摘要
水稻是我国最重要的粮食作物之一,水稻生产是国家粮食安全的重要保障。传统移栽种植模式对我国的水稻增产、农民增收、农业发展起到了重要作用。但随着社会经济发展和产业要素变革,农村劳动力大幅减少,迫切需求轻简化的生产方式。水稻淹水直播能节省劳力、节约资源、有效降低杂草危害,是一种高效、经济和节约型的轻简栽培模式,在当前有较高的推广价值。淹水萌发时低氧胁迫造成的出苗率低是阻碍水稻淹水直播的首要因素,丰富的水稻种质资源中存在耐淹水萌发优异资源和基因,挖掘和利用这些优异资源和基因并培育适宜淹水直播的水稻新品种,是突破目前直播稻推广和应用瓶颈的关键。本文围绕水稻淹水萌发的生理特点、鉴定评价方法、优异种质鉴定、遗传规律、响应机制研究以及功能基因的育种应用等方面的研究进展进行综述,以期为水稻耐淹水萌发的机制研究和萌发耐淹品种的选育提供参考。
水稻是我国60%以上人口的主粮,水稻生产是国家粮食安全的重要保障。传统移栽模式一直是我国水稻种植的主要方式,对我国的水稻增产、农民增收、农业发展起到了重要作
然而,水稻淹水直播也面临着一些重大挑战。第一,水稻萌发对氧气的消耗量较大,而氧气在水中的扩散速度是空气中的1/10000左右,因此无论哪种程度的淹水都会导致直播环境相对低
与其他作物不同,水稻可以在淹水或缺氧状态下萌发,表现为种子优先生长胚芽鞘,胚芽鞘在低氧环境下保护真叶,通过快速伸长到达水面上层,从而获取真叶存活及生长所需的氧气和光,而幼根等其他植物器官延迟生

图1 水稻在淹水发芽时的生理状态及生长策略
Fig. 1 Physiological status and growth strategy of rice during submerged germination
LOQS:“静止”耐淹策略;LOES:“伸长”耐淹策
LOQS: Low O2 quiescence strategy; LOES: Low O2 elongation strateg
水稻淹水发芽时也会引起一系列生理生化变化:第一,淀粉是种子萌发时的重要能量来源,水稻种子在受到低氧胁迫时,有氧呼吸受到严重抑制,淀粉酶活性增强,α淀粉酶基因RAmy3D的表达量增加,促进淀粉的降解,在一定程度上保证了胚芽鞘生长所需的能量供
水稻淹水萌发对低氧胁迫的响应是一个十分复杂的过程,因此相关研究对水稻耐淹水萌发的鉴定和评价指标也不尽相同。目前主要以胚芽鞘长度和成苗率等作为耐淹水萌发指标。
(1)胚芽鞘长度:水稻种子在萌发时遇到淹水胁迫或低氧胁迫,其胚芽鞘快速伸长以便快速获得氧气,而根和叶的生长受到抑

图2 不同水稻品种黑暗淹水时的发芽特征
Fig. 2 Germination characteristics of different rice varieties under dark waterlogging
(2)成苗率:出苗率问题是阻碍直播稻发展的首要问题,它直接影响群体的起点苗数,进而影响群体产量。因此,在短期淹水环境下能保持较强的出苗能力,是评价水稻品种萌发耐淹的较直观指标。刘艳
成苗率相较于胚芽鞘长度能更直观地反映水稻品种在短期淹水萌发下的出苗能力,但多数研究仅仅是在人工气候箱中进行盆栽试验,因此有必要探索更接近稻田生长环境的稳定系统的评价鉴定体系。
近年来,水稻直播由于其低成本、省力等优势,直播面积有增加趋势,但也受限于水稻种子不耐淹、出苗率低和除草剂使用量大等问题。因此,选育萌发耐淹水稻品种已成为水稻生产的迫切需

图3 已报道的萌发耐淹QTL在水稻染色体上的分布
Fig.3 Distribution of reported QTL for germination tolerance to submergence on rice chromosomes
绿色:已报道的耐低氧萌发QTL;橙色:已克隆的耐低氧萌发QTL;数字代表QTL的个数
Green: Reported QTLs for hypoxic tolerance germination; Orange: Cloned QTLs for hypoxic tolerant germination; The number represents the number of QTLs
许多与水稻萌发耐淹相关的QTL仅限于初定位,只有少数的QTL被克隆(
基因 | 染色体 | 表型 | 功能 | 文献 |
---|---|---|---|---|
Gene | Chromosome | Traits | Function | References |
OsTPP7 | 9 | 胚芽鞘长度 | 编码海藻糖-6-磷酸酶 |
[ |
OsGF14h | 11 | 无氧萌发率和胚芽鞘长度 | 编码14-3-3蛋白 |
[ |
OsUGT75A | 11 | 胚芽鞘长度 | UDP-葡糖基转移酶 |
[ |
HXK6 | 1 | 胚芽鞘长度 | 编码己糖激酶 |
[ |
LOC_Os06g03520 | 6 | 胚芽鞘长度 | 编码含有DUF581结构域的蛋白 |
[ |
LOC_Os03g31550 | 3 | 存活率和胚芽鞘长度 | 编码醛氧化酶 |
[ |
LOC_Os12g31350 | 12 | 存活率和胚芽鞘长度 | 编码SSXT家族蛋白 |
[ |
OsGF14h是从杂草稻中克隆到的与水稻种子低氧萌发和胚芽鞘形成相关的基因。OsGF14h作为信号开关,通过与转录因子OsHOX3和OsVP1相互作用来平衡脱落酸信号传导和赤霉素生物合成,从而使低氧敏感品种在淹水直播条件下的出苗率从13.5%提高到60.5
通过GWAS鉴定到了1个新的调控水稻耐淹水萌发基因OsUGT75A。OsUGT75A通过在淹没条件下促进两种植物激素游离脱落酸和茉莉酸的糖基化来降低其水平,从而调节胚芽鞘长度。此外,还发现OsUGT75A通过介导JASMONATE ZIMDOMAIN (OsJAZ)和脱落酸不敏感(OsABI)蛋白之间的相互作用来促进胚芽鞘伸
通过基因表达和单倍型分析,发现候选基因HXK6存在与低氧条件下胚芽鞘长度关联的单倍
水稻淹水萌发是一个由多基因控制的复杂性状,对于水稻淹水萌发能力相关的遗传机制,研究者从多重角度开展了分析。
水稻种子在淹水条件下可通过胚芽鞘生长抵抗低氧而出苗。无氧呼吸和能量代谢等相关的酶(α-淀粉酶、乙醇脱氢酶、丙酮酸羧化酶)与水稻耐淹水萌发密切相
