摘要
以134份玉米自交系为试验材料,对玉米的9个苗期根系性状进行表型鉴定,并利用分布于玉米基因组的44935个SNP标记,基于FarmCPU模型进行全基因组关联分析(GWAS,genome-wide association study)。结果表明9个根系性状表型变异范围在10.86%~55.96%之间,大部分表型间相关性达极显著水平(P<0.001),侧根长和总根长相关系数最高,为0.996,其次为侧根数与总根数达到0.993。共鉴定到32个显著关联的SNP位点(P=1.01
玉米(Zea mays L.)是旱地作物中需水量较大,对水分胁迫较为敏感的作物之
全基因组关联分析( GWAS,genome-wide ass-ociation study)是系统解析复杂数量性状遗传机制的重要工
本研究利用134份玉米自交系构建关联群体,通过对玉米苗期根系的9个表型进行鉴定,结合覆盖玉米全基因的44935个SNP标记进行全基因组关联分析,发掘玉米根系性状显著关联位点,并预测候选基因。本研究结果可为玉米根系相关性状分子育种( MAS,marker-assisted selection)提供重要遗传位点, 为精细定位和克隆玉米根系发育相关基因提供理论依据。
136份玉米自交系来自山西农业大学山西有机旱作农业研究院分子育种研究室育种群体及国内外收集的部分材料(详见https://doi.org/10.13430/j.cnki.jpgr.20230619001,
根系性状 Root traits | 性状描述 Trait descriptions | 均值 Mean | 最大值 Max. | 最小值 Min. | 峰度 KURT. | 偏度 SKEW. | 标准差 SD | 变异系数(%) CV |
---|---|---|---|---|---|---|---|---|
主根长(cm)PRL | 以厘米为单位的主根长度 | 23.84 | 38.54 | 9.00 | 0.98 | -0.04 | 5.19 | 21.78 |
侧根长(cm)LRL | 主根延伸出的侧根总长 | 171.84 | 384.54 | 38.86 | 2.11 | 0.81 | 51.44 | 29.93 |
总根长(cm)RL | 以厘米为单位的所有根总长 | 195.68 | 423.08 | 56.46 | 2.31 | 0.86 | 53.85 | 27.52 |
最大根长(cm)MRL | 根系的最大根长 | 23.79 | 38.54 | 12.07 | 1.35 | 0.51 | 4.36 | 18.32 |
根表面积(c | 整个根系的表面积 | 43.86 | 70.94 | 17.16 | 0.50 | 0.30 | 9.11 | 20.78 |
根直径(cm)RD | 根系的平均直径 | 0.73 | 0.99 | 0.55 | 0.92 | 0.61 | 0.08 | 10.86 |
不定根数(cm)NAR | 除主根延伸之外的侧根数目 | 7.71 | 14.80 | 2.71 | 0.06 | 0.41 | 2.35 | 30.46 |
总根数NR | 所有根的总数 | 43.65 | 126.00 | 14.30 | 3.44 | 1.42 | 19.03 | 43.59 |
侧根数NLR | 主根延伸出的侧根数目 | 34.94 | 120.00 | 6.67 | 3.61 | 1.48 | 19.55 | 55.96 |
PRL: Primary root length; LRL: Lateral root length; RL: Root length; MRL: Maximum root length; RSA: Root surface area; RD: Root diameter; NAR:Number of adventitious roots; NR: Number of roots; NLR: Number of lateral roots;The same as below
本试验全程无菌操作,从136份玉米自交系中挑选出籽粒饱满、无病虫害种子6~8粒,放入灭菌培养皿中,通过20 mL 1%的氯化汞溶液,灭菌15 min。将灭菌后的种子放入培养皿中,加入20 mL无菌蒸馏水,待种子吸胀萌发,将其移至无菌育种袋中,种子间隔1 cm左右,胚根朝下。育种袋中加入灭菌蒸馏水至20 cm刻度线,放入光照培养箱(RDN-300E-4)中培养(光照培养箱参数:第一阶段,光照10000 Lx,温度28℃,湿度35% RH,12 h;第二阶段,光照0 Lx,温度28℃,湿度35% RH,12 h)。种子生长过程中,维持水线在20 cm左右,培养14 d后进行表型鉴定。
利用EPSON根系扫描仪(J221A)扫描幼苗根部图像,利用WinRHIZO软件测量根系长度、数目、表面积等9个表型性状(
采用高通量DNA提取试剂盒(EasyPure® Plant Genomic DNA Kit)提取玉米自交系基因组DNA,用1%琼脂糖凝胶电泳分析DNA纯度和完整性,用Qubit对DNA进行定量。采用45 K液相芯片进行基因分型(石家庄博瑞迪生物技术有限公司),芯片有效标记数为44935个,将原始标记按照最小等位基因频率≥0.01,缺失率≤50%过滤,利用beagle(V4.1)将过滤后的基因型数据进行填补,利用Tassel 5(v5.2.77)对最小等位基因频率<0.05的SNP(Single nucleotide polymorphism)标记进行过滤,最终筛选到43034个高质量SNP标记用于后续分析。本研究利用FarmCPU(Fixed and random model circulating probability unification)模型进行全基因组关联分析。使用R语言程序包GAPIT 3中FarmCPU软件模型对表型数据进行全基因组关联分析。表型贡献解释率采用Shim
