摘要
玉米是重要的粮食和饲料作物,为畜禽提供必需的代谢能和营养物质,饲料的营养价值与蛋白质及氨基酸组成比例密切相关。玉米籽粒蛋白质中氨基酸组成不平衡,添加豆粕可以补充玉米中缺乏的赖氨酸和色氨酸。然而,含硫氨基酸(半胱氨酸和蛋氨酸)也是大豆中的限制性氨基酸,其中蛋氨酸直接影响畜禽的机体蛋白质合成速率,进而影响肉蛋奶的产量。因此,提高玉米含硫氨基酸特别是蛋氨酸含量对畜牧业发展意义重大。我国玉米种质资源中缺乏高蛋氨酸种质,且育种进程缓慢。近年来,随着人们对植物硫元素的吸收和转运机制的深入研究,初步构建了含硫氨基酸代谢调控网络。本研究概括了近年来关于提高作物含硫氨基酸代谢机制的研究结果,提出将群体遗传学、比较基因组学及分子生物学相结合挖掘候选基因的新策略,并利用现代生物育种技术提高玉米籽粒蛋氨酸含量,为优质蛋白玉米遗传改良提供参考。
玉米(Zea mays L.)是畜禽最佳的能量饲料,它的营养价值和质量对饲料品质具有重要影响,在饲料中添加60%左右的玉米,可为畜禽提供65%的代谢能和20%的蛋
随着畜牧业的迅速发展,我国豆粕需求量逐年递增且严重依赖进口,2022年我国进口大豆9108万吨,其中饲料用量8145万吨,饲料中89.4%的蛋氨酸为禽类玉米-豆粕型日粮的第一限制性氨基
玉米主要通过根部吸收土壤中的无机硫酸盐,在叶绿体中经过多种酶的同化及基因调控积累含硫氨基酸。国内外通过常规育种、改造植物内源蛋白基因、改变植物贮藏蛋白组分等多种方式以提高玉米含硫氨基酸含量,并进行了调控机理解析。本文综述了植物含硫氨基酸代谢机制,并提出常规育种与分子育种、信息育种相结合的策略,为含硫氨基酸在优质高蛋白玉米育种的应用研究提供理论参考。
半胱氨酸(Cys,cysteine),分子式C3H7NO2S,分子量121.158。半胱氨酸分为左旋半胱氨酸(L型)和右旋半胱氨酸(D型)(

图1 含硫氨基酸结构式
Fig.1 Sulfur-containing amino acid structure formula
蛋氨酸(Met,methionine),又名甲硫氨酸,分子式C5H11NO2S,分子量149.205。根据旋光性不同,蛋氨酸也分为L型和D型(
硫元素是植物生长发育中所必需的营养元素,是含硫氨基酸半胱氨酸和蛋氨酸生物合成的重要原料。玉米对硫的积累随着生育期呈现 “ V ” 型曲线,在玉米营养生长期主要分布在叶片、茎秆、叶鞘中,籽粒形成后,籽粒中硫的分配量随着灌浆而增多,表明含硫氨基酸的运输是一个从源到库的过程,始于硫元素的吸收与同
刘烁
在模式植物拟南芥中硫酸盐整个同化过程需要3个关键酶:ATP 硫酸化酶(ATPS,ATP sulfurylase)、5′-腺苷酰硫酸还原酶(APR,adenosine 5′-phosphosulfate reductase)和亚硫酸还原酶(SiR,sulfite reductase),硫酸盐在ATP硫酸化酶的激活下转化为5′-腺苷酰硫酸(APS,adenosine-5′-phosphosulfate),随后,5′-腺苷酰硫酸在5′-腺苷酰硫酸还原酶作用下生成亚硫酸盐,亚硫酸盐经过亚硫酸还原酶还原成硫化物进入含硫氨基酸代谢通路。
游离氨基酸的合成存在紧密的调控网络,研究表明,调节某种氨基酸的代谢会影响其他氨基酸的水

图2 植物中含硫氨基酸合成和代谢途径
Fig.2 Synthesis and metabolic pathways of sulfur-containing amino acids in plants
红色字体:基因名称
Red text:Gene name
半胱氨酸作为硫酸盐同化途径产生的第一个碳/氮还原硫产物,不仅是蛋白质的组成成分,还是蛋氨酸生物合成的来源,许多其他含硫代谢产物如谷胱甘肽也参与植物生长、信号传导、胁迫反应和抗真菌发
氨基酸代谢与能量和碳水化合物代谢、碳氮预算以及蛋白质合成和次级代谢的需求紧密关联。作为在植物细胞生长和发育中起主要作用的蛋氨酸,对植物的初级和次级代谢至关重要,是谷胱甘肽、维生素、辅因子和硫化合物的硫供
植物经过长期进化形成了抵御低温、干旱、重金属等非生物胁迫的机制,植物可通过富含半胱氨酸肽、植物螯合素的螯合作用耐受重金属胁迫。蛋氨酸合成途径中S-腺苷甲硫氨酸是植物体内重要的生物甲基供体、胺和乙烯合成的前体,它可调控细胞过程。樊金萍
目前优质蛋白玉米(QPM,quality protein maize)主要是利用基因o2(opaque2)提高籽粒赖氨酸和色氨酸水平,玉米胚乳修饰基因可以将o2的粉质胚乳转变为不同程度的硬质胚乳且赖氨酸含量几乎不降
玉米作为重要的畜禽饲料来源,培育高含硫氨基酸含量的作物品种具有重要意义。随着基因工程的发展和基因编辑技术的成熟,玉米育种逐渐从传统育种转向了通过遗传工程的手段来缩短育种周期,使玉米不仅具有较高的谷物蛋氨酸含量,还含有农艺性状和谷物品质性状的有用变异,为含硫氨基酸玉米育种提供有效途径。
高蛋氨酸玉米育种工作因缺乏可用的基因资源而面临较大困难,导致高蛋氨酸种质资源匮乏。研究人员从衣阿华坚秆综合种(BSSS)中选育出BSSS-53自交系,该自交系中蛋氨酸含量比其他玉米自交系高30%左右,是由编码10 kDa δ-醇溶蛋白的结构基因DZS10自然突变导致的,该基因受反式调节基因DZR1的转录后调
一是调控硫同化途径基因的表达。在植物生长过程中,硫的吸收和还原是氨基酸生物合成的瓶颈。通过调节编码硫酸盐同化过程所需的3个关键酶基因的表达可以促进半胱氨酸的合成。拟南芥中有4个ATP硫酸化酶编码基因,其中定位于质体的APS1、APS3、APS4参与硫同化过
二是通过调节蛋氨酸代谢途径中的关键基因表达,能够在一定程度上增加植物体内的游离蛋氨酸含量。Avraham
玉米籽粒中氨基酸组成不平衡,缺乏含硫氨基酸等必需氨基酸,蛋氨酸作为蛋白质合成启动所需的甲硫基tRNA的组分,对蛋白质含量有重要影响。玉米中醇溶蛋白分为4大类:α类(19 kDa和22 kDa)、β类(15 kDa)、γ类(50 kDa、27 kDa和16 kDa)和δ类(18 kDa和10 kDa)。其中22 kDa α和19 kDa α-玉米醇溶蛋白是最主要的贮藏蛋白,但几乎不含赖氨酸和蛋氨酸,营养品质较差。Wang
Dinkins
基因名称 Gene name | 受体植株 Acceptor plant | 表达模式 Expression pattern | 蛋氨酸含量 Methionine content changes | 参考文献 Reference |
---|---|---|---|---|
AtCGS | 拟南芥 | 过表达 | 提高19倍 |
[ |