植物激素也是影响水稻种子淹水萌发的重要因素。在淹水状态下小分子RNA miR393a表达受到抑制,而生长素响应因子的表达增强,胚芽鞘伸长受到抑
低氧环境下,水稻的主要代谢方式为乙醇发酵。厌氧途径通过丙酮酸脱羧酶(PDC,pyruvate decaboxylase)将丙酮酸盐转化为乙醛,随后乙醛在乙醇脱氢酶(ADH,alcohol dehydrogenase)的作用下被还原为乙醇,从而再生NA
胚芽鞘因缺乏分生组织活性,其生长完全依赖于细胞的伸长。扩展蛋白是已知调节细胞壁伸长的一类蛋白质,淹水或缺氧条件下在胚芽鞘中高表达,与过氧化物酶一起参与调节低氧胁迫下胚芽鞘的细胞壁生长和伸
近年来,应用较广泛的探索是利用分子标记辅助选择将水稻耐淹水萌发基因转移至水稻高产主栽品种中。目前,应用较多的位点是水稻萌发耐淹性主效位点AG1(即qAG-9-2,OsTPP7)和AG2。国际水稻研究所通过杂交和回交手段结合紧密连锁分子标记RM3769和RM24141将AG1导入IR64,获得了近等基因系IR64-AG1,试验证明AG1的导入提高了水稻萌发耐淹性。以IR64-AG1为供体亲本,将AG1导入到优良品种Ciherang-Sub1中,显著提高了Ciherang-Sub1的萌发耐淹
人口红利的减少、劳动力的缺乏、信息化的发展,使得轻简高效栽培模式成为未来水稻生产发展的方向。水稻淹水直播是一种经济、高效和节约的轻简栽培模式,但直播稻发芽时如遇到强降雨、田面不平整或积水显著则影响水稻出苗率,严重制约水稻的稳产高产,而目前生产上已育成的品种耐淹水萌发性弱且可供利用的水稻耐淹水萌发功能基因较少。同时,已有多数的水稻耐淹水萌发鉴定是在人工气候箱或者使用营养土模拟田间环境进行,不够接近生产实践。另外,水稻耐淹水萌发性状为多基因控制数量性状,通过传统回交转育手段进行萌发期耐淹育种十分困难。因此,建立系统完善接近生产实践的鉴定评价体系,挖掘耐淹水萌发优异资源或基因,探索分析水稻品种适应淹水萌发的机制,培育萌发耐淹水稻新品种和开发重要功能标记,对于推动水稻直播技术的发展和进一步创新直播稻稳产高产途径意义重大。
在育种中,利用携带萌发耐淹相关QTL或耐淹基因的优异种质资源进行杂交,结合分子标记辅助选择和背景纯度检测进行选育,经过多代回交和自交获得综合农艺性状较好、耐淹性较强的水稻新品种。同时可将已知萌发耐淹基因与其他重要基因聚合进行直播稻品种的培育。如AG1和磷高效基因Pup1能高效协同,二者聚合后既提高萌发耐淹性,又促进了磷素的高效吸收,该聚合系早期展现出强劲的活力并且分蘖增
参考文献
汪杰, 李世明, 王楚桃, 王婧. 水稻育种发展趋势及直播耐淹水萌发研究进展. 中国种业, 2020 (8): 4-7 [百度学术]
Wang J, Li S M, Wang C T, Wang J. Development trend of rice breeding and advances of direct seeding and tolerance to hypoxic germination. China Seed Industry, 2020 (8): 4-7 [百度学术]
罗锡文, 王在满, 曾山, 臧英, 杨文武, 张明华. 水稻机械化直播技术研究进展. 华南农业大学学报, 2019, 40(5): 1-13 [百度学术]
Luo X W, Wang Z M, Zeng S, Zang Y, Yang W W, Zhang M H. Recent advances in mechanized direct seeding technology for rice. Journal of South China Agricultural University, 2019, 40(5): 1-13 [百度学术]
Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Mikio N M. Mechanisms for coping with submergence and waterlogging in rice. Rice, 2012, 5(1):1-14 [百度学术]
陈世辉. 直播水稻栽培技术中存在的问题及对策探讨. 种子科技, 2018, 36(6):5-9 [百度学术]
Chen S H. Discussion on the problems and countermeasures of direct seeding rice cultivation technology. Seed Technology, 2018, 36(6): 5-9 [百度学术]
于洋, 苏耀华, 张春龙, 杨米, 李正和, 张江丽, 普世皇, Phongsai Channarong, 李娟, 金寿林, 文建成. 低氧环境对水稻萌发生长及生化指标的影响. 扬州大学学报:农业与生命科学版, 2020, 41(4): 16-20 [百度学术]
Yu Y, Su Y H, Zhang C L, Yang M, Li Z H, Zhang J L, Pu S H, Phongsai C, Li J, Jin S L, Wen J C. Rice germination and biochemical indicator variation in the hypoxic condition. Journal of Yangzhou University :Agricultural and Life Science Edition, 2020, 41(4): 16-20 [百度学术]
Zhang M C, Lu Q, Wei W, Niu X J, Wang C H, Feng Y, Xu Q, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. Association mapping reveals novel genetic loci contributing to flooding tolerance during germination in indica rice. Frontiers in Plant Science, 2017, 8: 678-686 [百度学术]
