大豆产量降低和品质下降。Li
大豆疫霉根腐病是限制大豆生产最主要的土壤传播疾病,前人们利用BSA技术对疫霉根腐病抗性基因进行了大量初定位。Sun
大豆锈病是由豆薯层锈菌引起的病害,与化学药物防治相比,抗锈病品种的培育可以减少病害造成的损失,而且不会产生杀菌剂的使用费用和环境负面影响。抗锈资源筛选、抗锈基因的挖掘及相关分子标记的开发是开展抗病育种和抗病机理研究的基础。Vuong
在大豆生长过程中,虫害的出现会对大豆的产量和质量产生较大影响。大豆的虫害主要包括蚜虫、卷叶螟、胞囊线虫等。BSA分析已经在卷叶螟、胞囊线虫等虫害抗性相关基因定位中得到应用。曾维英
目前化学防治是控制大豆病虫害的主要手段,杀菌剂和杀虫剂的使用增加了农民的种植成本,且对环境产生的负面影响是不可逆的。抗病虫害品种的选育可以有效地解决上述问题,利用BSA可以快速地开发相关抗性的分子标记或者定位相关的基因位点,同时加快大豆抗病虫害分子标记辅助选择(MAS)育种。
大豆是典型的光敏感自花授粉作物,花器官小,人工杂交困难,且成功率低;不同地理来源品种常因花期不遇进一步限制了品种间的基因交流,导致大豆育成品种遗传基础狭窄,遗传改良进度缓慢。利用雄性不育突变体可用于构建异交群体,而且可以利用大豆细胞质雄性不育进行三系法杂交育种,雄性不育系的利用拓宽了大豆育种遗传基础,具有重要的基础研究和育种应用价值。
近年来,研究者利用BSA法对大豆雄性不育基因、不育恢复基因、不育恢复抑制基因进行了定位。李永宽
在下一代测序(NGS)应用之前,基于遗传分离群体构建遗传图谱是QTL定位的主要方法。随着NGS成本的不断降低以及第三代测序(PacBio或Nanopore测序)和Hi-C技术的广泛应用,小麦、水稻、玉米、大豆等大田作物参考基因组已逐步发布,从而为基于NGS的BSA法基因定位奠定了坚实的基础。BSA方法是基于通过对DNA序列差异进行比较,能够快速高效地定位与特定性状相关的基因,具有时间和空间上的优势。同时,NGS技术的不断完善和普及,为BSA方法提供了更高效、更精准的数据支持。
虽然目前BSA法在大豆QTL定位中得到了广泛的应用(
性状 Traits | 遗传位点 Genetic locus | 候选基因 Traget gene | 群体大小 Population size | 混池大小 Bulk size | 参考文献 Reference |
---|---|---|---|---|---|
株高 Plant height | — |
Glyma.03g230000,Glyma.04g065600, Glyma.04g227700 | 147 | 20 |
[ |
sdf-1 |
Glyma.19g194800,Glyma.19g194500, Glyma.19g195200 | 213 | 40 |
[ | |
— | Glyma.04g251900,Glyma.16g156700 | 208 | 30 |
[ | |
Gmlim1 | Glyma.13g287600,Glyma.13g288000 | 432 | 50 |
[ | |
— | Glyma.13g249400 | 349 | 20 |
[ | |
底荚高 First pod height | — |
Glyma.04g162700,Glyma.04g163400, Glyma.04g163900,Glyma.19g185200, Glyma.19g185700 | 208 | 30 |
[ |
主茎节数 Numbers of main stem | — |
Glyma.04g162400,Glyma.04g162500, Glyma.04g162600,Glyma.04g162700, Glyma.04g162800 | 102 | 30 |
[ |
叶柄长度 Length of petioles | — | Glyma.03g128600 | 509 | 30 |
[ |
lps3 | — | 187 | 15 |
[ | |
二列状互生叶序 Distichous alternate phyllotaxis | — | — | 1831 | 30 |
[ |
多叶 Multifoliolate leaf | — |
Glyma. 11g027100,Glyma.11g034100, Glyma.11g040200,Glyma.11g043100, Glyma.11g045200,Glyma.11g083800 | 239 | 10 |
[ |
开花期 Flowering time | — | — | 155 | 12 |
[ |
— | Glyma.18g298800 | 213 | 30 |
[ | |
百粒重 100-seed weight | — | Glyma.02g075000,Glyma.04g082500 | 149 | 30 |
[ |
种子硬实性 Hard seededness | — | — | 203 | 20 |
[ |
荚果长度 Pod length | — | Glyma.11g051600 | — | 30 |
[ |
种皮颜色 Seed coat color | qSC1 | — | 171 | 20 |
[ |
— |
Glyma.05g005600,Glyma.05g009700, Glyma.12g006100,Glyma.12g047300 | 129 | 9 |
[ | |
耐盐 Salt tolerance | — | GmSALT3,GmSALT18 | 649 | 20 |
[ |
— | 1022 | 20 | |||
— | — | — | 30 |
[ | |
— | Glyma.02g304700 | 375 | 15 |