使用Tassel 5软件计算SNP之间连锁不平衡衰减距离,计算
根据检测到的SNP位点上下游LD范围内的候选基因,结合在MaizeGDB数据库下载玉米自交系B73授粉后玉米根系发育18个不同位置及时
玉米自交系根系存在着丰富的表型变异(

图1 玉米自交系部分材料根系对比图
Fig. 1 Comparison diagram of root system of selected maize inbred lines

图2 9个玉米根系表型相关性分析
Fig. 2 Correlation analysis of 9 maize root phenotypes
图中对角线方框为根系性状的柱状图,字母代表不同的根系性状,上三角为相关系数和显著性程度。*、**、***分别表示在P<0.05、P<0.01、P<0.001水平上差异显著。下三角为玉米根系表型数据的散点图,横纵坐标数值代表横向及纵向对应表型的表型数据
In the figure, the diagonal box is the column chart of root traits, the letters represent different root traits, and the upper triangle is the correlation coefficient. *, **, *** indicate significant differences at the P<0.05, P<0.01, and P<0.001 levels, respectively.
;The lower triangle is a scatter plot of maize root phenotype data, and the transverse and longitudinal values represent the phenotypic data corresponding to the horizontal and vertical phenotypes
聚类分析将134份玉米自交系分为3个类群(

图3 134份玉米自交系根系性状聚类分析图
Fig. 3 Cluster analysis map of root traits of 134 maize inbred lines
类群 Group | 主根长(cm) PRL | 侧根长(cm) LRL | 总根长(cm) RL | 最大根长(cm) MRL | 根表面积(c RSA |
---|---|---|---|---|---|
I | 18.44±6.42Bb | 155±34.6Cc | 173.44±35.46Cc | 22.44±3.97Bb | 40.35±7.13Cc |
II | 21.96±5.71Aa | 222.08±33.91Bb | 244.04±34.01Bb | 25.5±3.51Aa | 50.94±8.16Bb |
III | 22.99±5.34Aa | 319.71±47.5Aa | 342.7±49.33Aa | 26.43±4.21Aa | 61.58±9.6Aa |
类群 Group |
根直径(cm) RD |
不定根数(cm) NAR |
侧根数 NLR |
总根数 NR | |
I | 0.76±0.09Aa | 7.6±2.5Bb | 21.86±12.74Bb | 30.45±11.9Bb | |
II | 0.67±0.08Bb | 8.22±1.99ABab | 38.56±15.73ABab | 47.78±14.75ACbc | |
III | 0.58±0.09Cc | 9.69±2.95Aa | 46.2±16.65Aa | 56.89±14.27Aa |
表中大写字母表示P<0.01显著水平,小写字母表示P<0.05显著水平
Uppercase letters in the table represent a significance level of P<0.01, while lowercase letters represent a significance level of P<0.05
利用Tassel 5.0对44935个SNP标记进行质控,并计算关联群体的LD衰减距离。关联群体的LD分析结果表明(

图4 群体连锁不平衡
Fig. 4 Population linkage unequilibrium
对136份玉米自交系的9个根系性状进行全基因组关联分析,共检测到32个显著SNP位点(P=9.74

图5 根系相关性状显著SNP的QQ图和曼哈顿图
Fig.5 QQ-plots and Manhattan plots of significant SNPS for root-related traits
曼哈顿图右上色块及数字代表每一条染色体颜色区段内单核苷酸多态性位点个数
The upper right color block and numbers on the Manhattan map represent the number of single nucleotide polymorphic sites within each chromosomal color range
32个显著SNP位点范围内共获得根系发育候选基因252个,利用NCBI、Uniprot和MaizeGDB等数据库对检测到的252个基因进行功能注释,其中140个基因有注释信息,根据其注释信息,筛选出可能涉及根系发育相关的基因,如植物激素应答、细胞分裂、对环境胁迫反应等相关的共49个基因作为候选基因(

图6 49个玉米根系性状候选基因的动态表达模式
Fig. 6 Dynamic expression patterns of 49 candidate genes for maize root traits
