摘要
高油玉米是一种籽粒含油量比普通玉米高50%以上的玉米类型,其籽粒中油分含量85%集中于胚中。本研究以高油玉米自交系GY220为材料,对授粉后15 d(G15)、25 d(G25)、35 d(G35)的胚蛋白质组进行双向凝胶电泳分离,利用串联质谱对分离蛋白质进行鉴定,并分析了差异蛋白功能。结果表明在授粉后3个发育时期共鉴定到41个差异表达蛋白,其中授粉后25 d相对于15 d G25/G15上调18个,下调19个;授粉后35 d相对于25 d G35/G25上调18个,下调25个;授粉后35 d相对于15 d G35/G15上调20个,下调22个。通过GO注释分析和KEGG富集分析显示差异表达蛋白主要在小分子代谢、氧化还原和碳水化合物代谢等过程富集。根据差异蛋白表达丰度及其功能注释,甘油-3-磷酸脱氢酶(Zm00001d041962)和果糖激酶(Zm00001d035037)在15 d、25 d时蛋白表达量较高,在35 d时蛋白表达量较低;RT-PCR分析表明在自交系GY220胚发育进程中Zm00001d041962和Zm00001d035037表达量呈逐渐增加趋势,两个基因均与大豆、花生、油菜中的相关基因高度同源。本研究为进一步提升玉米籽粒品质和挖掘胚发育功能基因奠定基础。
胚是种子中重要的组成部分,是植物的幼体。胚的差异会导致同一植物的活力、生长势等性状特征表现出显著的差
玉米基因组测序的完成使其研究进入功能基因组时代,为挖掘影响玉米籽粒发育的功能基因奠定了基
目前,大田生产推广的高油玉米含油量在7%~10%之间,利用蛋白组学鉴定影响高油玉米胚发育关键基因,对揭示玉米籽粒产量和品质性状形成机理具有重要意
以高油玉米自交系GY220(由中国农业大学陈绍江课题组惠赠)为材料,在自交授粉后0 d、5 d、10 d、15 d、20 d、25 d、30 d、35 d进行籽粒取样,测量籽粒干重、籽粒鲜重;剥取15 d、20 d、25 d、30 d、35 d籽粒完整胚,测量胚鲜重、胚形态及后期定量试验;剥取15 d、25 d、35 d胚进行蛋白组学分析(15 d、25d为灌浆速率最快;35 d停止灌浆),剩余样品液氮速冻后,放入-80℃冰箱保存备用。
剥离授粉后不同时期的籽粒和胚各100粒,重复3次,进行称量,获得籽粒鲜重和胚鲜重;将称量后的鲜籽粒放置在恒温烘箱105 ℃,30 min,后置于65 ℃烘箱24 h以上,然后进行称量,获得籽粒干重;对授粉后3个时期的胚用直尺测量胚的长度和宽度,每个时期各测10粒。
高油玉米胚蛋白的双向电泳参照O’Farrel
用UMAK凝胶成像系统扫描凝胶获得图像,用PDQuest分析软件进行背景消减,蛋白点检测,获得蛋白点位置点坐标等,手动删除假点,用ImageMaster platinum 6.0软件进行蛋白表达丰度统计,重复3次。选取表达丰度差异在3倍以上且在统计学T测验上P<0.05蛋白质点为显著差异蛋白质点。将检测到的差异蛋白点手动切下,分装于离心管中,记录对应差异蛋白点序列编号(依据双向电泳凝胶图上蛋白质分子量从上到下依次编号),进行质谱鉴定。
选择重复性较好的差异表达量在3倍以上的蛋白,进行蛋白质酶解,将酶解后的肽段重新溶解于5 μL含0.1% TFA的溶液中,然后按照1∶1的比例与含50% ACN和1% TFA的α-氰基-4-羟基肉桂酸饱和溶液混合,取1 μL样品进行质谱点靶鉴定,用ABI5800串联飞行时间谱仪(MALDI-TOF/TOF)进质谱分析,将一级和二级质谱数据整合并使用GPS 3.6(Applied Biosystems)和 Mascot2.3(Matrix Science)对质谱数据进行分析和蛋白鉴定,将分析结果比对数据库NCBInr(https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/)进行检索。
将准备好的数据(由质谱分析得到的差异蛋白,根据蛋白序列在NCBI中查找对应的差异基因保存于txt文档)上传至TBtools软件获得GO富集图;KEGG富集分析:先进行KEGG功能注释,打开KEGG官方网站(https://www.kegg.jp/kegg/),上传由质谱分析得到的差异蛋白序列,获得注释结果,保留注释结果中geneID和KO_ID两列,上传omicshare(https://www.omicshare.com/tools)在线平台,获得KEGG富集图。
将储藏于-80℃冰箱中的胚在液氮中磨成粉末后,用TRnaZol Reagent试剂盒(新赛美生物科技有限公司)分别抽提授粉后15 d、20 d、25 d、30 d、35 d籽粒和胚的总RNA;设计荧光定量引物(
目的基因在自交系B73中的表达情况依据转录组数据库(中国农业大学赖锦盛课题组)整理。
引物名称 Primer name | 正向序列(5′→3′) Forward sequences(5′→3′) | 反向序列(5′→3′) Reverse sequence(5′→3′) |
---|---|---|
1304 | CTCCATCTTCCACAACGAGGA | ATCTAGTTGGCCTTGGCGATG |
2309 | ATAACCACGTGCCTTGGTGG | GCAACATCTCTGCCTCCAGT |
3601 | GATACAAACGCAGGTGGCA | TGACTCAACCCAAGTTGCCC |
4707 | CTTCAGGAGCGTGCAAAAGG | CATATCGAATCCGCCCTGGT |
7001 | CAGACATCCAGGTGACGCTGG | GAGCACACCGTTCTCGCAGC |