AtCGS | 苜蓿 | 过表达 | 提高32倍 |
[ |
AtCGS | 马铃薯 | 过表达 | 提高6倍 |
[ |
EcSAT | 水稻 | 过表达 | 提高4.8倍 |
[ |
AtSAT1 | 玉米 | 过表达 | 提高1.4倍 |
[ |
EcPAPR | 玉米 | 插入 | 提高57.6% |
[ |
TS1 | 拟南芥 | 提前终止突变 | 提高22倍 |
[ |
玉米β醇溶蛋白基因 β-zein | 大豆 | 过表达 | 提高12%~20% |
[ |
玉米γ-醇溶蛋白基因 γ-zein | 大豆 | 过表达 | 提高15.5%~18.6% |
[ |
醇溶蛋白基因的启动子中有一些保守的顺势作用元件受相应的转录因子调控,O2、PBF可以调控22 kDa α-醇溶蛋
全基因组关联分析(GWAS,genome-wide association study)是研究基因型与表型关联的主要分析方法,表达量性状位点(eQTL,expression quantitative trait loci)研究将基因结构变异和表达性状联系起来,在解析植物性状的关键基因和调控网络方面发挥了重要作用,已在多个物种中得以应用,如水
多组学联合分析能更好地理解生物学现象及机体内物质的代谢途径,从而全面地解析生物分子功能和调控机制。Niu
玉米作为畜禽饲料的主要成分,改善玉米籽粒蛋白质中氨基酸的平衡并进一步提高含硫氨基酸含量对于促进畜牧业发展意义重大。氨基酸代谢与植物营养品质表型密切相关,在植物体中存在复杂的代谢调控网络,解析玉米含硫氨基酸代谢机理并通过转基因技术与传统回交育种相结合,在适宜的遗传背景下可以提高玉米叶片中硫酸盐的同化能力,生产出蛋氨酸含量较高的玉米,对畜禽具有显著的营养价值。玉米中富含硫的醇溶蛋白在饲喂雏鸡的日粮中具有生物可利用性,可以取代人工合成的蛋氨酸甲酯补充剂。
目前,组学方法已被广泛应用于氨基酸代谢及其关联的研

图3 高蛋氨酸玉米育种流程图
Fig.3 Flow chart of high methionine maize breeding
参考文献
Cowieson A J,Acamovic T,Bedford M R. 2004 Spring meeting of the wpsa UK branch papers. British Poultry Science,2004,45: S5-S6 [百度学术]
潘迎丽,向荣,李文斌,王志强,魏晓冉,王国君.饲粮代谢能、蛋氨酸水平对蛋鸡产蛋中后期生产性能及羽毛覆盖率的影响.中国饲料,2022(19):30-34 [百度学术]
Pan Y L,Xiang R,Li W B,Wang Z Q,Wei X R,Wang G J. Effects of dietary metabolizable energy and methionine levels on performance and feather coverage in the middle and late laying periods of laying hens. China Feed,2022(19):30-34 [百度学术]
Wu Y,Tang J,Wen Z,Zhang B,Cao J,Zhao L,Guo Z,Xie M,Zhou Z,Hou S. Dietary methionine deficiency stunts growth and increases fat deposition via suppression of fatty acids transportation and hepatic catabolism in Pekin ducks. Journal of Animal Science and Biotechnology,2022,13(1):61 [百度学术]
Pfalzer A C,Choi S W,Tammen S A,Park L K,Bottiglieri T,Parnell L D,Lamon-Fava S. S-adenosylmethionine mediates inhibition of inflammatory response and changes in DNA methylation in human macrophages. Physiological Genomics,2014,46:617-623 [百度学术]
王正旋,杨林.基于蛋氨酸代谢调控的内源性抗氧化分子机制.生物信息学,2022,20:149-154 [百度学术]
Wang Z X,Yang L. Endogenous antioxidant molecular mechanism via methionine metabolism. Chinese Journal of Bioinformatics. 2022,20:149-154 [百度学术]
周长海,段晓翔.蛋氨酸对家禽生长生理作用及在生产中的应用.饲料与畜牧,2015 (1):6-8 [百度学术]
Zhou C H,Duan X X. Physiological effects of methionine on poultry growth and its application in production. Feed and livestock,2015 (1):6-8 [百度学术]
Sveier H,Nordas H,Berge G E,Lied E. Dietary inclusion of crystalline D- and L-methionine: Effects on growth,feed and protein utilization,and digestibility in small and large Atlantic salmon (Salmon salar L.).Aquaculture Nutrition,2001,7(3):169-181 [百度学术]
杨乾龙,王静,南韦肖,王晓旭,李光玉,王凯英.半胱氨酸的合成代谢及其生物学作用研究进展.饲料工业,2022,43:19-22 [百度学术]
Yang Q L,Wang J,Nan W X,Wang X X,Li G Y,Wang K Y. Research progress on the anabolism and biological effects of cysteine. Feed Industry,2022,43:19-22 [百度学术]
李向新,王颖,柴永珍,许海勇.日粮中添加蛋氨酸提高蛋鸡产蛋率的效果观察.养殖技术顾问,2008 (3):102-103 [百度学术]