比例尺表示标准化的基因表达水平,X1~X18代表根系发育的不同时期和取材部位,分别表示播种3天后的初生根、初生根分生组织和伸长区、初生根分化带、根皮质薄壁组织、根维管柱、播种6天后的初生根、播种7天后的根系、初生根、种子根、初生根Z1区、初生根Z2区、初生根Z3区、初生根Z4区、V7时期地下节根Nodes1-3、V7时期地下节根Node4、V7时期地下节根Node5、V13时期地下节根Node5和V13时期地上节根6,详见文献[17]
The scale bars indicate the normalized gene expression levels, X1-X18 represent the 18 different stages and sample sites of maize root,Primary_Root_3DAS,Root_MZ_and_EZ_3DAS,Root_DZ_3DAS,Root_CP_3DAS,Root_Stele_3DAS,Primary_Root_GH_6DAS,Root_System_7DAS,Primary_Root_7DAS,Seminal_Roots_7DAS,Primary_Root_Z1_7DAS,Primary_Root_Z2_7DAS,Primary_Root_Z3_7DAS,Primary_Root_Z4_7DAS,Crown_Roots_Nodes1-3_V7,Crown_Roots_Node4_V7,Crown_Roots_Node5_V7,Crown_Roots_Node5_V13 and Brace_Roots_Node6_V13,See references[17] for details;DAS: Days after sowing; MZ: Meristematic zone ;EZ: Elongation zone; DZ: Differentiation zone; CP: Cortical parenchyma; GH: Greenhouse
位点编号 SNP ID | 染色体 Chr. | 性状 Traits | 表型贡献率 (%) | P值 P-Value | 候选基因 Candidate genes | 基因注释 Gene annotation |
---|---|---|---|---|---|---|
1_166981206 | 1 | 侧根数 | 9.17 |
6.41 | GRMZM2G427635 | L-古洛内酯氧化酶6 |
1_206385096 | 1 | 总根长 | 18.97 |
9.52 | GRMZM2G028386 | 乙烯反应性转录因子;ABI4 |
侧根长 | 18.41 |
1.20 | ||||
1_251200157 | 1 | 总根数 | 6.42 |
2.95 | GRMZM5G800723 | 跨膜转运蛋白 |
侧根数 | 6.57 |
2.67 | GRMZM2G031938 | 跨膜转运蛋白 | ||
1_286398761 | 1 | 总根数 | 3.89 |
2.96 | GRMZM2G047656 | 过氧化物酶50 |
侧根数 | 5.14 |
1.10 | GRMZM2G047456 | 过氧化物酶73 | ||
GRMZM2G047855 | CK2蛋白激酶α2 | |||||
1_295620562 | 1 | 主根长 | 9.12 |
3.28 | GRMZM5G870592 | 转录因子;MYB98 |
1_49125460 | 1 | 总根数 | 13.75 |
6.05 | GRMZM2G038015 | bZIP转录因子53 |
侧根数 | 13.21 |
1.18 | GRMZM2G301823 | 卡尔文循环蛋白;CP12-1 | ||
GRMZM2G124785 | 烟酰胺合成酶2 | |||||
GRMZM2G030036 | 烟酰胺合成酶2 | |||||
2_28772500 | 2 | 根表面积 | 18.10 |
7.96 | GRMZM2G024196 | 金属烟酰胺转运蛋白;YSL13 |
3_173595394 | 3 | 总根数 | 0.54 |
9.57 | GRMZM2G156861 | 亚麻酸盐9S-环氧合酶1;LOX1 |
GRMZM2G035092 | MADS-box转录因子家族蛋白 | |||||
3_180962923 | 3 | 最大根长 | 19.26 |
7.75 | GRMZM2G135713 | E3泛素蛋白连接酶;PUB23 |
GRMZM2G164141 | 尿酸酶 | |||||
GRMZM2G074262 | 丝氨酸/苏氨酸蛋白激酶;Nek5 | |||||
3_216403250 | 3 | 最大根长 | 16.97 |
8.09 | GRMZM2G024144 | 脂质磷酸磷酸酶2 |
4_188926542 | 4 | 总根数 | 5.47 |
1.01 | GRMZM2G090728 | 蛋白质毛状体双折射样34;TBL34 |
GRMZM2G089819 | 油菜素甾体LRR受体激酶 | |||||
4_235769853 | 4 | 侧根数 | 0.78 |
3.17 | GRMZM2G074122 | 磷酸烯醇丙酮酸羧化酶3 |
6_123944395 | 6 | 总根数 | 3.29 |
3.22 | GRMZM2G137108 | NOD26样膜固有蛋白2;ZmNIP2;2. |
侧根数 | 3.20 |
6.52 | GRMZM2G042607 | β-1,3-半乳糖基转移酶 | ||
7_113008838 | 7 | 总根长 | 18.97 |
9.52 | GRMZM2G169356 | 蛋白质ODRANT1 |
侧根长 | 18.41 |
1.20 | ||||
7_130676775 | 7 | 总根长 | 18.97 |
