摘要
蛋白质二硫键异构酶(PDI,protein disulfide isomerase)作为硫氧还蛋白家族的一员,是一种氧化还原酶,广泛存在于动物、植物及微生物中。在植物中,蛋白质二硫键的形成和异构主要由二硫键蛋白催化完成,在参与蛋白质正确组装折叠方面至关重要。本研究以拟南芥PDI家族基因序列信息为基础,利用同源序列比对方法,从玉米中鉴定出21个PDI基因,除8号染色体外,非均匀地分布在其余玉米9条染色体上。进化树分析表明,玉米PDI基因家族分为4个进化分支11个发育组,同一发育组的基因结构和保守基序相似。顺式作用元件分析表明,PDI基因家族启动子含响应逆境胁迫、植物激素及胚乳特异表达的顺式作用元件。表达模式分析表明,PDI基因家族在胚、胚乳和籽粒中表达量较高,在授粉后10 ~20 d的胚乳中表达量呈下降趋势,然后表达量又呈现上升趋势。生物多样性分析发现:ZmPDIL1-1基因存在多样性。亚细胞定位结果表明ZmPDIL1-1定位在内质网。本研究结果为玉米PDI家族基因功能研究提供参考。
玉米(Zea mays L.)是一种重要的粮、饲兼用作物,其中 70%玉米用作饲料。普通玉米中蛋白质组分不平衡,限制了在动物饲料中的应用,而籽粒蛋白质是决定玉米品质的重要因素。玉米籽粒中蛋白质的积累,除受到蛋白质翻译和蛋白前体代谢相关基因直接调控外,蛋白亚基的修饰、折叠等相关基因修饰效应也广泛作用于蛋白质的合成。
蛋白质二硫键异构酶(PDI,protein disulfide isomerase)是硫氧还蛋白家族的成
玉米籽粒蛋白质含量为8%~10%,其中80%贮存在胚乳中,主要为醇溶蛋白(60%以上)。据报道,Opaque2(O2)是一种调控贮藏物质积累的转录因子,在种子发育过程起重要作
本研究所用玉米自交系B73由中国农业科学院作物科学研究所提供。材料种植于作物科学研究所昌平试验基地,行长4 m,株距25 cm,种植10行,重复3次,常规田间管理。
相关试剂:RNA-easy Isolation Reagent(诺唯赞生物科技股份有限公司)、FastKing gDNA Dispelling RT SuperMix(天根生化科技有限公司)、SuperReal PreMix Plus(SYBR Green)(天根生化科技有限公司)、2×Phanta Flash Master Mix(Dye Plus)(诺唯赞生物科技股份有限公司)、 pEAS
载体质粒:pAN580-GFP-3Flag、CPB-GFP-3Flag、内质网标记载体KDEL。
从maizeGDB(https://www.maizegdb.org)数据库中获取玉米B73 RefGen_v5基因组序列、基因编码区序列、蛋白序列和注释文件,从拟南芥TAIR10(https://www.arabidopsis.org/
利用TBtools软
通过ClustalX软件比对玉米、拟南芥和水稻PDI蛋白序列,利用MEGAX中的Neighbor-Joining构建3个物种的进化
为研究玉米PDI家族基因之间的结构异同,利用MEME(http://meme-suit.org/)在线网站分析蛋白序列,确定保守结构域,设置保守基序数量为10,其他为默认参
从TBtools软件获取玉米PDI基因的染色体位置信息。利用玉米参考基因组B73、拟南芥和水稻基因组文件和注释文件,使用TBtools软件对玉米、拟南芥和水稻PDI基因家族进行物种间共线性分析和玉米PDI基因家族的物种内共线性分析。
利用TBtools软件从注释文件中提取PDI基因家族成员起始密码子(ATG)前2000 bp的DNA序列,利用Plant-Care(http:// bioinformatics. Psb. ugent. be/ webtools/plantcare/html)对顺式元件进行预
提取自交系B73灌浆期的根、茎、雄穗、雌穗、叶、旗叶、苞叶、花丝、胚、胚乳和籽粒11个组织部位,以及授粉后10、15、20、25、30 d的胚乳总RNA。利用RNA-easy Isolation Reagent试剂盒提取总RNA,以提取的总RNA为模板,使用FastKing gDNA Dispelling RT SuperMix反转录试剂盒得到cDNA。利用玉米PDI家族基因特异性引物进行反转录PCR(RT-PCR),以玉米Ubi基因作为内参,RT-PCR采用1 μg/μL模板cDNA 0.8 μL, 1 μmol/μL正向和反向引物各0.8 μL(
引物名称 Primer name | 正向引物序列(5′-3′) Forward primer sequence(5′-3′) | 反向引物序列(5′-3′) Reverse primer sequence(5′-3′) |
---|---|---|
ZmPDIL1-1 | CCAAGCACCCCTTCATGGTC | GTAGCAAGCGGCCTGTTCTT |
ZmPDIL1-2 | CCAAGCACCCCTTCATGGT | AAGCGGCCTGTTCTTCTCC |
ZmPDIL2-1 | ACTTCCCCTTCTATTTTTGGCA | TTGTCTCGCTCCACAAAGAC |
ZmPDIL2-2 | CCCCTTCTATTTTTGGCAATCC | CCTCACTGTCTCGTTCCACAA |
ZmPDIL3-1 | CTCCCGCCATACCACAAATC | GCTTCACAGTCAACACACCAA |
ZmPDIL4-1 | TGGTTTCCCAAAGGTTCCCT | TCAGAACCACGACGCTTGAA |
ZmPDIL4-2 | ATCCAATGGTTCCCGAAAGG | CTCTGGGGTGAGAACCACAA |
ZmPDIL5-1 | AAGCAAGGACCTTTGGATTGTG | TCCACCTTGTACTTGCTCATCA |
ZmPDIL5-2 | GGACATTTGGATTGTGG | GAAAACCTTCCACCTTG |
ZmPDIL6-1 | CCGAAGAGACCTTCTCCGAC | TCCGCACCTTCCATAACCTT |
