摘要
小麦条锈病是由条形柄锈菌(Pst, Puccinia striiformis f. sp. tritici)引起的一种全球性重要真菌病害,严重影响小麦生产安全。发掘抗病基因,培育抗病品种是防治条锈病最为经济有效和安全的方法。武都白茧儿是甘肃陇南小麦农家品种,在整个生育期都表现出中到高抗条锈病,但其抗性基因尚不明晰。为解析武都白茧儿的条锈病抗性遗传机制,本研究利用抗病亲本武都白茧儿和感病亲本辉县红配制杂交组合,利用条锈菌生理小种V31/lab对其F2和F2:3群体进行苗期接种鉴定,结合混池测序和连锁分析定位抗性基因。结果表明,武都白茧儿对V31/lab抗性由一对隐性基因控制,暂命名为yrWUD。根据F2群体的混池外显子捕获测序和混池转录组测序结果,开发了12个高通量的KASP标记;通过连锁分析,将yrWUD定位在4AL染色体的2.6 cM遗传区间内,与侧翼标记4AL36和4AL11的遗传距离分别为0.9 cM和1.7 cM,对应13 Mb的物理区间(4A:610.26~623.35 Mb),其中3个抗病相关基因TraesCS4A02G329100、TraesCS4A02G330000和TraesCS4A02G330100在抗感池中差异表达,推测为yrWUD的候选基因。本研究定位了武都白茧儿的抗性基因yrWUD,用KASP标记4AL36在自然群体中检测了该基因的等位基因,研究结果为小麦抗条锈病育种提供了新基因和分子标记。
小麦(Triticum aestivum L.)是世界上最重要的粮食作物之一。因其广泛的适应性,在世界各地均有种植,年产量逾6.2亿吨,全世界30%以上的人口以小麦为主
小麦农家品种中蕴藏着丰富的抗病基因,是挖掘新的抗性基因的宝贵资
本研究构建了抗病亲本武都白茧儿与感病亲本辉县红的F2和F2:3群体。146份黄淮麦区骨干品种(系),用于验证yrWUD的遗传效应。铭贤169不含抗条锈病基因,全生育期高感条锈病,用作繁菌材料和感病对照。所有实验材料均由中国农业科学院国家小麦改良中心提供。条锈菌生理小种V31/lab,CYR32和V26由西北农林科技大学农学院吴建辉博士提供。菌种繁殖和材料鉴定均于2022-2023和2023-2024年度在中国农业科学院作物科学研究所国家小麦改良中心可控温室进行。将武都白茧儿、辉县红及其F1、F2和F2∶3的种子种在8×8×8c
根据苗期鉴定结果,从武都白茧儿×辉县红F2的群体中选取104个抗病单株和104个感病单株构建抗池和感池,分别命名为21WHF-R和21WHF-S,进行混池外显子捕获测序(BSE-Seq,bulked segregant exome capture sequencing)和混池转录组测序(BSR-Seq,bulked segregant RNA-Seq)分析。外显子捕获测序及数据分析由成都天成未来科技有限公司完成,对于BSE-Seq,每个混池测序数据量为20.0 G。抗池和感池最大杂合率为0.1,最小Reads depth设置为5。应用ED算法获得最显著的变异连锁区段,通过计算不同混池间各突变型的频率距离,采用距离差异来反映标记与目标区域的连锁强度。其中,mut与wt分别代表突变型混池(21WHF-S)、野生型混池(21WHF-R),A、C、G、T表示标记位点各突变型所占测序Reads的比例。根据得到的混池间的SNP位点集及基因型的深度信息,计算混池间的突变频率差异,即欧几里得距离(ED,euclidean distance)值。为降低单个SNP位点计算带来的偏差,需要对得到的结果进行拟
BSR-Seq及数据分析由诺禾致源完成,对于BSR-Seq,每混池测序数据量为10.0 G。通过计算抗池和感池间SNP index的差值,获得与抗病基因紧密连锁的单核苷酸多态性位点。
根据BSE-Seq和BSR-Seq提供的候选SNP设计测序引物。对于真实存在且在双亲间有差异的SNP,将其侧翼序列提交至PolyMarker(http://www.polymarker.info/),选取符合条件的引物,加上FAM和HEX接头进行合成;使用24个DNA样品对竞争性等位基因特异性PCR(KASP,kompetitive allele-specific PCR)标记引物进行初筛,包括9个纯合抗病和9个纯合感病F2单株,武都白茧儿(2个样品),辉县红(2个样品)和武都白茧儿×辉县红F1(2个样品)。选取纯合抗病与武都白茧儿分型一致,纯合感病与辉县红分型一致的KASP标记检测F2和F2∶3群体。
KASP反应总体系为5 μL,包含2×KASP Master Mix (北京嘉程生物科技有限公司)2.5 μL、KASP Assay Mix (引物混合液: 100μmol/L 的引物A、B各12 μL,引物C 30 μL,水46 μL) 0.07 μL、浓度为 20 ng/μL的模板DNA 2.43 μL。KASP 反应程序为94℃,15 min;94℃,20 s,61~55℃,1 min,每个循环降低0.6℃,共10个循环;94℃,20 s,55℃,1 min,共26个循环。使用PHERAstarplus扫描仪(Laboratory of the Government Chemist,英国)对PCR产物进行扫描读取荧光值,使用KlusterCalle
根据武都白茧儿和辉县红后代F1、F2和F2∶3的抗性表现判断武都白茧儿携带抗病基因的个数及显隐性。使用SAS 9.2(https://www.sas.com/zh_cn/home.html)对F2和F2∶3群体中抗感单株个数进行卡方检验,使用Mapmarker 3.0计算标记和抗病基因间的遗传距
武都白茧儿对CYR32和V26表现感病,对V31/lab表现为近免疫(IT=0;),辉县红对V31/lab表现为高感(IT=4)(

图1 武都白茧儿、辉县红和F1接种V31/lab后的抗病反应
Fig. 1 Disease resistance responses of Wudubaijianer, Huixianhong and F1 inoculated with V31/lab