[ | |
耐荫 Shade tolerance | — | — | 462 | 30 |
[ |
抗大豆花叶病毒 Resistance to soybean mosaic virus | RSC14 | — | — | — |
[ |
RSC4 |
Glyma.14g385100,Glyma.14g385600, Glyma.14g385800 | 1047 | 12 |
[ | |
RSC3 | Glyma.02g100000,Glyma.02g105900,Glyma.02g097400 | 427 | 20 |
[ | |
抗疫霉根腐病 Resistance to phytophthora | RpsJS |
Glyma.18g519300,Glyma.18g519500, Glyma.18g51960 | 231 | 10 |
[ |
Rps10 | — | 102 | 10 |
[ | |
Rps11 | — | 58 | 10 |
[ | |
Rps14 | — | 110 | 9 |
[ | |
抗锈病 Resistance to soybean rust | Rpp3 | — | 250 | 10 |
[ |
Rpp1b,Rpp2 | — | 110 | 20 |
[ | |
Rpp6907 | — | 118 | 15 |
[ | |
抗豆卷叶螟 Resistance to bean pyralid | — | — | 303 | 30 |
[ |
抗孢囊线虫 Resistance to soybean cyst nematode | — | GmSNAP11 | 145 | 14 |
[ |
— | — | 126 | 20 |
[ | |
雄性不育 Male sterility | Rf-I | — | 66 | 20 |
[ |
— | GmRf1 | 243 | 30 |
[ | |
Rf3 | — | 194 | 30 |
[ | |
— | GmMs1 | 892 | — |
[ | |
— | Glyma.13g114200 | — | 20 |
[ |
—: 原始文献中无相关信息描述
—: None valuable information was reported in the original literatures
BSA一般只能实现初步定位的目的,若想继续确定候选基因则需要进一步精细定位,后期需要结合分子遗传标记分型,或是各个组学分析来实现精细定位目的基因。以下对结合BSA结果实现精细定位的方法进行了总结:(1)结合传统QTL定位方法,构建遗传图谱,基于表型数据,进行QTL定位,与BSA结果相结合,找到共定位区域。(2)利用BSA定位的结果,构建次级作图群体,在目标区域内开发SNP、InDel或KASP分子标记,通过扩大群体性状与分子标记的共分离缩小候选区间。(3)结合现代组学,例如结合RNA-seq结果,在目标区域内选取具有显著差异表达的或某显著富集通路上的基因作为候选基因,或者通过加权基因共表达网络分析(WGCNA,weighted correlation network analysis)挖掘关键作用的核心基因或基因模块。BSA与GWAS相结合的方法在基因定位中也得到了广泛应用。(4)根据BSA定位的结果,结合已报道的相关性状的文献结果,基于序列同源、基因的功能确定候选基因。实现精细定位的方法不局限于以上方法,可以是多种方法的共同结合,例如BSA+GWAS+RNA-seq。由于构建的不同群体,或者目标基因所在染色体位置,都会影响重组事件频率,因此没有固定的方法,这需要根据定位结果与实际情况不断调整方案。
分子标记辅助选择(MAS)育种是利用与目标性状密切相关的分子标记来辅助传统育种方法的一种遗传改良方式。MAS育种的基本原理是利用已知的分子标记与目标性状之间的相关性,来预测育种后代的表现情况,并以此为依据进行杂交和选育。MAS育种相对于传统育种方法,具有更高的遗传育种效率、更快的育种进展速度、更少的资源消耗等优点。大豆MAS育种中,常用的分子标记包括SNP、SSR、AFLP等,这些标记广泛分布在大豆基因组中,并且与大豆许多重要农艺性状相关。通过分析这些标记在不同品种中的多态性,可以确定与目标性状紧密相关的标记,并利用这些标记来筛选出具有优良性状的育种后代。BSA为鉴定和开发重要农艺性状的标记提供了一条捷径,除了最常用的基于DNA的标记外,RNA和蛋白质分析的结果也可用于开发标记。随着BSA分析方法的不断完善,根据BSA分析得到的结果去开发标记,辅以进行大豆分子标记辅助育种,将加快高产抗逆广适大豆的选育进程,促进我国大豆产业发展,有力保障国家粮食安全。此外随着大豆基因编辑技术的不断完善,利用BSA快速获得目标基因后,进行精准编辑,将极大推动大豆分子设计育种的进程。
参考文献
Zhang Y H, Liu M F, He J B, Wang Y F, Xing G N, Li Y, Yang S P, Zhao T J, Gai J Y. Marker-assisted breeding for transgressive seed protein content in soybean (Glycine max(L.)merr.). Theoretical and Applied Genetics, 2015, 128(6): 1061-1072 [百度学术]
张玉芹, 陆翔, 李擎天, 陈受宜, 张劲松. 大豆品质调控基因克隆和功能研究进展. 中国农业科学, 2016, 49(22):4299-4309 [百度学术]