9.52 | GRMZM2G009045 | 线粒体磷酸载体蛋白3 |
侧根长 | 18.41 |
1.20 | GRMZM2G009166 | G型凝集素S-受体类丝氨酸/苏氨酸蛋白激酶 | ||
7_153461125 | 7 | 主根长 | 9.55 |
1.34 | GRMZM2G019363 | 胞激肽核糖核苷5'-单磷酸磷酸核糖水解酶 |
GRMZM2G168614 | 根毛特异性17 | |||||
7_159618471 | 7 | 最大根长 | 15.62 |
9.74 | GRMZM2G175812 | III型聚酮合酶B |
7_168310521 | 7 | 总根数 | 11.15 |
1.01 | GRMZM2G107562 | 铜氧还蛋白超家族蛋白 |
7_171777378 | 7 | 主根长 | 5.28 |
3.82 | GRMZM2G053338 | 吲哚-3-乙酸酰胺合成酶GH3.8 |
7_45582095 | 7 | 总根数 | 4.63 |
9.52 | GRMZM2G125175 | 硫酯酶家族蛋白 |
主根长 | 7.10 |
1.20 | GRMZM2G125165 | 卤酸脱卤酶TATA盒结合蛋白假基因 | ||
7_93417920 | 7 | 总根长 | 18.97 |
9.52 | GRMZM2G110685 | 受体样蛋白激酶假基因 |
侧根长 | 18.41 |
1.20 | ||||
7_93692133 | 7 | 总根长 | 18.97 |
9.52 | GRMZM2G367355 | 含五肽重复序列的蛋白质 |
侧根长 | 18.41 |
1.20 | ||||
8_118898293 | 8 | 根直径 | 13.43 |
3.10 | GRMZM2G166176 | 甘油-3-磷酸酰基转移酶5 |
8_121430225 | 8 | 总根长 | 17.71 |
1.64 | GRMZM2G034019 | PLAC8家族蛋白 |
侧根长 | 18.13 |
1.11 | GRMZM5G827266 | 40S核糖体蛋白S26类 | ||
8_138238391 | 8 | 不定根数 | 14.98 |
6.03 | GRMZM2G080858 | WAT1相关蛋白 |
8_71505879 | 8 | 根表面积 | 16.54 |
4.83 | GRMZM2G021790 | 乙烯反应性转录因;ERF094 |
9_12377378 | 9 | 总根数 | 13.28 |
1.51 | GRMZM2G160005 | 生长素反应因子16;AUX16 |
侧根数 | 12.73 |
7.26 | ||||
9_151903531 | 9 | 侧根长 | 19.81 |
9.24 | GRMZM2G126936 | 含NAC结构域的蛋白2;NAC2 |
GRMZM2G392737 | MAP激酶家族蛋白 | |||||
10_120515728 | 10 | 根直径 | 13.61 |
7.72 | GRMZM2G316925 | 钙结合蛋白;CML25/26 |
10_128348759 | 10 | 总根长 | 19.03 |
4.97 | GRMZM2G111462 | ABC转运蛋白B家族成员15 |
侧根长 | 19.47 |
2.92 | GRMZM2G058573 | NAD依赖性蛋白脱乙酰酶;SRT1 | ||
10_146012678 | 10 | 总根数 | 1.58 |
1.58 | GRMZM2G180471 | 蛋白磷酸酶2C9 |
10_76817153 | 10 | 总根长 | 22.01 |
1.31 | GRMZM2G068808 | 烯丙基二磷酸合成酶 |
侧根长 | 22.34 |
9.09 | ||||
根表面积 | 16.79 |
3.86 |
因,分别为GRMZM2G156861 (亚油酸9S-脂氧合酶1, LOX1)、GRMZM5G827266(核糖体蛋白 S26),这两个基因在关联位点3_173595394和8_121430225的LD衰减范围内,与主根的长度和数量相关联。G4组基因在不同时期表达差异较大,包括GRMZM2G124785(烟胺合酶2)和GRMZM2G030036(烟胺合酶2),二者均在关联位点1_49125460的LD衰减范围内,与侧根数量相关,在种子播种后的多个时期表达显著:根冠V7时
本研究共发掘到32个根系性状SNP位点(P=1.01
从32个与玉米根系性状显著关联的SNP位点内共挖掘出了49个候选基因。GRMZM2G028386 (ABI4)为乙烯响应因子,是主效SNP 1_206385096的候选基因,研究表明乙烯可以激发根系表皮细胞生长素的合成和运输,从而调控植物根系发
参考文献
Liu Y, Zhang J, Pan T, Ge Q. Assessing the adaptability of maize phenology to climate change: The role of anthropogenic-management practices. Journal of Environmental Management, 2021, 293:112874 [百度学术]
严四英, 翁白莎, 景兰舒, 毕吴瑕. 干旱及旱后复水对夏玉米根系生长的影响. 节水灌溉, 2022 (3): 75-81, 91 [百度学术]
Yan S Y, Weng B S, Jing L S, Bi W X. Effects of drought and post-drought rehydration on root growth of summer maize. Water Saving Irrigation, 2022 (3): 75-81, 91 [百度学术]