ZmPDIL7-1 | GTCGATTTCTACGCGCCA | AAAGCATGAGGGTAGGGAAC |
ZmPDIL7-2 | GTGCGGCCACTGCAAGA | GCATGAGGGTAGGGAAC |
ZmPDIL7-3 | ACTTCTACGCTCCCTGG | TCAAAGTAGGGAACCCAT |
ZmPDIL8-1 | AGGTTGACTGCACTGAGGAA | ACTCTCAGTATCACGTTCACCAT |
ZmPDIL9-1 | TGAGAATGAAAGTATGCACCCA | AGCTAATAAGCGAGTCACGAGT |
ZmPDIL10-1 | GTCTCGACGGAGGGGTACT | AACCCGTGGAAACATTGAGC |
ZmPDIL10-2 | CAGGGCTCCGGGGTCA | AAAAGGGCACCACGAAGCAT |
ZmPDIL10-3 | TCGTGGAATCCGTTCTTGGT | GGCACCACGAGGCATAGAAA |
ZmPDIL10-4 | TCGCGCAATCCGTCCTTAG | GTGAGAATGGGCACCACGA |
ZmPDIL11-1 | CCGAAATCGCCATCGCCTT | GATGCCGTAGTGCTTCTCCA |
ZmPDIL11-2 | GCTGGAGATCATGGATCGGG | ATAGCTGGTACGTCTCCGGG |
Maize-Ubi | TAAGCTGCCGATGTGCCTGCGTCG | CTGAAAGACAGAACATAATGAGCACAG |
利用NCBI设计定量引物,以玉米Ubi基因作为内参。使用SuperReal PreMix Plus(SYBR Green)试剂盒进行荧光定量PCR试验(qRT-PCR),体系及步骤按照说明书,采用
为了解PDI基因参与蛋白质正确组装折叠的功能,选择1个预测定位在内质网的基因进行验证。本研究以基因ZmPDIL1-1为例,以玉米自交系B73授粉后10 d的籽粒 cDNA为模板,扩增ZmPDIL1-1基因的CDS序列,将目标条带胶回收连到通用载体T&B Zero上并进行一代Sanger测序,测序结果与B73 参考序列比对正确。以与参考序列一致的T&B-Zero-ZmPDIL1-1克隆载体为模板,利用同源重组方法将ZmPDIL1-1不含终止密码子的CDS序列连接到含绿色荧光蛋白GFP报告基因的玉米瞬时表达载体pAN580上,构建35S启动子驱动的pAN580-ZmPDIL1-1-GFP基因表达的融合载体。同时,将ZmPDIL1-1不含终止密码子的CDS序列连接到含绿色荧光蛋白GFP报告基因的烟草瞬时表达载体CPB上,构建35S启动子驱动的CPB-ZmPDIL1-1-GFP基因表达的融合载体。
以拟南芥21个PDI家族基因的蛋白序列为参考,结合生物信息学方法,在玉米蛋白序列中进行Blast和Hmm搜索,鉴定出21个PDI基因。根据玉米PDI蛋白与拟南芥PDI蛋白的系统发育关系,将其命名为ZmPDIL1-1~ ZmPDIL11-2。由
基因ID Gene ID | 基因名称Gene name | 氨基酸数量(aa) Number of amino acid | 编码区长度(bp) CDS length | 分子量(Da) Molecular weight | 外显子/内含子 Exon/intron | 理论等电点 Theoretical isoelectric point |
---|---|---|---|---|---|---|
Zm00001eb168910 | ZmPDIL1-1 | 514 | 1542 | 56873.65 | 10/9 | 5.01 |
Zm00001eb112590 | ZmPDIL1-2 | 512 | 1536 | 56683.22 | 10/9 | 4.91 |
Zm00001eb229180 | ZmPDIL2-1 | 561 | 1683 | 61888.65 | 11/10 | 4.74 |
Zm00001eb210140 | ZmPDIL2-2 | 568 | 1704 | 62417.13 | 11/10 | 4.69 |
Zm00001eb375710 | ZmPDIL3-1 | 515 | 1545 | 57506.75 | 13/12 | 5.05 |
Zm00001eb282710 | ZmPDIL4-1 | 355 | 1065 | 38836.45 | 11/10 | 6.24 |
Zm00001eb131360 | ZmPDIL4-2 | 367 | 1101 | 40122.76 | 10/9 | 5.91 |
Zm00001eb314620 | ZmPDIL5-1 | 430 | 1290 | 46012.47 | 9/8 | 5.66 |
Zm00001eb100620 | ZmPDIL5-2 | 439 | 1317 | 47096.66 | 9/8 | 5.58 |
Zm00001eb013190 | ZmPDIL6-1 | 150 | 450 | 16835.46 | 4/3 | 5.16 |
Zm00001eb422640 | ZmPDIL7-1 | 410 | 1230 | 45908.61 | 3/2 | 4.96 |
Zm00001eb082680 | ZmPDIL7-2 | 418 | 1254 | 46962.8 | 5/4 | 4.86 |
Zm00001eb243460 | ZmPDIL7-3 | 420 | 1260 | 46469.16 | 5/4 | 4.90 |
Zm00001eb106180 | ZmPDIL8-1 | 381 | 1143 | 42824.43 | 15/14 | 7.24 |
Zm00001eb295030 | ZmPDIL9-1 | 441 | 1323 | 49358.3 | 12/11 | 7.20 |