Li X X,Wang Y,Chai Y Z,Xu H Y. Observation on the effect of adding methionine to diets to improve egg production rate of laying hens. Breeding Technology Adviser,2008 (3):102-103 [百度学术]
Asasi R,Ahmadi H,Torshizi M A K,Torshizi R V,Shariatmadari F. Assessing the nutritional equivalency of DL-methionine and L-methionine in broiler chickens: A meta-analytical study. Poultry Science,2023,102(12),103143 [百度学术]
陈吉,蔡柏岩. 植物对硫素的吸收、转运及利用的研究进展.中国农学通报,2021,37 (29):42-46 [百度学术]
Chen J,Cai B Y. Research progress on absorption,transport and utilization of sulfur in plants. Chinese Agricultural Science Bulletin,2021,37(29):42-46 [百度学术]
Takahashi H,Kopriva S,Giordano M,Saito K,Hell R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology,2011,62:157-184 [百度学术]
Leustek T,Martin M N,Bick J A,Davies J P. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Review Plant Physiology and Plant Molecular Biology,2000,51:141-165 [百度学术]
Smith F W,Ealing P M,Hawkesford M J,Clarkson D T. Plant members of a family of sulfate transporters reveal functional subtypes. Proceedings of the National Academy of Sciences of the United States of America,1995,92:9373-9377 [百度学术]
Smith F W,Hawkesford M J,Ealing P M,Clarkson D T,Vanden Berg P J,Belcher A R,Warrilow A G. Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant Journal,1997,12:875-884 [百度学术]
Pavlovic D,Nikolic B,Durovic S,Waisi H,Andelkovic A,Dragana M. Chlorophyll as a measure of plant health: Agroecological aspects. Pesticidi i Fitomedicina 2014,29:21-34 [百度学术]
刘烁然.施硫提高玉米产量、品质及养分利用效率的生理机制. 长春: 吉林农业大学,2022 [百度学术]
Liu S R. Physiological mechanisms of sulfur application to improve yield,quality and nutrient use efficiency in maize. Changchun: Jilin Agricultural University ,2022 [百度学术]
刘开昌,胡昌浩,董树亭,王空军,李爱芹.高油、高淀粉玉米吸硫特性及施硫对其产量、品质的影响,西北植物学报,2002 (1):97-103 [百度学术]
Liu K C,Hu C H,Dong S T,Wang K J,Li A Q. Sulfur absorption characteristic of high oil and high starch maize and the effect of sulfur application on its yield and quality. Acta Botanica Boreali-Occidentalia Sinica,2002(1):97-103 [百度学术]
Galili G,Amir R,Fernie A R. The regulation of essential amino acid synthesis and accumulation in plants. Annual Review of Plant Biology,2016,67:153-178 [百度学术]
Wirtz M,Droux M. Synthesis of the sulfur amino acids: Cysteine and methionine. Photosynthesis Research,2005,86:345-362 [百度学术]
Kertesz M A,Fellows E,Schmalenberger A. Rhizobacteria and plant sulfur supply. Advances in Applied Microbiology,2007,62:235-268 [百度学术]
Giovanelli J,Mudd S H,Datko A H. Quantitative analysis of pathways of methionine metabolism and their regulation in lemna. Plant Physiology,1985,78:555-560 [百度学术]
Cohen H,Salmon A,Tietel Z,Hacham Y,Amir R. The relative contribution of genes operating in the S-methylmethionine cycle to methionine metabolism in Arabidopsis seeds. Plant Cell Reports,2017,36:731-743 [百度学术]
