摘要
为探明与火龙果裂果性相关的果实性状,以279份火龙果种质资源为供试材料,对单果重、果实纵径、果实横径、果形指数、果脐直径、果脐深度、果脐形状指数、果皮厚度、果脐果萼长度、果萼数量、可食率、果肉中心可溶性固形物含量、果肉边缘可溶性固形物含量等13个果实性状与裂果率进行遗传变异分析、相关性分析和多元回归分析。结果表明:13个果实性状和裂果率均存在丰富的遗传变异。相关性分析发现裂果率与果脐形状指数的相关系数最大且呈极显著负相关;裂果率与果形指数和果皮厚度存在显著负相关,而与可食率和果肉边缘可溶性固形物含量呈现显著正相关。进一步多元线性回归分析表明,果脐直径和果脐深度是影响裂果率的最主要因素,共解释裂果率39.30%的变异,而其他果实性状均不能显著影响裂果率。综上可知,果脐形态结构对火龙果的裂果性较为重要,在耐裂果育种中果脐形状指数可作为一个参考指标。
火龙果(Hylocereus spp.)是起源于中南美洲地区,后传入我国的一种外来热带水
据文献报道,许多水果如苹
为了系统研究果实性状与裂果性的关系,本研究利用279份火龙果种质资源,连续6年对单果重、果实纵径、果实横径、果形指数、果脐直径、果脐深度、果脐形状指数、果皮厚度、果脐果萼长度、果萼数量、可食率、果肉中心可溶性固形物含量、果肉边缘可溶性固形物含量等13个果实性状和裂果率进行鉴定,分析果实性状和裂果率的遗传变异,并通过相关性分析和多元回归分析挖掘影响裂果性的果实性状,以筛选优良基因资源,为火龙果耐裂品种的选育提供参考依据,同时为开展火龙果耐裂果性状相关QTL定位奠定基础。
供试材料共包括279份火龙果种质资源,其裂果率(表征裂果性)大小不同(详见https:// doi.org/10.13430/j.cnki.jpgr.20230706002,
果实性状 Fruit traits | 最小值 Min. | 最大值 Max. | 平均值 Average | 标准差 SD | 变异系数(%)CV |
---|---|---|---|---|---|
单果重(g)IFW | 89.6 | 506.3 | 277.47 | 99.81 | 35.97 |
果实纵径(mm)FLD | 51.01 | 140.68 | 86.37 | 15.47 | 17.91 |
果实横径(mm)FTD | 49.21 | 102.49 | 74.09 | 10.47 | 14.14 |
果形指数FSI | 0.92 | 1.56 | 1.17 | 0.14 | 11.58 |
果脐直径(mm)FND | 4.92 | 24.10 | 11.74 | 2.90 | 24.70 |
果脐深度(mm)FNDE | 1.16 | 23.68 | 10.89 | 3.66 | 33.59 |
果脐形状指数FNSI | 0.18 | 2.58 | 0.98 | 0.39 | 41.27 |
果皮厚度(mm)FST | 1.42 | 5.02 | 2.47 | 0.58 | 23.35 |
果脐果萼长度(cm)FBLFN | 2.32 | 55.07 | 32.50 | 9.84 | 30.28 |
果萼数量NFB | 13 | 53 | 29.55 | 6.53 | 22.10 |
可食率(%)FER | 42.36 | 82.05 | 69.58 | 6.16 | 8.85 |
果肉中心可溶性固形物含量(%)SSCCP | 10.7 | 22.9 | 18.12 | 1.67 | 9.22 |
果肉边缘可溶性固形物含量(%)SSCMP | 7.8 | 15.7 | 12.63 | 1.19 | 9.41 |
裂果率(%)FCR | 0 | 35.36 | 4.78 | 7.18 | 150.22 |
IFW: Individual fruit weigh; FLD: Fruit longitudinal diameter; FTD: Fruit transversal diameter; FSI: Fruit shape index; FND: Fruit navel diameter; FNDE: Fruit navel depth; FNSI: Fruit navel shape index; FST: Fruit skin thickness; FBLFN: Fruit bract length in fruit navel; NFB: Number of fruit bracts; FER: Fruit edible rate; SSCCP: Soluble solid content of central pulp; SSCMP: Soluble solid content of marginal pulp; FCR: Fruit cracking rate;The same as below
2016-2022年于果实成熟期裂果前进行果实性状测定,包括单果重、果实纵径、果实横径、果形指数、果脐直径、果脐深度、果脐形状指数、果皮厚度、果脐果萼长度、果萼数量、可食率、果肉中心可溶性固形物含量、果肉边缘可溶性固形物含量等13个果实性状,均参照地方标准《火龙果种质资源描述规范》(DB 45/T 1761-2018
火龙果种质资源的各个果实性状存在较大差异(

图1 火龙果种质资源的裂果率频率分布
Fig. 1 Distribution of frequency of fruit cracking rate in pitaya germplasm resources
火龙果裂果率与果形指数、果脐直径、果脐深度、果脐形状指数和可食率的相关性达到极显著水平(P<0.01),而与果实纵径、果实横径、果皮厚度和果肉边缘可溶性固形物含量的相关性呈显著水平(P<0.05),其中与可食率和果肉边缘可溶性固形物含量呈显著正相关,而与果皮厚度呈显著负相关(