tubulin | CAGTGTGCTGCCCTTATCCC | TTAGAAAAAGCATCCGCCGAC |
根据差异表达蛋白序列,在NCBI(https://www.ncbi.nlm.nih.gov/)查找花生、大豆、油菜中同源基因的蛋白序列,利用DNAMAN软件进行序列比对。
将利用质谱鉴定到的蛋白点对应蛋白号在蛋白数据库Uniprot(https://www.uniprot.org/)中进行功能注释,并依据其参与的生物学过程、分子功能、细胞构成进行分类。蛋白点与ImageMaster platinum 6.0软件统计的蛋白表达丰度对应起来,3个发育时期中后面时期与前面时期蛋白丰度相比增加则该基因为上调表达蛋白,反之为下调表达蛋白。
对不同发育时期高油玉米自交系GY220的籽粒干重、籽粒鲜重、胚鲜重进行测量,胚的大小在授粉后15~35 d逐渐增大(

图1 不同发育时期玉米胚的动态变化
Fig. 1 Dynamic changes of maize embryo at different development periods

图2 不同发育时期胚鲜重和籽粒干鲜重动态变化
Fig. 2 Dynamic changes of embryo fresh weight and grain dry fresh weight at different development periods
利用PDquest软件对自交系GY220授粉后15 d、25 d、35 d胚蛋白的双向电泳凝胶图进行分析(
对获得的差异表达蛋白GO分析表明其参与多种生物学过程,具有多种分子功能。在生物过程中,代谢过程、细胞过程和细胞代谢过程占比分别为74.2%、58.1%、54.8%;分子功能中,催化和绑定功能占比最大,为64.5%;细胞组成中,细胞组分和细胞内组分占比最大,为35.5%(

图5 不同发育阶段胚差异表达蛋白KEGG分析
Fig. 5 KEGG analysis of differentially expressed proteins at the embryo of different development stages
通过Uniprot数据库对鉴定到的41个差异表达蛋白进行功能分类,主要分为8类;对蛋白表达量进行比较,在授粉后25 d相对于15 d(G25/G15)、在授粉后35 d相对于25 d(G35/G25)、在授粉后35 d相对于15 d(G35/G15)中,上调蛋白分别有18个、18个、20个,下调蛋白分别有19个、25个、22个(
功能Function | G25/G15 | G35/G25 | G35/G15 |
---|---|---|---|
翻译后修饰、蛋白周转、伴侣Posttranslation modification, protein turnover, chaperones | 1/1 | 1/1 | 1/0 |
碳水化合物的运输与代谢Carbohydrate transport and metabolism | 1/5 | 1/7 | 1/7 |
能量的产生与转移Energy production and conversion | 1/3 | 0/6 | 0/6 |
核糖体结构和生物发生Ribosomal structure and biogenesis | 0/1 | 0/1 | 0/1 |
功能预测General function prediction only | 3/1 | 2/1 | 3/1 |
辅酶代谢Coenzyme metabolism | 0/3 | 0/3 | 0/3 |
无机离子的运输与代谢Inorganic ion transport and metabolism | 1/1 | 1/1 | 1/1 |
次生代谢物的合成运输与代谢Secondary metabolites biosynthesis transport and atabolism | 11/4 | 13/5 | 14/3 |
总计Total | 18/19 | 18/25 | 20/22 |
G15、G25、G35分别为授粉后15 d、25 d、35 d;/前面为上调,/后面为下调;G25/G15、G35/G25、G35/G15分别为授粉后25 d相对于15 d、35 d相对于25 d、35d相对于15 d
G15, G25 and G35 were 15, 25 and 35 days after pollination, respectively; In front of the / is up, behind the / is down;The values of G25/G15,G35/G25,G35/G15 were 25 d versus 15 d,35 d versus 25 d,35 d versus 15 d after pollination, respectively
根据差异表达蛋白在Uniprot数据库中功能预测,挑选5个具有重要功能的差异表达蛋白:果糖激酶(编号1304)可以催化果糖和ATP反应,在糖酵解过程中发挥作用;甘油-3-磷酸脱氢酶(编号2309)参与细胞呼吸和脂质代谢;磷酸果糖激酶(编号4704)具有催化糖酵解和糖异生作用;琥珀酸半醛脱氢酶(编号3601)连接氧化磷酸化和电子传递,参与三羧酸循环;乙醛脱氢酶(编号7001)可将乙醛转变为乙酸。对差异表达蛋白编码基因在高油玉米自交系GY220和普通玉米自交系B73不同发育时期胚和籽粒中表达情况进行分析(图

图6 自交系GY220胚中差异蛋白编码基因表达特征
Fig. 6 Expression characteristics of differential protein encoding genes in embryos of inbred line GY220