Comas L H, Becker S R, Cruz V M, Byrne P F, Dierig D A. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 2013(4): 442 [百度学术]
Wasson A P, Richards R A, Chatrath R, Misra S C, Prasad S V, Rebetzke G J, Kirkegaard J A, Christopher J, Watt M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 2012, 63: 3485-3498 [百度学术]
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45: 1097-1102 [百度学术]
Brown L K, George T S, Thompson J A, Wright G, Lyon J, Dupuy L, Hubbard S F, White P J. What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Annals of Botany, 2012, 110 (2): 19-28 [百度学术]
Wang Y, Sun H, Wang H, Yang X, Xu Y, Yang Z, Xu C, Li P. Integrating transcriptome, co-expression and QTL-seq analysis reveals that primary root growth in maize is regulated via flavonoid biosynthesis and auxin signal transduction. Journal of Experimental Botany, 2021, 72 (13): 4773-4795 [百度学术]
Burton A L, Johnson J M, Foerster J M, Hirsch C N, Buell C R, Hanlon M T, Kaeppler S M, Brown K M, Lynch J P. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics, 2014, 127 (11): 2293-311 [百度学术]
Song W, Wang B, Hauck A L, Dong X, Li J, Lai J. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. Journal of Integrative Plant Biology, 2016, 58 (3): 66-79 [百度学术]
Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Science, 2020, 292: 110380 [百度学术]
Pasam R K, Sharma R, Malosetti M, van Eeuwijk F A, Haseneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biology. 2012, 12:16 [百度学术]
Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48 (10): 33-41 [百度学术]
Wu B, Ren W, Zhao L, Li Q, Sun J, Chen F, Pan Q. Genome-wide association study of root system architecture in maize. Genes (Basel), 2022, 13(2):181 [百度学术]
张小琼, 郭剑, 代书桃, 任元, 李凤艳, 刘京宝, 李永祥, 张登峰, 石云素, 宋燕春, 黎裕, 王天宇, 邹华文, 李春辉. 玉米花期根系结构的表型变异与全基因组关联分析.中国农业科学, 2019, 52 (14): 2391-2405 [百度学术]
Zhang X Q, Guo J, Dai S T, Ren Y, Li F Y, Liu J B, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Wang T Y, Zou H W, Li C H. Phenotypic variation and genome-wide association analysis of maize root structure at flowering stage. Chinese Journal of Agricultural Sciences, 2019, 52 (14): 2391-2405 [百度学术]
Liu L, Jiang L G, Luo J H, Xia A A, Chen L Q, He Y. Genome-wide association study reveals the genetic architecture of root hair length in maize. BMC Genomics, 2021, 22 (1): 664 [百度学术]
Shim H, Chasman D I, Smith J D, Mora S, Ridker P M, Nickerson D A, Krauss R M, Stephens M. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE, 2015, 10 (4): e0120758 [百度学术]