Yang J, Sun K, Li D X, Luo L X, Liu Y Z, Huang M, Yang G L, Liu H, Wang H, Chen Z Q. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC Genomics, 2019, 20(1): 355-369 [百度学术]
Pucciariello C. Molecular mechanisms supporting rice germination and coleoptile elongation under low oxygen. Plants, 2020, 9(8): 1037-1047 [百度学术]
Colmer T D, Armstrong W, Greenway H, Ismail A M, Kirk G D, Atwell B J. Physiological mechanisms of flooding tolerance in rice: Transient complete submergence and prolonged standing water. Progress in Botany, 2014, 75: 255-307 [百度学术]
Ma M Q, Cen W J, Li R B, Wang S K, Luo J J. The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low O2 stress. Plants, 2020, 9(10): 1363-1376 [百度学术]
Lee K W, Chen P W, Lu C A, Chen S, David Ho T H, Yu S M. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Science Signaling, 2009, 2(91): 1-9 [百度学术]
Loreti E, Yamaguchi J, Alpi A, Perata P. Sugar modulation of α-amylase genes under anoxia. Annals of Botany, 2003, 91(2): 143-148 [百度学术]
Quimio C A, Torrizo L B, Setter T L, Ellis M, Grover A, Abrigo E M, Oliva N P, Ella E S, Carpena A L, Ito O, Peacock W J, Dennis E, Dattal S K. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. Journal of Plant Physiology, 2000, 156(4): 516-521 [百度学术]
沈家涛, 金雅芳, 李金灵, 胡仲远, 徐强, 陈学好, 齐晓花. 植物激素调控植物耐涝响应机理研究进展. 植物生理学报, 2022, 58(4): 643-653 [百度学术]
Shen J T, Jin Y F, Li J L, Hu Z Y, Xu Q, Chen X H, Qi X H. The role of plant hormone in plant waterlogging tolerance. Plant Physiology Journal, 2022, 58 (4): 643-653 [百度学术]
He Y Q, Cheng J P, Li X D, Zeng P, Yang B, Zhang H S, Wang Z F. Acquisition of desiccation tolerance during seed development is associated with oxidative processes in rice. Botany, 2016, 94(2): 91-101 [百度学术]
赵霞, 杜朝云, 徐春梅, 杨华伟, 吕泽林, 章秀福. 水稻对低氧环境的适应及其机制研究进展. 作物杂志, 2015, 166(3): 5-12 [百度学术]
Zhao X, Du C Y, Xu C M, Yang H W, Lv Z L, Zhang X F. Advances on adaptation of rice to low oxygen environment and its mechanism. Crops, 2015, 166(3): 5-12 [百度学术]
刘利成, 李小湘, 黎用朝, 潘孝武, 闵军, 刘三雄, 刘文强, 胡敏, 段永红, 余亚莹, 张海清. 水稻种子耐厌氧萌发全基因组关联分析. 植物遗传资源学报, 2021, 22(6): 1644-1650 [百度学术]
Liu L C, Li X X, Li Y C, Pan X W, Min J, Liu S X, Liu W Q, Hu M, Duan Y H, Yu Y Y, Zhang H Q. Genome wide association study of anaerobic germination tolerance in seeds of rice accessions. Journal of Plant Genetic Resources, 2021, 22(6): 1644-1650 [百度学术]
张所兵, 张云辉, 陈海元, 林静, 汪迎节, 朱晓妹, 宋春凤, 方先文. 利用重组自交系定位水稻种子低氧发芽力QTL. 华北农学报, 2020, 35(6): 31-35 [百度学术]
Zhang S B, Zhang Y H, Chen H Y, Lin J, Wang Y J, Zhu X M, Song C F, Fang X W. Identification of QTL involved in anaerobic germination tolerance by RIL population in rice. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 31-35 [百度学术]
刘艳, 宋兆强, 夏祥华, 王宝祥, 周振玲, 卢百关, 李健, 秦德荣, 徐大勇. 大田模拟环境下水稻种子耐缺氧能力遗传研究. 西南农业学报, 2016, 29(10): 2279-2283 [百度学术]