Zm00001eb410330 | ZmPDIL10-1 | 303 | 909 | 33772.3 | 4/3 | 8.93 |
Zm00001eb042300 | ZmPDIL10-2 | 178 | 534 | 19457.61 | 4/3 | 9.87 |
Zm00001eb255320 | ZmPDIL10-3 | 178 | 534 | 19598.73 | 4/3 | 5.67 |
Zm00001eb194120 | ZmPDIL10-4 | 323 | 969 | 36148.48 | 4/3 | 8.76 |
Zm00001eb105800 | ZmPDIL11-1 | 456 | 1368 | 49526.39 | 4/3 | 8.40 |
Zm00001eb322440 | ZmPDIL11-2 | 461 | 1383 | 50049.97 | 4/3 | 8.38 |
基因ID Gene ID | 基因名称Gene name | 不稳定系数Instability index | 脂溶指数Aliphatic index | 亲水指数Hydrophilic index | 染色体Chromosome | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
Zm00001eb168910 | ZmPDIL1-1 | 32.69 | 82.06 | -0.251 | 4 | 内质网 |
Zm00001eb112590 | ZmPDIL1-2 | 31.53 | 82.56 | -0.268 | 2 | 内质网 |
Zm00001eb229180 | ZmPDIL2-1 | 37.59 | 86.45 | -0.258 | 5 | 叶绿体,细胞质 |
Zm00001eb210140 | ZmPDIL2-2 | 36.38 | 85.9 | -0.224 | 4 | 叶绿体 |
Zm00001eb375710 | ZmPDIL3-1 | 31.58 | 92.45 | -0.167 | 9 | 叶绿体 |
Zm00001eb282710 | ZmPDIL4-1 | 29.01 | 86.28 | -0.247 | 6 | 内质网 |
Zm00001eb131360 | ZmPDIL4-2 | 24.56 | 85.1 | -0.255 | 3 | 内质网 |
Zm00001eb314620 | ZmPDIL5-1 | 33.35 | 84.44 | -0.138 | 7 | 叶绿体,细胞质,细胞核 |
Zm00001eb100620 | ZmPDIL5-2 | 32.19 | 85.58 | -0.145 | 2 | 叶绿体,细胞质,细胞核 |
Zm00001eb013190 | ZmPDIL6-1 | 31.04 | 95.4 | -0.106 | 1 | 叶绿体 |
Zm00001eb422640 | ZmPDIL7-1 | 35.01 | 93.44 | -0.111 | 10 | 叶绿体,细胞质 |
Zm00001eb082680 | ZmPDIL7-2 | 36.91 | 99.81 | -0.019 | 2 | 叶绿体,细胞质,细胞核 |
Zm00001eb243460 | ZmPDIL7-3 | 41.93 | 96.71 | -0.009 | 5 | 叶绿体 |
Zm00001eb106180 | ZmPDIL8-1 | 39.64 | 77.98 | -0.37 | 2 | 叶绿体 |
Zm00001eb295030 | ZmPDIL9-1 | 39.98 | 77.26 | -0.283 | 6 | 叶绿体 |
Zm00001eb410330 | ZmPDIL10-1 | 53.70 | 101.75 | 0.167 | 10 | 叶绿体 |
Zm00001eb042300 | ZmPDIL10-2 | 42.13 | 89.94 | 0.211 | 1 | 叶绿体 |
Zm00001eb255320 | ZmPDIL10-3 | 45.71 | 104.1 | 0.374 | 5 | 叶绿体 |
Zm00001eb194120 | ZmPDIL10-4 | 52.78 | 89.23 | -0.059 | 4 | 叶绿体 |
Zm00001eb105800 | ZmPDIL11-1 | 49.91 | 82.94 | -0.221 | 2 | 叶绿体 |
Zm00001eb322440 | ZmPDIL11-2 | 48.98 | 82.91 | -0.233 | 7 | 叶绿体 |
为深入了解PDI基因在不同物种中的演化规律,利用MEGAX软件对玉米(Zea mays L.)、拟南芥(Arabidopsis thaliana L.)和水稻(Oryza sativa L.)PDI家族基因蛋白序列共同构建系统发育树(

图1 玉米(Zm),拟南芥(At)和水稻(Os)中PDI家族基因系统进化树
Fig.1 Phylogenetic tree of PDIs in Zea Mays L. (Zm),Arabidopsis Thaliana (L.) Heynh. (At) and Oryza sativa L. (Os)
利用TBtools分析玉米PDI基因家族编码的氨基酸序列的保守基序、保守结构域和基因结构(

图2 玉米PDI基因家族系统进化树(A)、蛋白保守基序(B)、蛋白结构域(C)和基因结构(D)
Fig.2 The phylogenetics(A), conserved motifs(B), domains(C)and gene structure(D) of PDI gene family in maize
从玉米注释文件中提取染色体长度信息同时对21个基因进行染色体定位。PDI基因家族分布在玉米10条染色体的9条上,在2号染色体上分布5个基因,除8号染色体外,其他染色体上含有1~3个基因(

图3 玉米PDI基因家族在染色体上的分布
Fig.3 The distribution of PDI gene family on chromosomes of maize