果实性状 Fruit traits | 单果重IFW | 果实纵径FLD | 果实横径FTD | 果形指数 FSI | 果脐直径 FND | 果脐深度FNDE | 果脐形状指数 FNSI | 果皮厚度FST | 果脐果萼长度 FBLFN | 果萼数量 NFB | 可食率FER | 果肉中心可溶性固形物含量 SSCCP | 果肉边缘可溶性固形物含量 SSCMP | 裂果率FCR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单果重IFW | 1 | |||||||||||||
果实纵径FLD |
0.85 | 1 | ||||||||||||
果实横径FTD |
0.87 |
0.77 | 1 | |||||||||||
果形指数FSI |
0.23 |
0.57 | -0.060 | 1 | ||||||||||
果脐直径FND |
0.14 | 0.030 |
0.23 |
-0.26 | 1 | |||||||||
果脐深度FNDE |
0.36 |
0.38 |
0.24 |
0.26 | 0.014 | 1 | ||||||||
果脐形状指数FNSI |
0.19 |
0.29 | 0.053 |
0.38 |
-0.52 |
0.77 | 1 | |||||||
果皮厚度FST | -0.044 | 0.017 |
-0.12 |
0.20 | -0.075 | 0.102 |
0.12 | 1 | ||||||
果脐果萼长度FBLFN |
0.37 |
0.40 |
0.26 |
0.27 |
0.12 |
0.35 |
0.21 |
-0.13 | 1 | |||||
果萼数量NFB |
-0.17 |
-0.19 | -0.093 |
-0.16 | 0.011 | -0.031 | -0.043 |
0.15 |
-0.24 | 1 | ||||
可食率FER |
0.63 |
0.54 |
0.64 | 0.036 |
0.19 | -0.011 | -0.102 |
-0.35 |
0.25 |
-0.17 | 1 | |||
果肉中心可溶性固形物含量SSCCP |
0.39 |
0.26 |
0.40 | -0.088 | 0.088 |
0.21 |
0.13 | -0.099 | 0.121 | 0.052 |
0.22 | 1 | ||
果肉边缘可溶性固形物含量 SSCMP | 0.107 | 0.063 |
0.19 |
-0.12 | -0.010 | -0.050 | 0.022 | -0.111 |
-0.20 |
0.12 |
0.16 |
0.55 | 1 | |
裂果率FCR | -0.034 |
-0.15 |
0.11 |
-0.38 |
0.43 |
-0.40 |
-0.52 |
-0.15 | -0.097 | 0.077 |
0.17 | 0.068 |
0.14 | 1 |
*表示相关性显著(P<0.05);**表示相关性极显著(P<0.01)
* indicates significant correlation at 0.05 probability level; ** indicates highly significant correlation at 0.01 probability level
除了果实横径、果萼数量、可食率和果肉边缘可溶性固形物含量,果脐形状指数与其他性状均存在显著或极显著相关性(
综上,火龙果裂果率与果脐形状指数相关性最高,果脐直径越大,深度越浅,裂果率越高,越容易裂果;否则相反。果实大小(单果重)和形状(果形指数)、果皮厚度与果脐形状指数均存在显著相关性,进而对裂果率产生了影响。
根据裂果率与果实性状的相关性分析结果,分别以裂果率(Y)为因变量,以果实纵径(X1)、果实横径(X2)、果形指数(X3)、果脐直径(X4)、果脐深度(X5)、果脐形状指数(X6)、果皮厚度(X7)、可食率(X8)、果肉边缘可溶性固形物含量(X9)等9个果实性状为自变量进行多元线性回归分析。分析结果显示,回归方程极显著,F=20.637,P<0.001。果脐直径和果脐深度极显著影响裂果率,其中果脐直径(B=1.195,β=0.484,P<0.001)显著正向预测裂果率,而果脐深度(B=-1.050,β=-0.536,P<0.001)显著负向预测裂果率。这2个果实性状共解释裂果率39.30%的变异,是影响裂果率的最主要因素。其他果实性状均不能显著影响裂果率(
果实性状 Fruit traits | 非标准化系数B Unstandardized coefficients B | 标准化系数β Standardized coefficients β | t | 显著性P值 Significance P-value | 方差膨胀因子Variance inflation factor | F | 调整后 Adjusted |
---|---|---|---|---|---|---|---|
常量Constant | -7.779 | -0.380 | 0.704 | ||||
果实纵径FLD | -0.067 | -0.145 | -0.294 | 0.769 | 109.372 |
20.63 | 0.393 |
果实横径FTD | 0.133 | 0.193 | 0.484 | 0.629 | 71.704 | ||
果形指数FSI | -4.579 | -0.086 | -0.277 | 0.782 | 43.694 | ||