Frank A,Cohen H,Hoffman D,Amir R. Methionine and S-methylmethionine exhibit temporal and spatial accumulation patterns during the Arabidopsis life cycle. Amino Acids,2015,47:497-510 [百度学术]
Ranocha P,McNeil S D,Ziemak M J,Li C,Tarczynski M C,Hanson A D. The S-methylmethionine cycle in angiosperms: Ubiquity,antiquity and activity. Plant Journal,2001,25:575-584 [百度学术]
Bartlem D,Lambein I,Okamoto T,Itaya A,Uda Y,Kijima F,Tamaki Y,Nambara E,Naito S. Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiology,2000,123:101-110 [百度学术]
Zhu F,Zhang Q P,Che Y P,Zhu P X,Zhang Q Q,Ji Z L. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. Molecular Plant Pathology,2021,22(12):1668-1687 [百度学术]
Liu Y,Zhang Z,Fu J,Wang G,Wang J,Liu Y. Transcriptome analysis of maize immature embryos reveals the roles of cysteine in improving Agrobacterium infection efficiency. Frontiers in Plant Science,2017,8:1778 [百度学术]
Jobe T O,Zenzen I,Rahimzadeh Karvansara P,Kopriva S. Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. Journal of Experimental Botany,2019,70:4211-4221 [百度学术]
Rennenberg H,Bergmann L J Z F P. Influence of ammonium and sulfate on the production of glutathion in suspension cultures of Nicotiana tabacum. Zeitschrift Fur Pflanzenphysiologie,1979,92(2):133-142 [百度学术]
Reuveny Z,Dougall D K,Trinity P M. Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. Proceedings of the National Academy of Sciences of the United States,1980,77:6670-6672 [百度学术]
Cacco G,Saccomani M,Ferrari G. Changes in the uptake and assimilation efficiency for sulfate and nitrate in maize hybrids selected during the period 1930 through 1975. Physiologia Plantarum,1983,58:171-174 [百度学术]
Brunold C,Suter M. Regulation of sulfate assimilation by nitrogen nutrition in the duckweed Lemna minor L. Plant Physiology,1984,76:579-583 [百度学术]
Haller E,Suter M,Brunoid C. Regulation of ATP-sulfurylase and adenosine 5'-phosphosulfate sulfotransferase by the sulfur and the nitrogen source in heterotrophic cell suspension cultures of Paul's Scarlet rose. Journal of Plant Physiology,1986,125:275-283 [百度学术]
Takahashi H,Saito K. Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur. Plant Physiology,1996,112:273-280 [百度学术]
王思冕.镉富集型野菜筛选和耐镉限速酶基因OAS-TL、γ-GCS的克隆. 福州: 福建农林大学,2016 [百度学术]
Wang S M. Screening of cadmium-enriched wild lettuce and cloning of cadmium-resistant rate-limiting enzyme genes OAS-TL and γ-GCS. Fuzhou: Fujian Agriculture and Forestry University,2016 [百度学术]
Kumaran S,Francois J A,Krishnan H B,Jez J M. Sulfur assimilation and abiotic stress in plants. Berlin: Nafees A. Khan Sarvajeet Singh Shahid Umar,2008: 97-109 [百度学术]
Kopriva S,Koprivova A. Sulfate assimilation and glutathione synthesis in C4 plants. Photosynthesis Research,2005,86:363-372 [百度学术]