Stelpflug S C, Sekhon R S, Vaillancourt B, Hirsch C N, Buell C R, de Leon N, Kaeppler S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9 (1):27898762 [百度学术]
Sharifi Alishah M, Darvishzadeh R, Ahmadabadi M, Piri Kashtiban Y, Hasanpur K. Identification of differentially expressed genes in salt-tolerant oilseed sunflower (Helianthus annuus L.) genotype by RNA sequencing. Molecular Biology Reports, 2022, 49 (5): 3583-3596 [百度学术]
Gao C, Gao K, Yang H, Ju T, Zhu J, Tang Z, Zhao L, Chen Q. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal. Biological Research, 2022, 55 (1): 1 [百度学术]
Wang H, Wei J, Li P, Wang Y, Ge Z, Qian J, Fan Y, Ni J, Xu Y, Yang Z. Integrating GWAS and gene expression analysis identifies candidate genes for root morphology traits in maize at the seedling stage. Genes (Basel), 2019, 10(10):773 [百度学术]
Li C, Jia Y, Zhou R, Liu L, Cao M, Zhou Y, Wang Z. GWAS and RNA-seq analysis uncover candidate genes associated with alkaline stress tolerance in maize (Zea mays L.) seedlings. Frontiers in Plant Science, 2022, 13: 963874 [百度学术]
Burton A L, Johnson J M, Foerster J M, Hirsch C N, Buell C R, Hanlon M T, Kaeppler S M, Brown K M, Lynch J P. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical And Applied Genetics, 2014, 127 (11): 2293-311 [百度学术]
Li P, Chen F, Cai H, Liu J, Pan Q, Liu Z, Gu R, Mi G. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. Journal of Experimental Botany, 2015, 66(11): 3175-3188 [百度学术]
Adewale S A, Badu-Apraku B, Akinwale R O, Paterne A A, Gedil M, Garcia-Oliveira A L. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. BMC Plant Biology, 2020, 20 (1): 203 [百度学术]
Ju C, Zhang W, Liu Y, Gao Y, Wang X, Yan J, Yang X, Li J. Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. BMC Plant Biology, 2018, 18 (1): 171 [百度学术]
Liu Z, Gao K, Shan S, Gu R, Wang Z, Craft E J, Mi G, Yuan L, Chen F. Comparative analysis of root traits and the associated QTLs for maize seedlings grown in paper roll, hydroponics and vermiculite culture System. Frontiers in Plant Science, 2017, 8:436 [百度学术]
Vaseva I I, Qudeimat E, Potuschak T, Du Y, Genschik P, Vandenbussche F, Van Der Straeten D. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proceedings of The National Academy of Sciences of The USA, 2018, 115 (17): 4130-4139 [百度学术]
Liu Z Y, Li X P, Zhang T Q, Wang Y Y, Wang C, Gao C Q. Overexpression of ThMYB8 mediates salt stress tolerance by directly activating stress-responsive gene expression. Plant Science, 2021, 302: 110668 [百度学术]