果脐直径FND | 1.195 | 0.484 | 5.263 | 0 | 3.800 | ||
果脐深度FNDE | -1.050 | -0.536 | -4.195 | 0 | 7.347 | ||
果脐形状指数FNSI | 3.884 | 0.212 | 1.440 | 0.151 | 9.795 | ||
果皮厚度FST | -0.320 | -0.026 | -0.483 | 0.630 | 1.262 | ||
可食率FER | 0.040 | 0.034 | 0.482 | 0.630 | 2.228 | ||
果肉边缘可溶性固形物含量SSCMP | 0.438 | 0.072 | 1.436 | 0.152 | 1.134 |
***表示回归方程线性关系极显著(P<0.001)
*** indicates highly significant regression equation linear relationship at 0.001 probability level
方差膨胀因子大于10,则说明数据存在多重共线性。本研究中果脐直径和果脐深度的方差膨胀因子均小于10(
依据裂果率 = 0和果脐形状指数≥1.3的标准,综合考虑其他果实性状的优异特性,筛选出17份抗裂果种质(
统一编号 Unified code | 种质名称 Accession name | 单果重(g) IFW | 果实 纵径(mm) FLD | 果实 横径(mm) FTD | 果形指数 FSI | 果脐 直径(mm) FND | 果脐 深度(mm) FNDE | 果脐形状指数 FNSI | 果皮 厚度(mm) FST | 可食率(%) FER | 果肉中心可溶性固形物含量(%) SSCCP | 果肉边缘可溶性固形物含量(%) SSCMP | 裂果率(%) FCR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NYBGXHLG00007 | 白水晶 | 174.5 | 64.33 | 63.15 | 1.02 | 8.56 | 12.95 | 1.51 | 2.59 | 62.21 | 19.3 | 14.5 | 0 |
NYBGXHLG00060 | 粉红龙3号 | 174.9 | 85.68 | 61.45 | 1.39 | 9.21 | 15.09 | 1.64 | 2.57 | 63.58 | 17.0 | 12.1 | 0 |
NYBGXHLG00088 | 白肉优株 | 343.8 | 103.60 | 76.63 | 1.35 | 6.32 | 12.44 | 1.97 | 2.43 | 71.65 | 17.0 | 11.7 | 0 |
NYBGXHLG00097 | 双色 | 187.7 | 69.59 | 67.21 | 1.04 | 7.98 | 10.43 | 1.31 | 2.71 | 62.78 | 18.1 | 12.2 | 0 |
NYBGXHLG00103 | 蜜龙 | 136.6 | 70.18 | 49.50 | 1.42 | 9.25 | 13.16 | 1.42 | 3.12 | 50.97 | 19.6 | 14.1 | 0 |
NYBGXHLG00160 | 仙居白肉 | 482.7 | 130.45 | 86.18 | 1.51 | 12.30 | 18.39 | 1.50 | 3.16 | 74.91 | 18.1 | 12.6 | 0 |
NYBGXHLG00173 | 软枝大红 | 500.8 | 113.85 | 102.49 | 1.11 | 10.01 | 14.54 | 1.45 | 2.57 | 77.60 | 20.9 | 14.6 | 0 |
NYBGXHLG00178 | 桂红龙1号 | 501.2 | 116.60 | 102.29 | 1.14 | 9.08 | 13.24 | 1.46 | 2.11 | 74.40 | 19.5 | 12.9 | 0 |
NYBGXHLG00180 | 博白2号 | 461.7 | 102.20 | 87.55 | 1.17 | 7.99 | 10.79 | 1.35 | 2.91 | 75.21 | 18.8 | 13.7 | 0 |
NYBGXHLG00182 | 台湾白肉 | 485.4 | 140.68 | 100.79 | 1.40 | 9.23 | 13.02 | 1.41 | 2.31 | 78.80 | 18.0 | 13.2 | 0 |
NYBGXHLG00202 | 上海蜜宝 | 282.3 | 102.48 | 78.39 | 1.31 | 6.03 | 9.34 | 1.55 | 3.09 | 68.31 | 17.9 | 12.8 | 0 |
NYBGXHLG00227 | 蜜味水晶白 | 182.7 | 75.42 | 65.12 | 1.16 | 9.29 | 12.12 | 1.30 | 2.38 | 72.30 | 17.7 | 12.3 | 0 |
NYBGXHLG00256 | 莞华白 | 461.6 | 115.93 | 85.72 | 1.35 | 12.83 | 17.11 | 1.33 | 2.93 | 73.18 | 19.1 | 12.2 | 0 |
NYBGXHLG00265 | 燕窝果 | 265.8 | 82.72 | 69.51 | 1.19 | 8.35 | 11.64 | 1.39 | 4.22 | 65.58 | 22.9 | 15.6 | 0 |