括号内为蛋白质编号;下同
The data in parentheses is the protein number; The same as below
根据高油玉米不同发育时期胚中蛋白表达特征,选择Zm00001d035037、Zm00001d041962两个差异表达蛋白,分析其与大豆(Glycine max)、花生(Arachis hypogaea)、油菜(Brassica napus L.)等3种油料作物中的蛋白序列同源性(

图9 差异表达蛋白与油料作物中同源基因氨基酸序列比对
Fig. 9 Amino acid sequence comparison of differential expression proteins with homologous gene of oil crops
A:果糖激酶;B:甘油-3-磷酸脱氢酶
A: Fructokinase-2; B: Glycerol-3-phosphate dehydrogenase
高油玉米85%的含油量储藏在胚芽
玉米籽粒发育中,细胞内有机物质转化的过程最初由蔗糖转化为果糖和葡萄糖,进而转化为脂肪等有机物质进行贮
植物为了避免逆境胁迫对生长发育造成不利影响,在感知非生物胁迫后会引起相关基因的表达,同时植物由于自身呼吸作用产生代谢途径中断,从而导致有毒物质的积
能量代谢是植物体最基本的代谢途径之一,在植物生长发育中发挥着重要的作用,本研究中获得6种碳水化合物与能量代谢相关差异蛋白,主要涉及糖酵解(Ppi-phosphofructokinase、Glycerol-3-phosphate dehydrogenase、Fructokinase-2)、氧化磷酸化(Adenosine kinase、Aldose reductase、Vacuolar ATP synthase catalytic subunit A)。完全成熟的籽粒胚乳中储存大量有机物,活跃的糖酵解活动为水稻籽粒萌发提供大量能

图3 不同发育时期胚蛋白凝胶双向电泳分析
Fig. 3 Two-dimensional gel electrophoresis analysis of proteins in different periods of embryo
A:授粉后15 d;B:授粉后25 d;C:授粉后35 d;图中数字为差异蛋白点标号
A: 15 days after pollination; B: 25 days after pollination; C: 35 days after pollination;The numbers in the picture are different protein dot labels

图4 不同发育阶段玉米胚差异表达蛋白GO分析
Fig. 4 GO analysis of differentially expressed proteins at the embryo of different development stages
1: 代谢过程;2:细胞过程;3:细胞代谢过程;4:初级代谢过程;5:小分子代谢过程;6:氧化还原反应;7:细胞大分子代谢过程;8:酒精代谢过程;9:碳水化合物代谢过程;10:细胞生物合成过程;11:生物合成过程;12:生物调节;13:细胞碳水化合物代谢过程;14:单糖代谢过程;15:催化活性;16:绑定;17:氧化还原反应;18:离子束缚;19:阳离子结合;20:转移酶活性;21:金属离子结合;22:过渡金属离子结合;23:核苷酸结合;24:嘌呤核苷结合;25:核苷酸结合;26:嘌呤核苷酸结合;27:腺苷核苷酸结合;28:细胞组分;29:细胞内组分;30:细胞质;31:其他
1: Metabolic process; 2: Metabolic process; 3: Cellular metabolic process; 4: Primary metabolic process; 5: Small molecule metabolic process; 6: Oxidation reduction; 7: Cellular macromolecule metabolic process; 8: Alcohol metabolic process; 9: Carbohydrate metabolic process; 10: Cellular biosynthetic process; 11: Biosynthetic process; 12: Biological regulation; 13: Cellular carbohydrate metabolic process; 14: Monosaccharide metabolic process; 15: Catalytic activity; 16: Binding; 17: Oxidoreductase activity; 18: Ion binding; 19: Cation binding; 20: Transferase activity; 21: Metal ion binding; 22: Transition metal ion binding; 23: Nucleotide binding; 24: Purine nucleoside binding; 25: Nucleoside binding; 26: Purine nucleotide binding; 27: Adenyl nucleotide binding; 28: Cell part; 29: Intracellular part; 30: Cytoplasm; 31: Others