材料 Material | 侵染型 Infection type | 总株数 Total number | 期望比例 Expected ratio | 卡方值 | P值 P value | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0; | 1 | 2 | 3 | 4 | |||||
武都白茧儿 Wudubaijianer | 0 | 43 | 0 | 0 | 0 | 0 | 43 | |||
辉县红 Huixianhong | 0 | 0 | 0 | 0 | 0 | 43 | 43 | |||
F1 | 0 | 0 | 0 | 0 | 7 | 15 | 22 | |||
F2 | 0 | 301 | 136 | 144 | 641 | 968 | 2190 | 1∶3 | 2.73 | 0.10 |
BSE-Seq分析统计了每条染色体所有SNP拟合前的ED值和拟合后的ED值,拟合前SNP E

图 2 基于BSE-Seq的混池21WHF-R和21WHF-S多态性SNP染色体分布
Fig. 2 Distribution of polymorphic SNPs on the wheat genome between bulks of 21WHF-R and 21WHF-S based on BSE-seq
BSR-Seq分析结果显示抗池测序共产生Raw data 24.76 G,过滤后的Clean data 23.21G,测序质量高(Q20≥ 97.45%、Q30≥93.24%);感池测序共产生Raw data 21.44 G,过滤后的Clean data 20.07 G,测序质量高(Q20 ≥97.24%、Q30≥92.87%)。采用BWA软件比对,抗池与中国春参考基因组v1.1(IWGSC 2018,https://urgi. versailles.inra.fr/blast_iwgsc/)比对率93.81%,感池比对率为91.57%。以中国春参考基因组作为参考,分别计算两个子代池的index值;然后划窗统计每个窗口的index平均值,计算两个子代池间的△SNP-index,△SNP-index绝对值设置为0.8,即混池间△SNP-index大于0.8的SNP所在区段推测为yrWUD的候选区间。根据BSR-Seq分析结果,筛选出686个SNP候选位点,这些SNP主要富集在4AL染色体末端590~640 Mb和710~750 Mb,表明yrWUD可能位于4A染色体末端(

图3 混池21WHF-R和21WHF-S BSR-Seq分析结果
Fig.3 BSR-Seq results of bulks of 21WHF-R and 21WHF-S
A:混池21WHF-R和21WHF-S的△SNP-index;红色虚线:与抗病基因显著关联的SNP的阈值;B:混池21WHF-R和21WHF-S间SNP在4AL染色体上频率分布
A:The △SNP-index between bulks of 21WHF-R and 21WHF-S; Red dotted line:The threshold for the SNP for significant association with disease resistance genes; B:The frequency distributions of SNPs on chromosome 4AL detected from bulks of 21WHF-R and 21WHF-S
基于BSR-Seq和BSE-Seq提供的候选SNP设计168对引物,使用24个DNA样品对KASP引物进行初筛,有助于评估引物的特异性和效率。样品包括纯合抗病和纯合感病的F2单株,武都白茧儿、辉县红及其F1。通过比较这些样品在KASP反应中的分型结果,可以初步判断引物的有效性。选取纯合抗病与武都白茧儿分型一致,纯合感病与辉县红分型一致的KASP标记继续检测F2和F2∶3群体。2190个武都白茧儿和辉县红F2单株包括581个抗病单株和1609个感病单株。利用12个KASP标记(
引物编号 Primer code | 引物名称 Primer name | 物理位置(Mb) Physical position | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|---|---|
4AL14 | 4AL14A | 593.35 | GAAGGTGACCAAGTTCATGCTAGTACATTGTTACACATGGTCCTAG |
4AL14B | 593.35 | GAAGGTCGGAGTCAACGGATTAGTACATTGTTACACATGGTCCTAA | |
4AL14C | 593.35 | GTGCTCTGCTAGATTTTCAGC | |
4AL17 | 4AL17A | 594.21 | GAAGGTGACCAAGTTCATGCTTCCTCTCCCTACTTGCAAGAA |
4AL17B | 594.21 | GAAGGTCGGAGTCAACGGATTTCCTCTCCCTACTTGCAAGAC | |
4AL17C | 594.21 | GCTACGTAGTTCAGAAATAAGGTC | |
4AL22 | 4AL22A | 597.69 | GAAGGTGACCAAGTTCATGCTTCTTGAATGAAGCCCAGTGT |
4AL22B | 597.69 | GAAGGTCGGAGTCAACGGATTTCTTGAATGAAGCCCAGTGC | |
4AL22C | 597.69 | TGCAGTTGACAAGATCATCATAAAG | |
4AL27 | 4AL27A | 600.90 | GAAGGTGACCAAGTTCATGCTTGAACTCAAACACCAGGTTCG |
4AL27B | 600.90 | GAAGGTCGGAGTCAACGGATTTGAACTCAAACACCAGGTTCT | |