Roje S. S-Adenosyl-L-methionine: Beyond the universal methyl group donor. Phytochemistry,2006,67:1686-1698 [百度学术]
Droux M. Sulfur assimilation and the role of sulfur in plant metabolism: A survey. Photosynthesis Research,2004,79(3):331-348 [百度学术]
Lee Y H,Ren D,Jeon B,Liu H W. S-Adenosylmethionine: More than just a methyl donor. Natural Product Reports,2023,40(9):1521-1549 [百度学术]
Hirai M Y,Sugiyama K,Sawada Y,Tohge T,Obayashi T,Suzuki A,Araki R,Sakurai N,Suzuki H,Aoki K,Goda H,Nishizawa O I,Shibata D,Saito K. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America,2007,104:6478-6483 [百度学术]
樊金萍,柏锡,李勇,纪巍,王希,朱延明. 野生大豆SAMS同源基因的克隆及分析. 武汉植物学研究,2008(3): 235-239 [百度学术]
Fan J P,Bai X,Li Y,Ji W,Wang X,Zhu Y M. Cloning and analysis of SAMS homologous genes in wild soybean. Wuhan Botanical Research,2008(3),235-239 [百度学术]
Harada E,Choi Y E,Tsuchisaka A,Obata H,Sano H. Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Journal of Plant Physiology,2001,158:655-661 [百度学术]
Wang C,Zheng L,Tang Z,Sun S,Ma J F,Huang X Y,Zhao F J. OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice. Journal of Experimental Botany,2020,71:3678-3689 [百度学术]
Paez A V,Helm J L,Zuber M S. Lysine content of Opaque-2 maize kernels having different phenotypes1. Crop Science,1969(9):251-252 [百度学术]
Li C,Xiang X,Huang Y,Zhou Y,An D,Dong J,Zhao C,Liu H,Li Y,Wang Q,Du C,Messing J,Larkins B A,Wu Y,Wang W. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nature Communication,2020,11:17 [百度学术]
Wang T,Li Y,Huang Y,Zhao X,Dong Z,Jin W,Huang W. Amino acid permease 6 regulates grain protein content in maize. The Crop Journal,2022,10(6):1536-1544 [百度学术]
Planta J,Xiang X,Leustek T,Messing J. Engineering sulfur storage in maize seed proteins without apparent yield loss. Proceedings of the National Academy of Sciences of the United States,2017,114:11386-11391 [百度学术]
Hallauer A R,Wright A D J C S. Registration of B101 maize germplasm. Crop Science,1995,35:1238-1239 [百度学术]
Cruz-Alvarez M,Kirihara J A,Messing J. Post-transcriptional regulation of methionine content in maize kernels. Molecular and General Genetics,1991,225(2):331-339. [百度学术]
Olsen M S,Krone T L,Phillips R L. BSSS53 as a donor source for increased whole-kernel methionine in maize. Crop Science,2003,43(5):1634-1642 [百度学术]
Scott M P,Darrigues A,Stahly T S,Lamkey K. Recurrent selection to alter grain methionine concentration and improve nutritional value of maize. Crop Science,2008,48(5):1705-1713 [百度学术]
Koprivova A,Giovannetti M,Baraniecka P,Lee B R,Grondin C,Loudet O,Kopriva S. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis. Plant Physiology,2013,163(3):1133-1141 [百度学术]
Wang M,Jia Y,Xu Z,Xia Z .Impairment of sulfite reductase decreases oxidative stress tolerance in Arabidopsis thaliana. Frontiers in Plant Science,2016,7:1843 [百度学术]