Zhang Y Q, Lu X, Li Q T, Chen S Y, Zhang J S. Recent advances in identification and functional analysis of genes responsible for soybean nutritional quality. Scientia Agricultura Sinica, 2016, 49(22):4299-4309 [百度学术]
Du H P, Fang C, Li Y R, Kong F J, Liu B H. Understandings and future challenges in soybean functional genomics and molecular breeding. Journal of Integrative Plant Biology, 2023, 65(2):468-495 [百度学术]
Yang Z M, Huang D Q, Tang W Q, Zheng Y, Liang K J, Cutler A J, Wu W R. Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS ONE, 2013, 8(7):e68433 [百度学术]
Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 1991, 88(21):9828-9832 [百度学术]
Stewart G C, Roeder A H K, Patrick S, Chris S, Wolfgang L, Hector C. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS ONE, 2016, 11(1):e0146492 [百度学术]
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30(2): 174-178 [百度学术]
Li C S, Xiang X L, Huang Y, Zhou Y C, An D, Dong J Q, Zhao C X, Liu H J, Li Y B, Wang Q , Du C G, Messing J, Larkins B A, Wu Y R, Wang W Q. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nature Communications,2020, 11(1):17 [百度学术]
Shen Y T, Liu J, Geng H Y, Zhang J X, Liu Y C, Zhang H K, Xing S L, Du J C, Ma S S, Tian Z X. De novo assembly of a Chinese soybean genome. Science China Life Sciences, 2018, 1(8):871-884 [百度学术]
Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B G, Han B, Liang C Z, Tian Z X. Pan-genome of wild and cultivated soybeans. Cell, 2020, 82(1):162-176 [百度学术]
Zou C, Wang P X, Xu Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016, 14(10):1941-1955 [百度学术]
Sun Y P, Wang J K, Crouch J H, Xu Y B. Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Molecular Breeding, 2010, 26(3):493-511 [百度学术]
王金陵. 东北地区大豆株型的演变. 大豆通报, 1996 (1):5-7 [百度学术]
Wang J L. Evolution of soybean plant shape in northeast China. Soybean Bulletin, 1996 (1):5-7 [百度学术]
盖钧镒. 大豆高产理想型群体生理基础的探讨. 南京:江苏科技出版社, 1990: 35-41 [百度学术]
Gai J Y. Discussion on the physiological basis of soybean high yield ideal type population. Nanjing:Phoenix Science Press, 1990:35-41 [百度学术]
Liu S L, Zhang M, Feng F, Tian Z X. Toward a “Green Revolution” for soybean. Molecular Plant, 2020, 13(5):688-697 [百度学术]
张久坤, 齐阳阳, 李立竹, 宁哓霜, 刘志华, 姜振峰, 李文滨. 利用BSA法定位大豆全基因组株高QTL及候选基因分析. 华北农学报, 2020, 35(S1):1-10 [百度学术]
Zhang J K, Qi Y Y, Li L Z, Ning X S, Liu Z H, Jiang Z F, Li W B. Genome-wide mapping of QTLs and candidate genes underlying plant height in soybean using BSA method. Acta Agriculturae Boreali-Sinica, 2020, 35(S1):1-10 [百度学术]