图7 自交系B73胚中差异蛋白编码基因表达特征
Fig. 7 Expression characteristics of differential protein encoding genes in embryos of inbred line B73

图8 自交系GY220籽粒中差异蛋白编码基因表达特征
Fig. 8 Expression characteristics of differential protein encoding genes in kernels of inbred line GY220
参考文献
薛春雷,逯晓萍,韩平安,张坤明,张瑞霞,董婧. 高丹草及其亲本种子胚差异蛋白质组学分析. 科技导报, 2018, 36(14): 88-98 [百度学术]
Xue C L, Lu X P, Han P A, Zhang K M, Zhang R X, Dong J. Differential proteomic analysis of seed embryos of Gaudan Grass and its parents. Science and Technology Guide, 2018, 36(14): 88-98 [百度学术]
韩博. 高油玉米应用价值及发展前景. 现代农业科技, 2011, 1: 114 [百度学术]
Han B. Application value and development prospect of high oil maize. Modern Agricultural Science and Technology, 2011, 1: 114 [百度学术]
刘秀红. 高油玉米的利用价值及发展前景. 现代农业科技, 2011, 6: 109, 111 [百度学术]
Liu X H. Utilization value and development prospect of high oil maize. Modern Agricultural Science and Technology, 2011, 6: 109, 111 [百度学术]
裴爱田,逯苗. 高油玉米的发展概述. 中小企业管理与科技, 2009, 9: 237 [百度学术]
Pei A T, Lu M. Development overview of high oil maize. Small and Medium-sized Enterprise Management and Technology, 2009, 9: 237 [百度学术]
石海波. 玉米籽粒发育差异表达蛋白研究. 呼和浩特: 内蒙古农业大学, 2015 [百度学术]
Shi H B. Study on differentially expressed proteins of maize grain development. Hohhot: Inner Mongolia Agricultural University, 2015 [百度学术]
陈小洁,铁双贵,岳润清. 双向电泳技术在植物蛋白质组学研究中的应用. 现代农业科技, 2012, 20: 13-14 [百度学术]
Chen X J, Tie S G, Yue R Q. Application of two-dimensional electrophoresis in the study of plant proteomics. Modern Agricultural Science and Technology, 2012, 20: 13-14 [百度学术]
Yan S J, Bhawal R, Yin Z B, Thannhauser T, Zhang S. Recent advances in proteomics and metabolomics in plants. Molecular Horticulture, 2022, 2(1): 37 [百度学术]
吕秀华,娄维义,党永岩,柴魏君,许立春. 电泳技术的发展和应用. 农业与技术, 2001, 3: 43-45 [百度学术]
Lv X H, Lou W Y, Dang Y Y, Chai W J, Xu L C. Development and application of electrophoresis technology. Agriculture and Technology, 2001(3): 43-45 [百度学术]
刘翠平,方积年. 质谱技术在糖类结构分析中的应用. 分析化学, 2001, 6: 716-720 [百度学术]
Liu C P, Fang J N. Application of mass spectrometry in the analysis of carbohydrate structure. Analytical Chemistry, 2001, 6: 716-720 [百度学术]
Bansal M, Sharma M, Kanwar P, Goyal A. Recent advances in proteomics of cereals. Biotechnology and Genetic Engineering Reviews, 2016, 32(1-2): 1-17 [百度学术]
Lin S K, Chang M C, Tsai Y G, Lur H S. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005, 5(8): 2140-2156 [百度学术]