Liu Y, Song Z Q, Xia X H, Wang B X, Zhou Z L, Lu B G, Li J, Qin D R, Xu D Y. Genetic variation of seed tolerance to anoxia among rice (Oryza sativa L.) varieties under simulated field environment. Southwest China Journal of Agricultural Sciences, 2016, 29(10): 2279-2283 [百度学术]
Angaji S A, Septiningsih E M, Mackill D J, Ismail A M. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica, 2010, 172: 159-168 [百度学术]
林翠香, 宋龙飞, Sergey Garkusha, 宋丰顺, Zhanna Mukhina, 滕斌, 甘泉, Vitor Kovalyov, 余海兵, Lubov Yesaulova, 倪大虎. 俄引水稻种质的直播特性研究. 中国农学通报, 2021, 37(23): 1-7 [百度学术]
Lin C X, Song L F, Sergey G, Song F S, Zhanna M, Teng B, Gan Q, Vitor K, Yu H B, Lubov Y, Ni D H. The direct seeding characteristics of rice from Russia. Chinese Agricultural Science Bulletin, 2021, 37(23): 1-7 [百度学术]
孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位. 作物学报, 2021, 47(1): 61-70 [百度学术]
Sun Z G, Wang B X, Zhou Z L, Fang L, Chi M, Li J F, Liu J B, Bello B K, Xu D Y. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.). Acta Agronomica Sinica, 2021, 47(1): 61-70 [百度学术]
陈振挺, 冯芳君, 严明, 范佩清, 马孝松, 吴金红, 梅捍卫. 水稻自然变异群体淹水发芽相关特性鉴定. 上海农业学报, 2020, 36(5): 1-6 [百度学术]
Chen Z T, Feng F J, Yan M, Fan P Q, Ma X S, Wu J H, Mei H W. Identification of characteristics related to submergence germination of rice natural variation population. Acta Agriculturae Shanghai, 2020, 36(5): 1-6 [百度学术]
Hsu S K, Tung C W. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice. Rice, 2015, 8(1): 38-50 [百度学术]
Kong W L, Li S M, Zhang C H, Qiang Y L, Li Y S. Combination of quantitative trait locus (QTL) mapping and transcriptome analysis reveals submerged germination QTLs and candidate genes controlling coleoptile length in rice. Food and Energy Security, 2022, 11: 1-10 [百度学术]
陈孙禄, 王俊敏, 潘佑找, 马健阳, 张建辉, 张红生, 滕胜. 水稻萌发耐淹性的遗传分析. 植物学报, 2012, 47(1): 28-35 [百度学术]
Chen S L, Wang J M, Pan Y Z, Ma J Y, Zhang J H, Zhang H S, Teng S. Genetic analysis of seed germinability under submergence in rice. Chinese Bulletin of Botany, 2012, 47(1): 28-35 [百度学术]
Baltazar M D, Ignacio J C, Thomson M J, Ismail A M, Mendioro M S, Septiningsih E M. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the aus landrace Kharsu 80A. Breeding Science, 2019, 69(2): 227-233 [百度学术]
Ghosal S, Casal C, Quilloy F A, Septiningsih E M, Mendioro M S, Dixit S. Deciphering genetics underlying stable anaerobic germination in rice: Phenotyping, QTL identification, and interaction analysis. Rice, 2019, 12(1): 1-15 [百度学术]
Nishimura T, Sasaki K, Yamaguchi T, Takahashi H, Yamagishi J, Kato Y. Detection and characterization of quantitative trait loci for coleoptile elongation under anaerobic conditions in rice. Plant Production Science, 2020, 23(3): 374-383 [百度学术]