Dong Z M, Chen L, Li Z, Liu N X, Zhang S C, Liu J, Liu B Q. Identification and molecular mapping of the semi-dwarf locus (sdf-1) in soybean by SLAF-seq method. Euphytica, 2020, 216(6):103 [百度学术]
Li R C, Jiang H W, Zhang Z G, Zhao Y Y, Xie J G, Wang Q, Zheng H Y, Hou L L, Xiong X, Xin D W, Hu Z B, Liu C Y, Wu X X, Chen Q S. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. International Journal of Molecular Sciences, 2019, 21(1):42 [百度学术]
唐宽强. GmLIM1 基因调控大豆株高的分子机制. 北京: 中国科学院大学, 2020 [百度学术]
Tang K Q. Molecular mechanism of GmLIM1 gene regulation of soybean plant height. Beijing: University of Chinese Academy of Sciences, 2020 [百度学术]
Zhang X L, Wang W B, Guo N, Zhang Y Y, Bu Y P, Zhao J M, Xing H. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics, 2018, 19(1):226 [百度学术]
赵圆圆, 李瑞超, 蒋洪蔚, 王乔, 谢建国, 刘春燕, 武小霞, 陈庆山. 大豆底荚高度QTL定位及候选基因挖掘. 中国油料作物学报, 2020, 42(1): 51-60 [百度学术]
Zhao Y Y, Li R C, Jiang H W, Wang Q, Xie J G, Liu C Y, Wu X X, Chen Q S. QTL mapping and candidate gene mining for first pod height in soybean. Chinese Journal of Oil Crop Sciences, 2020, 42(1): 51-60 [百度学术]
杨玉花, 白志元, 卫保国, 雷阳, 张瑞军. 基于BSA和SLAF-Seq技术对大豆主茎节数QTL精细定位. 核农学报, 2021, 35(9): 1953-1963 [百度学术]
Yang Y H, Bai Z Y, Wei B G, Lei Y, Zhang R J. Fine mapping of node numbers on the main stem QTLs in soybean based on BSA and SLAF-Seq. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1953-1963 [百度学术]
Wang X, Liu C K, Tu B J, Li Y S, Chen H, Zhang Q Y, Liu X B. Characterization on a novel rolled leaves and short petioles soybean mutant based on Seq-BSA and RNA-seq analysis. Journal of Plant Biology, 2022, 65:261-277 [百度学术]
Jun T H, Kang S T, Van D A E. Genetic map of lps3: A new short petiole gene in soybeans. Genome, 2012, 55(2):140-146 [百度学术]
徐唯佳, 路锦, 高慧慧, 万明月, 李佳佳, 苗龙, 王晓波, 邱丽娟. 栽培大豆二列状互生叶序基因初步定位. 大豆科学, 2021, 40(4):457-465 [百度学术]
Xu W J, Lu J, Gao H H, Wan M Y, Li J J, Miao L, Wang X B, Qiu L J. Mapping of distichous alternate phyllotaxis gene in cultivated soybean. Soybean Science, 2021, 40(4):457-465 [百度学术]
张之昊, 王俊, 刘章雄, 邱丽娟. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因. 作物学报, 2020, 46(12):1839-1849 [百度学术]
Zhang Z H, Wang J, Liu Z X, Qiu L J. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-Seq in soybean (Glycine max L.). Acta Agronomica Sinica, 2020, 46(12):1839-1849 [百度学术]
孙天宇. 大豆开花期相关数量性状位点(QTL)的定位. 北京:中国科学院大学, 2017 [百度学术]
Sun T Y. Quantitative trait loci mapping on flowering time of soybean. Beijing: University of Chinese Academy of Sciences, 2017 [百度学术]