吴倩,许莹莹,刘树堂,裴玉贺,宋希云. 长期定位施肥条件下夏玉米籽粒清蛋白的比较蛋白质组学分析. 植物生理学报, 2019, 55(6): 858-866 [百度学术]
Wu Q, Xu Y Y, Liu S T, Pei Y H, Song X Y. Comparative proteomic analysis of summer maize grain albumin under long-term location fertilization. Journal of Plant Physiology, 2019, 55(6): 858-866 [百度学术]
Huang H, Møller I M, Song S Q. Proteomics of desiccation tolerance during development and germination of maize embryos. Proteomics, 2012, 75(4): 1247-1262 [百度学术]
Méchin V, Balliau T, Château-Joubert S, Davanture M, LangellaO, Négroni L. A two-dimensional proteome map of maize endosperm. Phytochemistry, 2004, 65: 1609-1618 [百度学术]
Jin X, Fu Z, Ding D, Li W, Liu Z, Tang J. Proteomic identification of genes associated with maize grain-filling rate. PLoS ONE, 2013, 8: e59353 [百度学术]
李桂林,张新怡,夏文丽,张呈豪,唐泽新. 热激蛋白的研究进展及应用前景. 曲阜师范大学学报: 自然科学版, 2023, 49(1): 73-80 [百度学术]
Li G L, Zhang X Y, Xia W L, Zhang C H, Tang Z X. Research progress and application prospect of heat shock protein. Journal of Qufu Normal University: Natural Science Edition, 2023, 49(1): 73-80 [百度学术]
Wang X, Li X, Li Y. A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotechnol Lett, 2007, 29(10): 1599-1603 [百度学术]
Saravanan R S, Rose J K. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 2004, 4(9): 2 [百度学术]
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 7(72): 248-254 [百度学术]
O'Farrell P H. High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry, 1975, 250(10): 4007-4021 [百度学术]
刘丽娟,舒烈波,陈海荣,罗利军. 适用于生菜叶片蛋白质双向电泳方法的建立及初步应用. 植物遗传资源学报, 2009, 10(1):106-110 [百度学术]
Liu L J, Shu L B, Chen H R, Luo L J. It is suitable for the establishment and preliminary application of two-dimensional electrophoresis method of protein in lettuce leaves. Journal of Plant Genetic Resources, 2009, 10(1): 106-110 [百度学术]
张中保,李会勇,石云素,宋燕春,黎裕,王天宇. 应用实时荧光定量PCR技术分析玉米水分胁迫诱导基因的表达模式. 植物遗传资源学报, 2007, 8(4): 421-425 [百度学术]
Zhang Z B, Li H Y, Shi Y S, Song Y C, Li Y, Wang T Y. Real-time fluorescence quantitative PCR was used to analyze the expression patterns of genes induced by water stress in maize. Journal of Plant Genetic Resources, 2007, 8(4): 421-425 [百度学术]
Curtis P E, Leng E R, Hageman R H. Development changes in oil and fatty acid content of maize strains varying in oil content1. Crop Science, 1968, 8(6): 689-693 [百度学术]
Gygi S P, Rochon Y, Franza B R, Aebersold R. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 1999, 19(3): 1720-1730 [百度学术]
王艳芳,杨东伟,张立军,马兴林,关义新. 高油玉米灌浆期籽粒可溶性糖含量与脂肪积累的关系. 沈阳农业大学学报, 2006, 2: 144-146 [百度学术]