不同的颜色表示基因在染色体上的密度,由红到蓝表示由高到低
Different colors indicate the density of genes on chromosomes, from red to blue indicate high to low
在植物进化过程中复制事件对基因家族成员的扩增起重要作

图4 玉米PDI基因家族共线性分析
Fig.4 Synteny analysis in PDI gene family of maize

图5 玉米、拟南芥和水稻PDI基因家族共线性分析
Fig.5 Synteny analysis in PDI gene family of Z. mays, A. thaliana and O. sativa
通过对启动子中顺式作用元件的分析,可为基因的功能研究提供基

图6 玉米PDI基因家族启动子的顺式作用元件分析
Fig.6 Cis-acting elements analysis in promoter region of PDI gene family in maize
采用RT-PCR技术分析21个玉米PDI基因在授粉后灌浆期的11个组织部位表达模式,同时采用qRT-PCR技术分析21个玉米PDI基因在授粉后不同时间胚乳表达模式。RT-PCR分析表明(

图7 玉米PDI基因家族不同组织部位表达模式分析
Fig.7 Analysis of expression patterns of different tissue sites of maize PDI gene family
R: 根;St: 茎;Ta: 雄穗;Ea: 雌穗;L: 叶;FL:旗叶;Br: 苞叶;Fi: 花丝;Em: 胚;En: 胚乳;Gr: 籽粒
R: Root;St: Stem;Ta: Tassel;Ea: Ear;L: Leaf;FL:Flag leaf;Br: Bract;Fi: Filament;Em: Embroy;En: Endosperm;Gr: Grain

图8 授粉后不同时间玉米PDI基因家族胚乳表达模式分析
Fig.8 Analysis of endosperm expression patterns of PDI gene family in maize at different time after pollination
根据玉米自交系重测序数据,对29份材料中ZmPDIL1-1基因编码区的前10个变异位点进行分析(

图9 ZmPDIL1-1基因的多样性分析
Fig.9 Diversity analysis of ZmPDIL1-1 gene
左侧字母代表材料名称;+34:代表编码区第34个碱基,他同
The letter in the left the name of material;+34:Represents the 34th base of the coding region, others is the same
以ZmPDIL1-1为例,构建35S启动子驱动的pAN580- ZmPDIL1-1-GFP融合表达载体,转化至玉米原生质体中,结果表明pAN580- ZmPDIL1-1-GFP与内质网标记载体共定位。同时,构建35S启动子驱动的CPB-ZmPDIL1-1-GFP融合表达载体,注射到烟草叶片细胞中,结果表明CPB- ZmPDIL1-1-GFP与内质网标记载体共定位(

图10 ZmPDIL1-1的亚细胞定位
Fig.10 The subcellular localization of ZmPDIL1-1
A: ZmPDIL1-1在玉米原生质体中的亚细胞定位;B: ZmPDIL1-1在烟草叶片中的亚细胞定位;比例尺:20 μm
A: Subcellular location of ZmPDIL1-1 in maize protoplasts ; B: Subcellular location of ZmPDIL1-1 in tobacco leaves;Bar: 20 μm
蛋白质二硫键异构酶是硫氧还蛋白家族的一员。PDI在真核生物内质网中是含量最高的家族蛋白,占细胞蛋白总量的0.4
启动子中顺式作用元件对基因的表达起到调控作用。顺式作用元件分析表明,PDI基因家族含有参与逆境胁迫和植物激素的多种顺式作用元件。此外,PDI基因家族还包含参与胚乳发育的顺式作用元件,推测PDI基因家族可能在玉米籽粒发育过程中发挥重要作用。通过表达模式分析以及亚细胞定位分析发现该基因家族部分基因可能在内质网上行使功能,但细胞体中内质网的功能多样,包括作为稳定钙离子的内环境、为其它细胞器提供脂质供体,同时对蛋白质降解、定量控制和新生蛋白质分子的折叠有着重要作用,尤其是可以增加新生蛋白的折叠效率。目前,植物PDI生物学功能主要集中在调控种子萌发与发
PDI基因家族参与植物体内蛋白质折叠,在植物生长发育过程起重要作用。在水稻中研究较为深入,目前对玉米PDI基因家族在蛋白质组装折叠过程中的功能了解有限。本研究提供了玉米PDI基因家族的进化关系、结构域、染色体定位、共线性关系、顺式作用元件,以及11个组织部位在相同时间的表达模式分析和胚乳在授粉后不同时间的表达量变化。研究结果为从玉米基因组中选择参与蛋白质组装折叠、解析玉米PDI相关基因的生物学功能提供参考依据。
参考文献
Ferrari D M, Soling H D. The protein disulphide-isomerase family: Unravelling a string of folds. Biochemical Journal, 1999,339:1-10 [百度学术]
Freedman R B. The formation of protein disulphide bonds. Current Opinion in Structural Biology, 1995,5:85-91 [百度学术]