NYBGXHLG00266 | 金都1号 | 480.7 | 100.77 | 93.98 | 1.07 | 8.76 | 14.39 | 1.64 | 2.68 | 77.92 | 20.5 | 12.4 | 0 |
NYBGXHLG00267 | 桂红2号 | 443.9 | 98.24 | 87.49 | 1.12 | 10.21 | 13.86 | 1.36 | 2.41 | 76.89 | 20.2 | 12.6 | 0 |
NYBGXHLG00279 | 红金宝 | 380.6 | 88.32 | 79.78 | 1.11 | 10.09 | 13.51 | 1.34 | 2.91 | 72.39 | 20.9 | 11.1 | 0 |
裂果是果实发育过程中发生的一种生理性病害,多发生于果实成熟
综合相关性和回归分析结果可知,果脐形态结构对火龙果的裂果性较为重要,在耐裂果育种中果脐形状指数可作为一个参考指标。
参考文献
Ortiz-Hernández Y D, Carrillo-Salazar J A. Pitahaya (Hylocereus spp.): A short review. Comunicata Scientiae, 2012, 3(4): 220-237 [百度学术]
Wang Y Y, Guo L H, Zhao X Q, Zhao Y J, Hao Z X, Luo H, Yuan Z H. Advances in mechanisms and omics pertaining to fruit cracking in horticultural plants. Agronomy, 2021, 11(6): 1045 [百度学术]
Quero-García J, Letourmy P, Campoy J A, Branchereau C, Malchev S, Barreneche T, Dirlewanger E. Multi-year analyses on three populations reveal the first stable QTLs for tolerance to rain-induced fruit cracking in sweet cherry (Prunus avium L.). Horticulture Research, 2021, 8: 136 [百度学术]
Zhu M T, Yu J, Zhao M, Wang M J, Yang G S. Transcriptome analysis of metabolisms related to fruit cracking during ripening of a cracking-susceptible grape berry cv. Xiangfei (Vitis vinifera L.). Genes & Genomics, 2020, 42(6): 639-650 [百度学术]
孙国超, 邱霞, 熊博, 汪志辉. 青脆李裂果机理研究. 湖北农业科学, 2019, 58(18): 74-77 [百度学术]
Sun G C, Qiu X, Xiong B, Wang Z H. Mechanism of fruit cracking in Qingcui plum. Hubei Agricultural Sciences, 2019, 58(18): 74-77 [百度学术]
Singh A, Shukla A K, Meghwal P R. Fruit cracking in pomegranate: Extent, cause, and management - A review. International Journal of Fruit Science, 2020, 20(S3): S1234-S1253 [百度学术]
Yadav A, Kagneton R, Kochanek B, Cohen B, Fennec A, Israel D, Izhaki A, Zilka S, Friedman H. Development of cracks in early-harvested persimmon cultivar and their reduction by preharvest treatments. The Journal of Horticultural Science and Biotechnology, 2021, 96(5): 646-652 [百度学术]
Wang J, Wu X F, Tang Y, Li J G, Zhao M L. RNA-Seq provides new insights into the molecular events involved in “Ball-Skin versus Bladder Effect” on fruit cracking in litchi. International Journal of Molecular Sciences, 2021, 22(1): 454 [百度学术]
Seo H J, Sawant S S, Song J. Fruit cracking in pears: Its cause and management—A review. Agronomy, 2022, 12(10): 2437 [百度学术]
Hardiyanto, Nirmala F D. Application of K, Ca, and Mg on peel thickness and fruit cracking incidence of citrus. Russian Journal of Agricultural and Socio-Economic Sciences, 2019, 87(3): 45-56 [百度学术]