Islam M R, Naveed S A, Zhang Y, Li Z K, Zhao X Q, Fiaz S, Zhang F, Wu Z C, Hu Z Q, Fu B Y, Shi Y Y, Shah S M, Xu J L, Wang W S. Identification of candidate genes for salinity and anaerobic tolerance at the germination stage in rice by genome-wide association analyses. Frontiers in Genetics, 2022, 13: 1-13 [百度学术]
Septiningsih E M, Ignacio J I, Sendon P D, Sanchez D L, Ismail A M, Mackill D J. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theoretical and Applied Genetics, 2013, 126: 1357-1366 [百度学术]
Kretzschmar T, Pelayo M F, Trijatmiko K R, Alam R, Jimenez R, Mendioro M S, Slamet-Loedin I H, Sreenivasulu N, Bailey-Serres J, Ismail A M, Mackill D J, Septiningsih E M. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants, 2015, 1(9): 1-5 [百度学术]
Sun J, Zhang G, Cui Z, Kong X, Yu X, Gui R, Han Y, Li Z, Lang H, Hua Y. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h. Nature Communications, 2022, 13 (1):1-15 [百度学术]
He Y Q, Sun S, Zhao J, Huang Z B, Peng L L, Huang C W, Tang Z B, Huang Q Q, Wang Z H. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination. Nature Communications, 2023, 14: 1-14 [百度学术]
Rohilla M, Singh N, Mazumder A, Sen P, Roy P, Chowdhury D, Singh N K, Mondal T K. Genome-wide association studies using 50 K rice genic SNP chip unveil genetic architecture for anaerobic germination of deep-water rice population of Assam, India. Molecular Genetics and Genomics, 2020, 295: 1211-1226 [百度学术]
Ismail A M, Ella E S, Vergara G V, Mackill D J. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Annals of Botany, 2009, 103(2): 197-209 [百度学术]
Lee K W, Chen P W, Yu S M. Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. Plant Cell and Environment, 2014, 37: 2234-2244 [百度学术]
Ho V T, Tran A N, Cardarelli F, Perata P, Pucciariello C. A calcineurin B-like protein participates in low oxygen signalling in rice. Functional Plant Biology, 2017, 44: 917-928 [百度学术]
Ma Y M, Zhao J L, Fu H, Yang T F, Dong J F, Yang W, Chen L, Zhou L, Wang J, Liu B, Zhang S H, David E. Genome-wide identification, expression and functional analysis reveal the involvement of FCS-like zinc finger gene family in submergence response in rice. Rice, 2021, 14(1): 1-13 [百度学术]
Bian H W, Xie Y K, Guo F, Han N, Ma S Y, Zeng Z H, Wang J H, Yang Y N, Zhu M Y. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytologist, 2012, 196(1): 149-161 [百度学术]
Guo F, Han N, Xie Y K, Fang K, Yang Y N, Zhu M Y, Wang J H, Bian H W. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant Cell and Environment, 2016, 39(10):2288-2302 [百度学术]
Nghi K N, Tagliani A, Mariotti L, Weits D A, Perata P, Pucciariello C. Auxin is required for the long coleoptile trait in japonica rice under submergence. New Phytologist, 2021, 29: 85-93 [百度学术]