Shorrosh B S, Dixon R A. Molecular characterization and expression of an alfalfa protein with sequence similarity to mammalian ERp72, a glucose-regulated endoplasmic reticulum protein containing active site sequences of protein disulphide isomerase. Plant Journal, 1992,2:51-58 [百度学术]
刘颖慧,王秀堂,石云素,黄亚群,宋燕春,王天宇,黎裕.玉米蛋白质二硫键异构酶(PDI)基因的特征和表达(英文).中国生物化学与分子生物学报,2009,25:229-234 [百度学术]
Liu Y H, Wang X T, Shi Y S ,Huang Y Q, Song Y C, Wang T Y, Li Y. Expression and characterization of a protein disulfide isomerases in maize (English).Chinese Journal of Biochemistry and Molecular Biology,2009,25:229-234 [百度学术]
Li C P, Larkins B A J G.Identification of a maize endosperm-specific cDNA encoding farnesyl pyrophosphate synthetase. Gene,1996,171:193-196 [百度学术]
牛洪斌.水稻谷蛋白及其相关基因的克隆和功能研究.南京:南京农业大学,2005 [百度学术]
Niu H B. Cloning and functional study of rice gluten and its related genes. Nanjing: Nanjing Agricultural University, 2005 [百度学术]
Lu D D, Christopher D A. Immunolocalization of a protein disulfide isomerase to Arabidopsis thaliana chloroplasts and its association with starch biogenesis. International Journal of Plant Science,2006,167:1-9 [百度学术]
Gruber C W, Cemazar M, Clark R J, Horibe T, Renda R F, Anderson M A, Craik D J.A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. Journal of Biological Chemistry, 2007,282:20435-20446 [百度学术]
Li C, Song R. The regulation of zein biosynthesis in maize endosperm. Theoretical and Applied Genetics, 2020,133:1443-1453 [百度学术]
Li C, Yue Y, Chen H, Qi W, Song R. The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during maize endosperm development. Plant Cell, 2018,30:2402-2424 [百度学术]
Qiao Z, Qi W, Wang Q, Feng Y, Yang Q, Zhang N, Wang S, Tang Y, Song R. ZmMADS47 regulates zein gene transcription through interaction with Opaque2. PLoS Genetics, 2016,12:e1005991 [百度学术]
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell, 2021,33:104-128 [百度学术]
Swarbreck D, Wilks C, Lamesch P, Berardini T Z, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis Information Resource (TAIR): Gene structure and function annotation. Nucleic Acids Research, 2008,36:D1009-D1014 [百度学术]
Kayum M A, Park J I, Nath U K, Saha G, Biswas M K, Kim H T, Nou I S. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp pekinensis). BMC Genomics, 2017,18:885 [百度学术]
Wai A H, Waseem M, Khan A B, Nath U K, Lee D J, Kim S T, Kim C K, Chung M Y. Genome-Wide identification and expression profiling of the PDI gene family reveals their probable involvement in abiotic stress tolerance in tomato (Solanum lycopersicum L.).Genes,2020,12:23 [百度学术]
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020,13:1194-1202 [百度学术]