Khanal B P, Pudasaini K, Sangroula B, Knoche M. Factors determining the mechanical properties of banana fruit skin during induced ripening. Postharvest Biology and Technology, 2023, 198: 112252 [百度学术]
Fischer G, Balaguera-López H E, Álvarez-Herrera J. Causes of fruit cracking in the era of climate change: A review. Agronomía Colombiana, 2021, 39(2): 196-207 [百度学术]
Khadivi-Khub A. Physiological and genetic factors influencing fruit cracking. Acta Physiologiae Plantarum, 2015, 37(1): 1718 [百度学术]
Santos M, Egea-Cortines M, Gonçalves B, Matos M. Molecular mechanisms involved in fruit cracking: A review. Frontiers in Plant Science, 2023, 14: 1130857 [百度学术]
韦兰洁, 陈依丽, 李昌杰, 黎俊辰, 黄馨芸. 火龙果裂果与果实主要性状的相关性分析. 南方农业, 2022, 16(5): 46-49 [百度学术]
Wei L J, Chen Y L, Li C J, Li J C, Huang X Y. Correlation analysis between fruit split and main characters of pitaya fruit. South China Agriculture, 2022, 16(5): 46-49 [百度学术]
韦兰洁, 李昌杰, 黄馨芸, 陈依丽, 张建恒, 黄丽芳. 火龙果果皮组织结构与裂果关系研究. 种子科技, 2022, 40(4): 4-6,12 [百度学术]
Wei L J, Li C J, Huang X Y, Chen Y L, Zhang J H, Huang L F. Study on the relationship between fruit peel structure and fruit split of pitaya fruit. Seed Scicence & Technology, 2022, 40(4): 4-6,12 [百度学术]
杨运良, 李建勋. 火龙果裂果观察及栽培措施对裂果的影响. 中国南方果树, 2021, 50(3): 91-94 [百度学术]
Yang Y L, Li J X. Observation of fruit split and effect of cultivation treasures on fruit split of pitaya. South China Fruits, 2021, 50(3): 91-94 [百度学术]
黄凤珠, 陆贵锋, 姜建初. 广西火龙果裂果调查分析及综合防止措施. 南方农业学报, 2016, 47(4): 599-603 [百度学术]
Huang F Z, Lu G F, Jiang J C. Investigation and analysis of pitaya fruit cracking and comprehensive anti-cracking measures. Journal of Southern Agriculture, 2016, 47(4): 599-603 [百度学术]
黄凤珠, 梁桂东, 黄黎芳, 武志江, 陆贵锋, 彭宏祥, 邓海燕. DB 45/T 1761-2018火龙果种质资源描述规范. 广西: 广西壮族自治区质量技术监督局, 2018 [百度学术]
Huang F Z, Liang G D, Huang L F, Wu Z J, Lu G F, Peng H X, Deng H Y. DB 45/T 1761-2018 The description criterion of dragon fruit germplasm. Guangxi: Bureau of Quality and Technical Supervision of Guangxi Zhuang Autonomous Region, 2018 [百度学术]
秦永华, 胡桂兵, 杨旭红, 饶得花, 孙清明, 吴鹏阳, 张志珂, 孙璐阳, 谢芳芳, 汪燕. NY/T 4211-2022植物品种特异性、一致性和稳定性测试指南 量天尺属. 北京: 中华人民共和国农业农村部, 2023 [百度学术]
Qin Y H, Hu G B, Yang X H, Rao D H, Sun Q M, Wu P Y, Zhang Z K, Sun L Y, Xie F F, Wang Y. NY/T 4211-2022 Guidelines for the conduct of tests for distinctness, uniformity and stability-Dragon fruit [Hylocereus (Berger) Britt. et Rose]. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2023 [百度学术]