Watanabe S, Tsukamoto C, Oshita T, Yamada T, Anai T, Kaga A. Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean. Breeding Science, 2017, 67(3):277-285 [百度学术]
Lv T X, Wang L S, Zhang C Y, Liu S, Wang J X, Lu S J, Fang C, Kong L P, Li Y L, Li Y G, Hou X L, Liu B H, Kong F J, Li X M. Identification of two quantitative genes controlling soybean flowering using bulked-segregant analysis and genetic mapping. Frontiers Plant Science, 2022, 13:987073 [百度学术]
王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因. 作物学报, 2022, 48(3): 635-643 [百度学术]
Wang J, Zhang Y W, Jiao Z J, Liu P P, Chang W. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean. Acta Agronomica Sinica, 2022, 48(3): 635-643 [百度学术]
陈静静, 刘谢香, 于莉莉, 卢一鹏, 张嗣天, 张昊辰, 关荣霞, 邱丽娟. 利用BSA法发掘野生大豆种子硬实性相关QTL. 中国农业科学, 2019, 52(13): 2208-2219 [百度学术]
Chen J J, Liu X X, Yu L L, Lu Y P, Zhang S T, Zhang H C,Guan R X, Qiu L J. QTL mapping of hard seededness in wild soybean using BSA method. Scientia Agricultura Sinica, 2019, 52(13): 2208-2219 [百度学术]
Xie J G, Wang Q, Zhang Z G, Xin X, Yang M L, Qi Z M, Xin D W, Zhu R S, Sun M M, Dong X H, Jiang H W, Chen Q S. QTL-seq identified QTLs and candidate genes for two-seed pod length and width in soybean (Glycine max). Plant Breeding, 2021, 140(3):1-11 [百度学术]
宋健. 大豆种皮色相关基因的图位克隆及功能解析. 北京: 中国农业科学院, 2019 [百度学术]
Song J. Map-based cloning and functional analysis of genes controlling seed coat color in soybean (Glycine max (L.)Merr.). Beijing: Chinese Academy of Agricultural Sciences, 2019 [百度学术]
郁晓敏, 金杭霞, 杨清华, 傅旭军, 郭丹丹, 吕晓男, 袁凤杰. 利用SLAF-seq结合BSA方法发掘大豆种皮色相关基因. 分子植物育种, 2021, 19(2): 385-391 [百度学术]
Yu X M, Jin H X, Yang Q H, Fu X J, Guo D D, Lv X N, Yuan F J. Mapping of soybean genes related to seed-coat color using SLAF-seq and BSA methods. Molecular Plant Breeding, 2021, 19(2): 385-391 [百度学术]
Guo X Y, Jiang J H, Liu Y, Yu L L, Chang R Z, Guan R X,Qiu L. Identification of a novel salt tolerance-related locus in wild soybean (Glycine soja Sieb. & Zucc.). Frontiers Plant Science, 2021, 12:791175 [百度学术]
郑宪彪. 大豆突变体耐盐表型鉴定及耐盐基因定位群体遗传分析.泰安: 山东农业大学, 2020 [百度学术]
Zheng X B. Identification of salt tolerance phenotype of soybean mutants and population genetic analysis of salt tolerance gene mapping. Taian: Shandong Agricultural University, 2020 [百度学术]
李玉卓. 大豆耐盐碱性快速鉴定方法的建立及耐盐碱基因的初步挖掘. 北京: 中国科学院大学, 2021 [百度学术]