Chou K C, Shen H B. Cell-Ploc: A package of web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008,3:153-162 [百度学术]
Davidson R, Martin Del Campo A. Combinatorial and computational investigations of neighbor-joining bias. Frontiers in Genetics, 2020,11:584785 [百度学术]
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018,35:1547-1549 [百度学术]
Letunic I, Bork P.Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021,49: W293-W296 [百度学术]
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S.MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009,37: W202-W208 [百度学术]
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020,13:1194-1202 [百度学术]
Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002,30:325-327 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25:402-408 [百度学术]
李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析.作物学报, 2021,47:2184-2198 [百度学术]
Li P, Liu C, Song H, Yao P P, Su P L, Wei Y W, Yang Y X, Li Q C. Identification and analysis of nonspecific lipid transfer protein gene families in Tobacco. Acta Agronomica Sinica, 2021, 47:2184-2198 [百度学术]
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004,4:10 [百度学术]
Soltani B M, Ehlting J, Hamberger B, Douglas C J. Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members. Planta, 2006,224:1226-1238 [百度学术]
Walther D, Brunnemann R, Selbig J. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genetics, 2007,3:e11 [百度学术]
Abdullah M, Cheng X, Cao Y, Su X, Manzoor M A, Gao J, Cai Y, Lin Y. Zinc finger-homeodomain transcriptional factors (ZHDs) in upland cotton (Gossypium hirsutum): Genome-wide identification and expression analysis in fiber development. Frontiers in Genetics, 2018,9:357 [百度学术]
韩小花.水稻籽粒中控制淀粉合成关键基因OsPDIL1-1的图位克隆及功能分析.南京:南京农业大学,2011 [百度学术]
Han X H. Mapping cloning and functional analysis of OsPDIL1-1, a key gene for starch synthesis in rice grains. Nanjing : Nanjing Agricultural University,2011 [百度学术]
王志强, 周智敏, 郭占云.蛋白质二硫键异构酶家族的结构与功能.生命科学研究,2009,13:548-553 [百度学术]
Wang Z Q, Zhou Z M, Guo Z Y. Structure and function of the protein disulfide isomerase family. Life Science Research,2009,13:548-553 [百度学术]
王志珍.蛋白质二硫键异构酶既是酶又是分子伴侣.科学通报,1998:1345-1353 [百度学术]
Wang Z Z. Protein disulfide isomerase is both enzyme and molecular chaperone. Science Bulletin,1998:1345-1353 [百度学术]
Gruber C W, Cemazar M, Heras B, Martin J L, Craik D J. Protein disulfide isomerase: The structure of oxidative folding. Trends in Biochemical Sciences, 2006,31:455-464 [百度学术]
Meiri E, Levitan A, Guo F, Christopher D A, Schaefer D, Zryd J P, Danon A. Characterization of three PDI-like genes in Physcomitrella patens and construction of knock-out mutants. Molecular Genetics and Genomics, 2002,267:231-240 [百度学术]