马雯彦, 庞晓明, 续九如, 李颖岳. 果实裂果影响因子研究进展. 华中农业大学学报, 2010, 29(6): 798-804 [百度学术]
Ma W Y, Pang X M, Xu J R, Li Y Y. Advances in research on the factors influencing fruit cracking. Journal of Huazhong Agricultural University, 2010, 29(6): 798-804 [百度学术]
任国慧, 陶然, 文习成, 李玉, 王晨, 房经贵. 重要果树果实裂果现象及防治措施的研究进展. 植物生理学报, 2013, 49(4): 324-330 [百度学术]
Ren G H, Tao R, Wen X C, Li Y, Wang C, Fang J G. Advances on fruit cracking and prevention measures of some important fruit trees. Plant Physiology Journal, 2013, 49(4): 324-330 [百度学术]
Mizrahi Y. Cereus peruvianus (Koubo) new cactus fruit for the world. Revista Brasileira de Fruticultura, 2014, 36: 68-78 [百度学术]
Diouf I A, Derivot L, Bitton F, Pascual L, Causse M. Water deficit and salinity stress reveal many specific QTL for plant growth and fruit quality traits in tomato. Frontiers in Plant Science, 2018, 9: 279 [百度学术]
Li B B, Lu X Q, Dou J L, Aslam A, Gao L, Zhao S J, He N, Liu W. Construction of a high-density genetic map and mapping of fruit traits in watermelon (Citrullus lanatus L.) based on whole-genome resequencing. International Journal of Molecular Sciences, 2018, 19(10): 3268 [百度学术]
王旭旭, 樊秀彩, 李傲, 张超博, 房经贵, 刘崇怀, 上官凌飞. 葡萄品种资源裂果性状调查与分析. 园艺学报, 2016, 43(11): 2099-2108 [百度学术]
Wang X X, Fan X C, Li A, Zhang C B, Fang J G, Liu C H, Shangguan L F. Investigation and analysis on cracking trait in grape berry.Acta Horticulturae Sinica, 2016, 43(11): 2099-2108 [百度学术]
陈晶晶, 段雅婕, 莫亿伟, 胡玉林, 胡会刚, 谢江辉. 裂果性不同的番荔枝品种果皮中细胞壁代谢相关基因的表达分析. 果树学报, 2015, 32(5): 769-776, 998 [百度学术]
Chen J J, Duan Y J, Mo Y W, Hu Y L, Hu H G, Xie J H. Expression analysis of cell wall metabolism gene in pericarp of custard apple cultivars with different fruit cracking characters. Journal of Fruit Science, 2015, 32(5): 769-776, 998 [百度学术]
张琪静, 谷大军. 甜樱桃果实裂果机理研究进展. 果树学报, 2014, 31(4): 704-709 [百度学术]
Zhang Q J, Gu D J. A review of the mechanisms of fruit cracking in sweet cherries. Journal of Fruit Science, 2014, 31(4): 704-709 [百度学术]
刘志国, 卢艳清, 赵锦, 刘孟军. 枣果吸水动力学和果皮特征对裂果的影响. 植物遗传资源学报, 2015, 16(1): 192-198 [百度学术]
Liu Z G, Lu Y Q, Zhao J, Liu M J. The effects of water absorbing dynamics and pericarp structure on fruit cracking in chinese jujube. Journal of Plant Genetic Resources, 2015, 16(1): 192-198 [百度学术]
Durán-Soria S, Pott D M, Osorio S, Vallarino J G. Sugar signaling during fruit ripening. Frontiers in Plant Science, 2020, 11: 564917 [百度学术]