Li Y Z. Establishment of a rapid screening protocol for identification of saline-alkali tolerance and preliminary cloning of genes underlying saline-alkali tolerance in soybean. Beijing: University of Chinese Academy of Sciences, 2021 [百度学术]
曾维英, 苏燕竹, 赖振光, 杨守臻, 陈怀珠, 谭玉荣, 孙祖东, 盖钧镒. 基于BSA-Seq技术鉴定大豆耐荫性状相关候选基因. 中国油料作物学报, 2021, 43(6):1006-1015 [百度学术]
Zeng W Y, Su Y Z, Lai Z G, Yang S Z, Chen H Z,Tan Y R, Sun Z D, Gai J Y. Identification of candidate gene controlling shade-tolerant by BSA-Seq in soybean. Chinese Journal of Oil Crop Sciences, 2021, 43(6):1006-1015 [百度学术]
Li H C, Zhi H J, Gai J Y, Guo D Q, Wang Y W, Li K, Bai L, Yang H. Inheritance and gene mapping of resistance to soybean mosaic virus strain sc14 in soybean. Journal of Integrative Plant Biology, 2006, 48 (12):1466-1472 [百度学术]
Wang D G, Ma Y, Liu N, Yang Z L, Zheng G J, Zhi H J. Fine mapping and identification of the soybean RSC4 resistance candidate gene to soybean mosaic virus. Plant Breeding, 2011, 13(6):653-659 [百度学术]
贾慧颖. 大豆对大豆花叶病毒抗病位点RSC3的定位及候选基因分析. 南京: 南京农业大学, 2019 [百度学术]
Jia H Y. Localization and candiddate gene prediction of the locus RSC3 resistant to soybean mosaic virus in soybean. Nanjing: Nanjing Agricultural University,2019 [百度学术]
Sun J T, Li L H, Zhao J M, Huang J, Yan Q, Xing H, Guo N. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean (Glycine max (L.) Merr.). Theoretical and Applied Genetics, 2014, 124(4):913-919 [百度学术]
Zhang J Q, Xia C J, Duan C X, Sun S L, Wang X M, Wu X F, Zhu Z D. Identification and candidate gene analysis of a novel phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS ONE, 2013, 8(7): e69799 [百度学术]
Ping J Q, Fitzgerald J C, Zhang C B, Lin F, Bai Y H, Wang D C, Aggarwal R, Rehman M, Crasta O, Ma J X. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean. Theoretical and Applied Genetics, 2016, 129(2):445-451 [百度学术]
Chen L Y, Wang W D, Ping J Q, Fitzgerald J C, Cai G H, Clark C B, Aggarwal R, Ma J. Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean. Theoretical and Applied Genetics, 2021, 134(12):3863-3872 [百度学术]
Vuong T D, Walker D R, Nguyen B T, Nguyen T T, Dinh H X, Hyten D L, Cregan P B, Sleper D A, Lee J D, Shannon J G, Nguyen H T. Molecular characterization of resistance to soybean rust (Phakopsora pachyrhizi Syd. & Syd.) in soybean cultivar DT 2000 (PI 635999). PLoS ONE, 2016, 11(12):e0164493 [百度学术]
Bhor T J, Chimote V P, Deshmukh M P. Molecular tagging of Asiatic soybean rust resistance in exotic genotype EC 241780 reveals complementation of two genes. Plant Breeding, 2015, 134(1):70-77 [百度学术]