4AL27C | 600.90 | TTGATCTGCTGCTAGATGCG | |
4AL31 | 4AL31A | 603.64 | GAAGGTGACCAAGTTCATGCTCCGCATCATCCCGGGCTC |
4AL31B | 603.64 | GAAGGTCGGAGTCAACGGATTCCGCATCATCCCGGGCTT | |
4AL31C | 603.64 | AGTTCTCGTCGGCGAACTTTTG | |
4AL33 | 4AL33A | 607.28 | GAAGGTGACCAAGTTCATGCTGACAACTCCATCTCTGGCACA |
4AL33B | 607.28 | GAAGGTCGGAGTCAACGGATTGACAACTCCATCTCTGGCACC | |
4AL33C | 607.28 | GATCTCAGTTTGCACAACGAAGA | |
4AL34 | 4AL34A | 608.83 | GAAGGTGACCAAGTTCATGCTGGGGTATTGCCATGAAAATACTT |
4AL34B | 608.83 | GAAGGTCGGAGTCAACGGATTGGGGTATTGCCATGAAAATACTC | |
4AL34C | 608.83 | TGATGACGATGAATAGATGATTGGT | |
4AL35 | 4AL35A | 609.81 | GAAGGTGACCAAGTTCATGCTACAGAGGAGAAAGATAAGCAGGC |
4AL35B | 609.81 | GAAGGTCGGAGTCAACGGATTACAGAGGAGAAAGATAAGCAGGA | |
4AL35C | 609.81 | GACGATCTGTCTTAGTCGTCC | |
4AL36 | 4AL36A | 610.26 | GAAGGTGACCAAGTTCATGCTTCAAGAAGAAAGTGAAGAGGCTG |
4AL36B | 610.26 | GAAGGTCGGAGTCAACGGATTTCAAGAAGAAAGTGAAGAGGCTA | |
4AL36C | 610.26 | CATTGGTGGCAGTGGATGTG | |
4AL3 | 4AL3A | 614.23 | GAAGGTGACCAAGTTCATGCTTGGATCAGTCTGTGGTTTGG |
4AL3B | 614.23 | GAAGGTCGGAGTCAACGGATTTGGATCAGTCTGTGGTTTGC | |
4AL3C | 614.23 | TTGAGCAATGGTGTCCTGGA | |
4AL8 | 4AL8A | 617.10 | GAAGGTGACCAAGTTCATGCTCGCAAACTTCTCCTGCCCTG |
4AL8B | 617.10 | GAAGGTCGGAGTCAACGGATTCGCAAACTTCTCCTGCCCTA | |
4AL8C | 617.10 | TGTCCATCTATGTGTGTGTTCT | |
4AL11 | 4AL11A | 623.35 | GAAGGTGACCAAGTTCATGCTGGTCCACCTCTAGAACACAGT |
4AL11B | 623.35 | GAAGGTCGGAGTCAACGGATTGGTCCACCTCTAGAACACAGA | |
4AL11C | 623.35 | GCTCCATGGAAGATAGATGCA |
对于KASP标记,A和B表示等位基因特异引物,C表示通用反向引物;FAM和HEX荧光接头用粗体表示
For KASP labeling, A and B indicate allele-specific primers and C indicates the common reverse primer; FAM and HEX fluorescent adaptors are indicated in bold

图 4 条锈病抗性基因yrWUD连锁图谱
Fig. 4 Linkage map of stripe rust resistance gene yrWUD
蓝色区域为包括yrWUD在内的2.6 cM遗传区间,标记4AL3和4AL8与yrWUD共分离
The interval marked in blue represents 2.6 cM genetic interval spanning yrWUD. 4AL3 and 4AL8 co-segregated with yrWUD
根据中国春参考基因组,在yrWUD定位的物理区间610.26~623.35 Mb 内,包括215个高置信度注释基因,其中有23个是与抗病相关的基因。根据混池BSR-Seq结果,定位区间抗感池间差异表达基因有13个,与抗病相关并且抗池表达量高于感池的基因只有3个, TraesCS4A02G329100、TraesCS4A02G330000和TraesCS4A02G330100,分别编码假定抗病蛋白RPP13样蛋白(NB-ARC),受体激酶样蛋白 Xa21(PKinase)和富含亮氨酸重复N端结构域的蛋白(LRRNT_2),推测为yrWUD的候选基因(
基因ID Gen ID | 抗病池 FPKM值 FPKM of resistance-pool | 感病池 FPKM值 FPKM of sensible-pool | 差异表达倍数 log2 fold change | 起始位置 (bp) Starting location | 终止位置(bp) Termination position | 基因注释 Gene annotation |
---|---|---|---|---|---|---|
TraesCS4A02G324600 | 1.85 | 45.24 | -4.52 | 612072716 | 612078621 | - |
TraesCS4A02G325800 | 64.99 | 14.01 | 2.20 | 613366832 | 613368026 | - |