Avraham T,Badani H,Galili S,Amir R. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine gamma-synthase gene. Plant Biotechnology Journal,2005,3:71-79 [百度学术]
Avraham T,Amir R. The expression level of threonine synthase and cystathionine-gamma-synthase is influenced by the level of both threonine and methionine in Arabidopsis plants. Transgenic Research,2005,14(3):299-311 [百度学术]
Hacham Y,Matityahu I,Schuster G,Amir R. Overexpression of mutated forms of aspartate kinase and cystathionine gamma-synthase in tobacco leaves resulted in the high accumulation of methionine and threonine. Plant Journal,2008,54:260-271 [百度学术]
Di R,Kim J,Martin M N,Leustek T,Jhoo J,Ho C T,Tumer N E. Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. Journal of Agricultural and Food Chemistry,2003,51:5695-5702 [百度学术]
Nguyen H C,Hoefgen R,Hesse H. Improving the nutritive value of rice seeds: Elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. Journal of Experimental Botany,2012,63:5991-6001 [百度学术]
Xiang X,Wu Y,Planta J,Messing J,Leustek T. Overexpression of serine acetyltransferase in maize leaves increases seed-specific methionine-rich zeins. Plant Biotechnology Journal,2018,16:1057-1067 [百度学术]
Wu Y,Messing J. RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins. Plant Physiology,2010,153:337-347 [百度学术]
Wu Y,Wang W,Messing J. Balancing of sulfur storage in maize seed. BMC Plant Biology,2012,12:77 [百度学术]
Kastoori R R,Jedlicka J,Graef G L,Waters B M. Identification of new QTLs for seed mineral,cysteine,and methionine concentrations in soybean. Molecular Breeding,2014,34(2):431-445 [百度学术]
Wang X,Jiang G L,Song Q,Cregan P B,Scott R A,Zhang J,Yen Y,Brown M. Quantitative trait locus analysis of seed sulfur-containing amino acids in two recombinant inbred line populations of soybean. Euphytica,2015,201(2):293-305 [百度学术]
Wu Y,Wang W,Messing J. Balancing of sulfur storage in maize seed. BMC Plant Biology,2012,12:77 [百度学术]
Lai J,Messing J. Increasing maize seed methionine by mRNA stability. The Plant Journal,2002,30(4):395-402 [百度学术]
Dinkins R D,Srinivasa Reddy M S,Meurer C A,Yan B,Trick H,Thibaud-Nissen F,Finer J J,Parrott W A,Collins G B. Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cellular & Developmental Biology-Plant,2001,37(6):742-747 [百度学术]
Li Z,Meyer S,Essig J S,Liu Y,Schapaugh M A,Muthukrishnan S,Hainline B E,Trick H N. High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Molecular Breeding,2005,16:11-20 [百度学术]
Guo C,Liu X,Chen L,Cai Y,Yao W,Yuan S,Wu C,Han T,Sun S,Hou W. Elevated methionine content in soybean seed by overexpressing maize β-zein protein. Oil Crop Science,2020,5:11-16 [百度学术]
Kim W S,Krishnan H B.Expression of an 11 kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotechnology Journal ,2004,2(3):199-210 [百度学术]