赵胜. 大豆种质SX6907抗锈性状遗传及基因定位研究. 北京: 中国农业科学院, 2016 [百度学术]
Zhao S. Genetic and mapping of resistance gene to rust in soybean germplasm SX6907. Beijing: Chinese Academy of Agricultural Sciences, 2016 [百度学术]
曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47(8):1460-1471 [百度学术]
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq. Acta Agronomica Sinica, 2021, 47(8):1460-1471 [百度学术]
Shaibu A S, Zhang S R, Ma J K, Feng Y, Huai Y Y, Qi J, Li J, Abdelghany A M, Azam M, Htway H T P, Sun J M, Li B. The GmSNAP11 contributes to resistance to soybean cyst nematode race 4 in Glycine max. Frontiers in Plant Science,2022, 13:939763 [百度学术]
Schuster I, Abdelnoor R V, Marin S, Carvalho V, Kiihl R, Silva J, Sediyama C, Barros E, Moreiraet M. Identification of a new major QTL associated with resistance to soybean cyst nematode (Heterodera glycines). Theoretical and Applied Genetics, 2001, 102(1):91-96 [百度学术]
李永宽, 张井勇, 赵国龙, 李蓉, 林春晶, 赵丽梅, 彭宝, 张春宝. 大豆RN型细胞质雄性不育育性恢复抑制基因Rf-I的遗传分析与定位. 农业生物技术学报, 2020, 28(5): 761-770 [百度学术]
Li Y K, Zhang J Y, Zhao G L, Li R, Lin C J, Zhao L M, Peng B, Zhang C B. Genetic analysis and mapping of Rf-I, an inhibitor of fertility restorer gene for CMS-RN in soybean (Glycine max). Journal of Agricultural Biotechnology, 2020, 28(5): 761-770 [百度学术]
郭凤兰, 林春晶, 王鹏年, 杨绪磊, 吴铮, 彭宝, 赵丽梅, 张春宝. 大豆细胞质雄性不育恢复基因GmRf1的精细定位. 植物遗传资源学报, 2022, 23(2): 518-526 [百度学术]
Guo F L, Lin C J, Wang P N, Yang X L, Wu Z, Peng B, Zhao L M, Zhang C B. Fine mapping of a restorer-of-fertility gene GmRf1 for the cytoplasmic male sterility in soybean. Journal of Plant Genetic Resources, 2022, 23(2): 518-526 [百度学术]
贾顺耕, 郭凤兰, 林春晶, 孙妍妍, 张颖, 雷蕾, 彭宝, 赵丽梅, 张春宝. 大豆细胞质雄性不育育性恢复基因Rf3的定位. 植物遗传资源学报, 2021, 22(5):1411-1417 [百度学术]
Jia S G, Guo F L, Lin C J, Sun Y Y, Zhang Y, Lei L, Peng B, Zhao L M, Zhang C B. Mapping of fertility restorer gene Rf3 of cytoplasmic male sterility in soybean. Journal of Plant Genetic Resources, 2021, 22(5):1411-1417 [百度学术]
Nadeem M, Chen A D, Hong H L, Li D D, Li J J, Zhao D, Wang W, Wang X B, Qiu L J. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). Journal of Integrative Plant Biology, 2021, 63(6):1054-1064 [百度学术]
Fang X L, Sun X Y, Yang X D, Li Q, Lin C J, Xu J, Gong W J, Wang Y F, Liu L , Zhao L M, Liu B H, Qin J, Zhang M C, Zhang C B, Kong F J, Li M N. MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. Science China Life Sciences, 2021, 64(9):1533-1545 [百度学术]