TraesCS4A02G326400 | 81.70 | 0.00 | 9.36 | 613543124 | 613544389 | AP2 |
TraesCS4A02G329100 | 491.16 | 86.17 | 2.51 | 614251593 | 614258300 | NB-ARC |
TraesCS4A02G330000 | 219.12 | 22.62 | 3.27 | 615104066 | 615106167 | PKinase |
TraesCS4A02G330100 | 87.27 | 9.70 | 3.15 | 615106331 | 615107512 | LRRNT_2 |
TraesCS4A02G331100 | 3809.57 | 100.17 | 5.25 | 615693852 | 615702428 | ABC2_membrane |
TraesCS4A02G333900 | 275.75 | 700.07 | -1.34 | 617227996 | 617235045 | KH_1 |
TraesCS4A02G335200 | 204.26 | 547.13 | -1.42 | 617933283 | 617940601 | Pkinase_Tyr |
TraesCS4A02G335900 | 506.95 | 17.24 | 4.87 | 618411671 | 618412941 | - |
TraesCS4A02G336000 | 20.42 | 0.00 | 7.37 | 618417529 | 618419227 | - |
TraesCS4A02G336100 | 49.20 | 5.39 | 3.16 | 618463055 | 618464687 | - |
TraesCS4A02G341100 | 382.53 | 66.78 | 2.52 | 621784829 | 621792600 | - |
-:在中国春参考基因组v1.1中无相应基因注释信息
-: indicates no gene annotation according to Chinese Spring reference genome v1.1
利用与yrWUD连锁距离最近的KASP标记4AL36对146份小麦品种进行了基因分型, 存在明显分型(

图5 4AL36标记基因型及其条锈病抗性验证
Fig. 5 The genotype of the 4AL36 and its association with stripe rust resistance
A:146份小麦品种的分型结果,红色为辉县红等位基因类型,蓝色为武都白茧儿等位基因类型;B:4AL36检测146份小麦品种条锈病抗性,WD-type表示武都白茧儿类型,HXH-type表示辉县红类型
A:The genotype of 146 wheat varieties, red is Huixianhong allele type, blue is Wudubaijianer allele type; B:4AL36 detected stripe rust resistance in 146 wheat varieties, WD-type: Wudubaijianer type, HXH-type: Huixianhong type
武都白茧儿在甘肃陇南条锈病流行区种植有50年之久,对条锈病仍保持着稳定的抗
通过混池BSR-Seq结果预测TraesCS4A02G329100、TraesCS4A02G330000和TraesCS4A02G330100为yrWUD的候选基因。其中,TraesCS4A02G329100编码一个与抗病性相关的RPP13蛋白。RPP13蛋白是植物抗病机制的重要组成部分,该蛋白负责调控对不同外部刺激的反应,包括生物胁迫和非生物胁
利用BSE-Seq和BSR-Seq两种混池测序方法来检测抗感池中对应基因的碱基变异,并通过评估抗感池中碱基变异的频率差异进行定位,相较于全基因组测序,这两种方法更加经济有效,故被广泛应用于抗病基因定位中。例如Jin
在本研究中,146份黄淮麦区骨干品种中鉴定到83.6%的品种携带与武都白茧儿相同类型的等位基因,说明该基因已被大量利用,表明其利用潜力有限,但另一方面也表明该基因确实有较好的条锈病抗性,可以在育种中发挥较大作用。因此,可以采用以下两种方式将yrWUD应用到条锈病抗性育种中:(1)通过常规育种和分子标记辅助选择将yrWUD导入生产上没有该优异等位基因的主推品种中,提升其条锈病抗性;(2)在含有该优异等位基因的品种中,进一步引入其他微效基因,聚合多基因来降低条锈病发生严重度。同时,由于采用的是多个微效水平抗性基因聚合的方式,抗性一般为中抗至高抗水平,可以一定程度上减轻对病原菌生理小种的选择压力,降低生理小种进化速度,从而达到减缓抗性丧失的目的。整体来看,抗病基因丧失抗性多是由于进化出毒性更强的生理小种,在小麦生产中应注意含有不同抗病基因品种合理布局。
KASP标记是一种基于PCR技术的分子标记方法,广泛应用于基因定位和基因分型研究中。相比传统的简单重复序列(SSR,simple sequence repeat)、序列标签位点(STS,sequence tag site)等标记具有高度的灵敏性、快速性和经济性等特点。在基因定位研究中,KASP标记可以用于确定连锁群体、构建遗传图谱和遗传位点的精确定位,也可以用于检测个体间单核苷酸多态性的SNP和InDel等。通过KASP标记,可以对特定的基因进行定位,进而研究基因与表型之间的关联。例如,Song
本研究发现了一个新的抗条锈病基因yrWUD,将其定位在610.26~623.35 Mb的区段内。开发了育种可用的KASP标记4AL36,并在146份小麦品种中进行了验证。本研究鉴定的抗性基因及其相应的KASP标记可用于小麦分子标记辅助育种。
参考文献