Wu Y,Messing J. Rapid divergence of prolamin gene promoters of maize after gene amplification and dispersal. Genetics,2012,192(2):507-519 [百度学术]
Schmidt R J,Burr F A,Aukerman M J,Burr B. Maize regulatory gene opaque-2 encodes a protein with a "leucine-zipper" motif that binds to zein DNA. Proceedings of the National Academy of Sciences of the United States of America,1990,87(1):46-50 [百度学术]
Liu H,Huang Y,Li X,Wang H,Ding Y,Kang C,Sun M,Li F,Wang J,Deng Y Yang X,Huang X,Gao X,Yuan L,An D,Wang W,Holding D R,& Wu Y. High frequency DNA rearrangement at qγ27 creates a novel allele for quality protein maize breeding. Communications Biology,2019,2:460 [百度学术]
Zhang Z,Dong J,Ji C,Wu Y,Messing J. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America,2019,116(23):11223-11228 [百度学术]
Qiao Z,Qi W,Wang Q,Feng Y,Yang Q,Zhang N,Wang S,Tang Y,Song R. ZmMADS47 regulates zein gene transcription through interaction with Opaque2. PLoS Genetics,2016,12(4): e1005991 [百度学术]
Yang T,Wang H,Guo L,Wu X,Xiao Q,Wang J,Wang Q,Ma G,Wang W,Wu Y. ABA-induced phosphorylation of basic leucine zipper 29,ABSCISIC ACID INSENSITIVE 19,and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. The Plant Cell,2022,34(5):1933-1956 [百度学术]
Wang J,Yu H H,Xie W B,Xing Y Z,Yu S B,Xu C G,Li X H,Xiao J H,Zhang Q F. A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant Journal,2010,63(6):1063-1074 [百度学术]
Kuroha T,Nagai K,Kurokawa Y,Nagamura Y,Kusano M,Yasui H,Ashikari M,Fukushima A. eQTLs regulating transcript variations associated with rapid internode elongation in deepwater rice. Frontiers in Plant Science,2017,8:1753 [百度学术]
Liu C,Zhu X Y,Zhang J,Shen M,Chen K,Fu XK,Ma L,Liu XL,Zhou C,Zhou D X,Wang G. eQTLs play critical roles in regulating gene expression and identifying key regulators in rice. Plant Biotechnology Journal,2022,20(12):2357-2371 [百度学术]
Shang L,Li X,He H,Yuan Q,Song Y,Wei Z,Lin H,Hu M,Zhao F,Zhang C,Li Y,Gao H,Wang T,Liu X,Zhang H,Zhang Y,Cao S,Yu X,Zhang B,Zhang Y,Tan Y,Qin M,Ai C,Yang Y,Zhang B,Hu Z,Wang H,Lv Y,Wang Y,Ma J,Wang Q,Lu H,Wu Z,Liu S,Sun Z,Zhang H,Guo L,Li Z,Zhou Y,Li J,Zhu Z,Xiong G,Ruan J,Qian Q. A super pan-genomic landscape of rice. Cell Research,2022,32(10):878-896 [百度学术]
Tan Z,Peng Y,Xiong Y,Xiong F,Zhang Y,Guo N,Tu Z,Zong Z,Wu X,Ye J,Xia C,Zhu T,Liu Y,Lou H,Liu D,Lu S,Yao X,Liu K,Snowdon R J,Golicz A A,Xie W,Guo L,Zhao H. Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus. Genome Biology,2022,23(1): 233 [百度学术]
He F,Wang W,Rutter W B,Jordan K W,Ren J,Taagen E,DeWitt N,Sehgal D,Sukumaran S,Dreisigacker S,Reynolds M,Halder J,Sehgal S K,Liu S,Chen J,Fritz A,Cook J,Brown-Guedira G,Pumphrey M,Carter A,Sorrells M,Dubcovsky J,Hayden M J,Akhunova A,Morrell P L,Szabo L,Rouse M,Akhunov E. Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nature Communications,2022,13(1):826 [百度学术]