Chen T, Cohen D, Itkin M, Malitsky S, Fluhr R. Lipoxygenase functions in 1O2 production during root responses to osmotic stress. Plant Physiology and Biochemistry, 2021, 185 (4): 1638-1651 [百度学术]
Kamel S M, Elgobashy S F, Omara R I, Derbalah A S, Abdelfatah M, El-Shaer A, Al-Askar A A, Abdelkhalek A, Abd-Elsalam K A, Essa T, Kamran M, Elsharkawy M M. Antifungal activity of copper oxide nanoparticles against root rot disease in cucumber. Journal of Fungi (Basel), 2022, 8 (9): 911 [百度学术]
Ahn M Y, Seo D H, Kim W T. PUB22 and PUB23 U-box E3 ubiquitin ligases negatively regulate 26S proteasome activity under proteotoxic stress conditions. Journal of Integrative Plant Biology, 2022, 64 (3): 625-631 [百度学术]
Yuan Y, Teng Q, Zhong R, Ye Z H. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Science, 2016, 243:120-30 [百度学术]
Qin L X, Rao Y, Li L, Huang J F, Xu W L, Li X B. Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS ONE, 2013, 8 (3): 59115 [百度学术]
Pereira S S, Guimarães F C, Carvalho J F, Stolf-Moreira R, Oliveira M C, Rolla A A, Farias J R, Neumaier N, Nepomuceno A L. Transcription factors expressed in soybean roots under drought stress. Genetics and Molecular Research, 2011, 10 (4): 3689-701 [百度学术]
Srivastava R, Kobayashi Y, Koyama H, Sahoo L. Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. Journal of Integrative Plant Biology, 2023, 65 (1): 25-44 [百度学术]
Zhang H, Xu J, Chen H, Jin W, Liang Z. Characterization of NAC family genes in Salvia miltiorrhiza and NAC2 potentially involved in the biosynthesis of tanshinones. Phytochemistry, 2021, 191: 112932 [百度学术]
Guo W L, Wang S B, Chen R G, Chen B H, Du X H, Yin Y X, Gong Z H, Zhang Y Y. Characterization and expression profile of CaNAC2 pepper gene. Frontiers Plant Science, 2015, 6: 755 [百度学术]
He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal, 2005, 44 (6): 903-16 [百度学术]
Lv H, Li X, Li H, Hu Y, Liu H, Wen S, Li Y, Liu Y, Huang H, Yu G, Huang Y, Zhang J. Gibberellin induced transcription factor bZIP53 regulates CesA1 expression in maize kernels. PLoS ONE, 2021, 16 (3): 0244591 [百度学术]
Zhang Y, Yang X, Cao P, Xiao Z, Zhan C, Liu M, Nvsvrot T, Wang N. The bZIP53-IAA4 module inhibits adventitious root development in Populus. Journal of Experimental Botany, 2020, 71 (12): 3485-3498 [百度学术]
Dietrich K, Weltmeier F, Ehlert A, Weiste C, Stahl M, Harter K, Dröge-Laser W. Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. Plant Cell, 2011, 23 (1): 381-95 [百度学术]
Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice, Nature, 2006,440: 688-691 [百度学术]