Gupta P K, Mir R R, Mohan A, Kumar J. Wheat genomics:Present status and future prospects. International Journal of Plant Genomics, 2008: 896541 [百度学术]
Chen C, He Z H, Lu J L, Li J, Ren Y, Ma C X, Xia X C. Molecular mapping of stripe rust resistance gene YrJ22 in Chinese wheat cultivar Jimai 22. Molecular Breeding, 2016, 36(8): 1-8 [百度学术]
中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021 [百度学术]
National Bureau of Statistics of the People’s Republic of China. China statistical Yearbook. Beijing: China Statistics Press, 2021 [百度学术]
康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48(17): 3439-3453 [百度学术]
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015, 48(17): 3493-3453 [百度学术]
Wellings C R. Global status of stripe rust:A review of historical and current threats. Euphytica, 2011, 179(1): 129-141 [百度学术]
孔令让. 另辟蹊径破解小麦条锈病的基因密码. 植物学报, 2022, 57(4): 405-408 [百度学术]
Kong L R. Breaking the gene code conferring broad-spectrum resistance to rust fungi. Chinese Bulletin of Botany, 2022, 57(4): 405-408 [百度学术]
李振岐, 曾士迈. 中国小麦锈病. 北京:中国农业出版社, 2002 [百度学术]
Li Z Q, Zeng S M. Chinese wheat rust. Beijing: China Agricultural Press, 2002 [百度学术]
吴彦利. 小麦-黑麦易位系抗条锈病基因初定位. 雅安: 四川农业大学, 2019 [百度学术]
Wu Y L. Preliminary mapping of stripe rust resistance genes in wheat-rye chromosome translocation line. Ya′an: Sichuan Agricultural University, 2019 [百度学术]
Zeng Q D, Zhao J, Wu J H, Zhan G M, Han D J, Kang Z S. Wheat stripe rust and integration of sustainable control strategies in China. Frontiers of Agricultural Science and Engineering, 2022, 9(1): 37-51 [百度学术]
任妍. 普通小麦抗条锈病基因分子定位. 北京: 中国农业科学院, 2012 [百度学术]
Ren Y. Molecular mapping of stripe rust resistance genes in common wheat. Beijing: Chinese Academy of Agricultural Sciences, 2012 [百度学术]
何雨. 野生二粒小麦条锈病抗性鉴定与Yr15遗传多样性分析. 杨凌: 西北农林科技大学, 2020 [百度学术]
He Y. Characterization of stripe rust resistance in wild emmer populations and the nucleotide diversity of Yr15. Yangling: Northwest Agricultural and Forestry University, 2020 [百度学术]
李强. 几个重要小麦品种(系)全生育期抗条锈病基因的遗传分析和分子作图. 杨凌: 西北农林科技大学, 2010 [百度学术]
Li Q. Inheritance and molecular mapping of gene(s) for all-stage resistance to stripe rust in several wheat cultivars (lines). Yangling: Northwest Agricultural and Forestry University, 2010 [百度学术]
Chen X M. Epidemiology and control of stripe rust Puccinia striiformis f. sp. Tritici. on wheat. Canadian Journal of Plant Pathology, 2005, 27(3): 314-337 [百度学术]
Qureshi N, Bariana H S, Zhang P, Mcintosh R, Bansal U. K, Wong D, Hayden M J, Dubcovsky J, Shankar M. Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Disease, 2018, 102(2): 413-420 [百度学术]