Fu J,Cheng Y,Linghu J,Yang X,Kang L,Zhang Z,Zhang J,He C,Du X,Peng Z,Wang B,Zhai L,Dai C,Xu J,Wang W,Li X,Zheng J,Chen L,Luo L,Liu J,Qian X,Yan J,Wang J,Wang G. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature communications,2013,4:2832 [百度学术]
Liu H,Luo X,Niu L,Xiao Y,Chen L,Liu J,Wang X,Jin M,Li W,Zhang Q,Yan J B. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Molecular Plant,2017,10(3):414-426 [百度学术]
Pang J,Fu J,Zong N,Wang J,Song D,Zhang X,He C,Fang T,Zhang H,Fan Y,Wang G,Zhao J. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development. Plant Journal,2019,98(1):19-32 [百度学术]
Liang Z K,Myers Z A,Petrella D,Engelhorn J,Hartwig T,Springer N M. Mapping responsive genomic elements to heat stress in a maize diversity panel. Genome Biology,2022,23(1):234 [百度学术]
Ranjan A,Budke J M,Rowland S D,Chitwood D H,Kumar R,Carriedo L,Ichihashi Y,Zumstein K,Maloof J N,Sinha N R. eQTL regulating transcript levels associated with diverse biological processes in tomato. Plant Physiology,2016,172(1):328-340 [百度学术]
Yang N,Liu J,Gao Q,Gui S,Chen L,Yang L,Huang J,Deng T,Luo J,He L,Wang Y,Xu P,Peng Y,Shi Z,Lan L,Ma Z,Yang X,Zhang Q,Bai M,Li S,Li W,Liu L,Jackson D,Yan J. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics,2019,51(6):1052-1059 [百度学术]
Niu M,Chen X,Zhou W,Guo Y,Yuan X,Cui J,Shen Z,Su N. Multi-omics analysis provides insights into lysine accumulation in quinoa (Chenopodium quinoa Willd.) sprouts. Food Research International,2023,171:113026 [百度学术]
Xing J,Zhang J,Wang Y,Wei X,Yin Z,Zhang Y,Pu A,Dong Z,Long Y,Wan X. Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops. The Plant Journal,2024,117(4):1148-1164 [百度学术]
Li Y,Yang Z,Yang C,Liu Z,Shen S,Zhan C,Lyu Y,Zhang F,Li K,Shi Y,Zhou J,Liu X,Fang C,Fernie AR,Li J,Luo J. The NET locus determines the food taste,cooking and nutrition quality of rice. Science Bulletin,2022,67(20):2045-2049 [百度学术]
Gu L,Jones A D,Last R L. Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant. Plant Journal,2010,61:579-590 [百度学术]
Angelovici R,Batushansky A,Deason N,Gonzalez-Jorge S,Gore M A,Fait A,DellaPenna D. Network-guided GWAS improves identification of genes affecting free amino acids. Plant Physiology,2017,173:872-886 [百度学术]
Xing A,Last R L. A regulatory hierarchy of the Arabidopsis branched-chain amino acid metabolic network. Plant Cell,2017,29:1480-1499 [百度学术]
Yang Q Q,Zhao D S,Zhang C Q,Wu H Y,Li Q F,Gu M H,Sun S S,Liu Q Q. A connection between lysine and serotonin metabolism in rice endosperm. Plant Physiology,2018,176:1965-1980 [百度学术]
Chen J,Wang Z,Tan K,Huang W,Shi J,Li T,Hu J,Wang K,Wang C,Xin B,Zhao H,Song W,Hufford M B,Schnable J C,Jin W,Lai J. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics,2023,55:1221-1231 [百度学术]
Chen K,Wang Y,Zhang R,Zhang H,Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology,2019,70:667-697 [百度学术]