Wang Y F, Yang D W, Zhang L J, Ma X L, Guan Y X. Relationship between soluble sugar content and fat accumulation in high oil corn grain at filling stage. Journal of Shenyang Agricultural University, 2006, 2: 144-146 [百度学术]
张超. 油菜甘油-3-磷酸脱氢酶基因的克隆及功能研究. 南京: 南京农业大学, 2012 [百度学术]
Zhang C. Cloning and Functional study of glycerol -3- phosphate dehydrogenase gene in rape. Nanjing: Nanjing Agricultural University, 2012 [百度学术]
Sharma N, Phutela A, Malhotra S P, Singh R. Purification and characterization of dihydroxyacetone phosphate reductase from immature seeds of Brassica campestris L. Plant Science: An International Journal of Experimental Plant Biology, 2001, 160(4): 603-610 [百度学术]
Vigeolas H, Geigenberger P. Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta, 2004, 219(5): 827-835 [百度学术]
Fu S X, Cheng H, Qi C. Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Molecular Biology Reports, 2009, 36(8): 2375-2386 [百度学术]
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9(10): 490-498 [百度学术]
王加琪,向汝华,李忠光. 硫化氢和脱落酸在植物响应逆境胁迫中的交互作用. 生物学杂志, 2022, 39(1): 94-98 [百度学术]
Wang J Q, Xiang R H, Li Z G. Interaction of hydrogen sulfide and abscisic acid in plant response to stress. Journal of Biology, 2022, 39(1): 94-98 [百度学术]
李桂林,张新怡,夏文丽,张呈豪,唐泽新. 热激蛋白的研究进展及应用前景. 曲阜师范大学学报: 自然科学版, 2023, 49(1): 73-80 [百度学术]
Li G L, Zhang X Y, Xia W L, Zhang C H,Tang Z X. Research progress and application prospect of heat shock protein. Journal of Qufu Normal University: Natural Science Edition, 2023, 49(1): 73-80 [百度学术]
Ul Haq S, Khan A, Ali M, Khattak A M, Gai W X, Zhang H X, Wei A M, Gong Z H. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 2019, 20(21): 5321 [百度学术]
林源秀,顾欣昕,汤浩茹. 植物谷胱甘肽还原酶的生物学特性及功能. 中国生物化学与分子生物学报, 2013, 29(6): 534-542 [百度学术]
Lin Y X, Gu X X, Tang H R. Biological characteristics and functions of plant glutathione reductase. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(6): 534-542 [百度学术]
刘洋,邢鑫,李德全. LEA蛋白的分类与功能研究进展. 生物技术通报, 2011(8): 36-43 [百度学术]
Liu Y, Xing X, Li Q D. Studies on the classification and function of LEA proteins. Biotechnology Bulletin, 2011, 8: 36-43 [百度学术]
Wang G, Su H, Abou-Elwafa S F, Zhang P, Cao L, Fu J, Xie X, Ku L, Wen P, Wang T, Wei L. Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress. Journal of Plant Physiology, 2023, 280: 153883 [百度学术]
Lee J, Koh H J. A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Science, 2011, 9(1): 61 [百度学术]