Xiong Q, Ma B, Lu X, Huang Y H, He S J, Yang C. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. The Plant Cell, 2017, 29: 1053-1072 [百度学术]
Lv Y S, Shao G N, Jiao G A, Sheng Z H, Xie L H, Hu S K, Tang S Q, Wei X J, Hu P S. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Molecular Plant, 2020, 14(2): 1-8 [百度学术]
Hossain M A, Huq E, Grover A, Dennis E S, Hodges T K. Characterization of pyruvate decarboxylase genes from rice. Plant Molecularl Biology, 1996, 31(4): 761-770 [百度学术]
Quimio C A, Torrizo L B, Setter T L, Ellis M, Grover A, Abrigo E M, Oliva N P, Ella E S, Carpena A L, Ito O, Peacock W J, Dennis E, Dattal S K. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. Journal of Plant Physiology, 2000, 156(4): 516-521 [百度学术]
Saikah H, Matsumurah H, Takano T, Tsutsumi N, Nakazono M. A point mutation of Adh1 gene is involved in the repression of coleoptile elongation under submergence in rice. Breeding Science, 2006, 56(1): 69-74 [百度学术]
Kato N, Morokuma M. Ethanolic fermentation and anoxia tolerance in four rice cultivars. Journal of Plant Physiology, 2007, 164(2): 168-173 [百度学术]
Magneschi L, Kudahettige R L, Alpi A, Perata P. Expansin gene expression and anoxic coleoptile elongation in rice cultivars. Journal of Plant Physiology, 2009, 166(14): 1576-1580 [百度学术]
Huang J, Takano T, Akita S. Expression of α-expansin genes in young seedlings of rice (Oryza sativa L.). Planta, 2000, 211(4): 467-473 [百度学术]
Mendioro M S, Septiningsih E M. Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions. Plant Breeding and Biotechnology, 2015, 3(2): 77-87 [百度学术]
Mondal S, Khan M R, Dixit S, Cruz P S, Septiningsih E M, Ismail A M. Growth, productivity and grain quality of AG1 and AG2 QTLs introgression lines under flooding in direct-seeded rice system. Field Crops Research, 2020, 248: 1-12 [百度学术]
Ye N H, Wang F Z, Shi L, Chen M X, Cao Y Y, Zhu F Y, Wu Y Z, Xie L J, Liu T Y, Su Z Z, Xiao S, Zhang H, Yang J, Gu H Y, Hou X X, Hu Q J, Yi H J, Zhu C X, Zhang J, Liu Y G. Natural variation in the promoter of rice calcineurin B-like protein1 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies. The Plant Journal, 2018, 94(4): 612-625 [百度学术]
Shin N H, Han J H, Jang S, Song K, Koh H J, Lee J H, Yoo S, Chin J H. Early vigor of a pyramiding line containing two quantitative trait loci, phosphorus uptake 1(Pup1) and anaerobic germination 1 (AG1) in rice (O. sativa L.). Agriculture, 2020, 10(10): 453 [百度学术]
Kim S M, Kim C S, Jeong J U, Reinke R F, Jeong J M. Marker-assisted breeding for improvement of anaerobic germination in japonica rice (Oryza sativa). Plant Breeding, 2019, 138(6): 810-819 [百度学术]