王秀堂, 黄亚群, 李会勇, 石云素, 宋燕春, 黎裕, 王天宇.玉米PDI基因cDNA的克隆及生物信息学分析.河北农业大学学报,2008,137:16-19 [百度学术]
Wang X T, Huang Y Q, Li H Y,Shi Y S, Song Y C, Li Y, Wang T Y. Cloning and bioinformatics analysis of cDNA of maize PDI gene. Journal of Agricultural University of Hebei,2008,137:16-19 [百度学术]
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Science of the United States of America, 2012,109:1187-1192 [百度学术]
Moore R C, Purugganan M D. The early stages of duplicate gene evolution. Proceedings of the National Academy of Science of the United States of America,2003,100:15682-15687 [百度学术]
Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiology, 2002,128:1212-1222 [百度学术]
Kamauchi S, Wadahama H, Iwasaki K, Nakamoto Y, Nishizawa K, Ishimoto M, Kawada T, Urade R. Molecular cloning and characterization of two soybean protein disulfide isomerases as molecular chaperones for seed storage proteins. FEBS Journal, 2008,275:2644-2658 [百度学术]
Li L, Shimada T, Takahashi H, Ueda H, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I. MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell, 2006,18:3535-3547 [百度学术]
Wadahama H, Kamauchi S, Ishimoto M, Kawada T, Urade R. Protein disulfide isomerase family proteins involved in soybean protein biogenesis. FEBS Journal, 2007,274:687-703 [百度学术]
Shimoni Y, Segal G, Zhu X Z, Galili G. Nucleotide sequence of a wheat cDNA encoding protein disulfide isomerase. Plant Physiology, 1995,107:281 [百度学术]
Li C P, Larkins B A. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Molecular Biology, 1996,30:873-882 [百度学术]
Johnson J C, Appels R, Bhave M. The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice. Functional Integrative Genomics, 2006,6:104-121 [百度学术]
Han X, Wang Y, Liu X, Jiang L, Ren Y, Liu F, Peng C, Li J, Jin X, Wu F, Wang J, Guo X, Zhang X, Cheng Z, Wan J. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. Journal of Experimental Botany,2012,63:121-130 [百度学术]
Satoh-Cruz M, Crofts A J, Takemoto-Kuno Y, Sugino A, Washida H, Crofts N, Okita T W, Ogawa M, Satoh H, Kumamaru T. Protein disulfide isomerase like 1-1 participates in the maturation of proglutelin within the endoplasmic reticulum in rice endosperm. Plant Cell Physiology, 2010,51:1581-1593 [百度学术]
Okuda A, Matsusaki M, Masuda T, Morishima K, Sato N, Inoue R, Sugiyama M, Urade R. A novel soybean protein disulphide isomerase family protein possesses dithiol oxidation activity: Identification and characterization of GmPDIL6. Journal of Biological Chemistry, 2020,168:393-405 [百度学术]