王晓婷. 国外小麦种质抗条锈性全基因组关联分析. 杨凌: 西北农林科技大学, 2020 [百度学术]
Wang X T. Genome-wide association study of resistance to stripe rust in foreign wheat germplasm. Yangling: Northwest Agricultural and Forestry University, 2020 [百度学术]
刘胜杰. 四个小麦品种(系)的抗条锈病遗传解析与QYrnap.nwafu-2BS(YrNP63)的图位克隆. 杨凌: 西北农林科技大学, 2022 [百度学术]
Liu S J. Genetic dissection of stripe rust resistance in four wheat cultivars (lines) and map-based cloning of QYrnap.nwafu-2BS (YrNP63). Yangling: Northwest Agricultural and Forestry University, 2022 [百度学术]
Fu D L, Uaui C, Distelfelf A, Blechl A, Epstein L, Chen X M, Sela H, Fahima T, Dubcovsky J A. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 232(6): 1357-1359 [百度学术]
Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Molecular Plant, 2014, 12(7): 1740-1755 [百度学术]
Marchal C, Zhang J P, Zhang P, Fenwick P, Steuernagel B, Adamski N M, Boyd L, McIntosh R, Wulff B B H, Berry S, Lagudah E, Uauy C. BED-domain containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018, 236(4): 662-668 [百度学术]
Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen M J, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen C K, Hovmøller M S, Distelfeld A, Chalhoub B, Dubcovsky J, Korol A B, Schulman A H, Fahima T. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 2018, 9(1): 3735-3747 [百度学术]
Zhang C Z, Huang L, Zhang H F, Hao Q Q, Lyu B, Wang M B, Epstein L, Liu M, Kou C L, Qi J, Chen F J, Li M K, Gao G, Ni F, Zhang L Q, Hao M, Wang J R, Chen X M, Luo M C, Zheng Y L, Wu J J, Liu D C, Fu D L. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nature Communications, 2019, 10 (9): 4023-4035 [百度学术]
Wang H, Zou S H, Li Y W, Lin F Y, Tang D Z. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nature Communications, 2020, 11(1):1353 [百度学术]
吴竞争. 小麦抗条锈病基因Yr10的遗传分析. 泰安: 山东农业大学, 2018 [百度学术]
Wu J Z. Genetic analysis of the wheat stripe rust resistance gene Yr10 in common wheat. Tai′an: Shandong Agricultural University, 2018 [百度学术]
王明玉. 小麦农家品种大白麦和中间偃麦草导入材料P54的抗条锈病基因定位. 北京:中国农业科学院,2018 [百度学术]
Wang M Y. Mapping of resistance genes to stripe rust in wheat landrace Dabaimai and wheat-Thinopyrum intermedium substitution line P54. Beijing: Chinese Academy of Agricultural Sciences, 2018 [百度学术]
Bariana H S, Mcintosh R A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 1993, 36(3): 476-482 [百度学术]
Gorsi B, Yost H J, Demarest B L, Bisgrove B W, Hill J T, Su Y C. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 2013,23(4), 687-697 [百度学术]
Lincoln S E, Daly M J, Lander E S. Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: Atutorial and reference manual. Cambridge: Whitehead Institute, 1993 [百度学术]
Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1), 77-78 [百度学术]
王吐虹. 小麦不同类型品种对条锈菌的抗性组成及遗传特点研究. 西宁: 青海大学, 2015 [百度学术]
Wang T H. Study on resistance composition and genetic characteristics of different types wheat cultivars to Puccinia striiformis f.sp.tritici. Xining: Qinghai University, 2015 [百度学术]
徐新玉, 段振盈, 张晓玲, 姚占军. 15个小麦农家品种抗叶锈基因分析. 植物遗传资源学报, 2020, 21(2): 409-417 [百度学术]
Xu X Y, Duan Z Y, Zhang X L, Yao Z J. Analysis of leaf rust resistance genes in 15 wheat landraces. Journal of Plant Genetic Resources, 2020, 21(2): 409-417 [百度学术]
Chao K X, Wu C J, Li J, Wang W L, Waang B T, Li Q. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijianer in multi-environment trials. Journal of Integrative Agriculture, 2022, 21(8): 2305-2318 [百度学术]
陈璨. 普通小麦抗条锈病基因分子定位. 合肥: 安徽农业大学, 2016 [百度学术]
Chen C. Molecular mapping of stripe rust resistance genes in common wheat. Hefei: Anhui Agricultural University, 2016 [百度学术]
Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theoretical and Applied Genetics, 2014, 127(2): 317-324 [百度学术]
Herrera-Foessel S A, Singh R P, Lan C X, Huerta-Espino J, Calvo-Salazar V, Bansal U K, Bariana H S, Lagudah E S. Yr60, a gene conferring moderate resistance to stripe rust in wheat. Plant Disease, 2015, 99(4): 508-511 [百度学术]
Yang F P, Liu J D, Guo Y, He Z H,. Rasheed A, Wu L, Cao S, Nan H, Xia X C.Genome-wide association mapping of adult-plant resistance to stripe rust in common wheat ( Triticum aestivum ). Plant Disease, 2020, 104(8): 2174-2180 [百度学术]
Ramachandran S R , Yin C , Kud J ,Tanaka K, Mahoney A K,Xiao F M,Hulbert S H. Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology, 2017, 107(1): 75-83 [百度学术]
陈升. 水稻抗病基因Xa21编码的一种受体激酶类蛋白. 福建稻麦科技, 1996 14(2): 63-65 [百度学术]
Chen S. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Fujian Rice and Wheat Technology, 1996, 14(2): 63-65 [百度学术]
马媛媛, 甘睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31(4): 331-339 [百度学术]
Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. Journal of Plant Physiology and Molecular Biology, 2005, 31(4): 331-339 [百度学术]
Jin H L, Zhang H P, Zhao X Y, Long L, Guan F N, Wang Y P, Huang L Y, Zhang X Y, Wang Y Q, Li H, Li W, Pu Z E, Zhang Y Z, Xu Q, Jiang Q T, Wei Y M, Ma J, Qi P F, Deng M, Kang H Y, Zheng Y L, Chen G Y, Jiang Y F. Identification of a suppressor for the wheat stripe rust resistance gene Yr81 in Chinese wheat landrace Dahongpao. Theoretical and Applied Genetics, 2023, 136(4): 67-80 [百度学术]
张怀志, 谢菁忠, 陈永兴, 刘旭, 王勇, 闫素红, 杨兆生, 赵虹, 王西成, 贾联合, 曹廷杰, 刘志勇. 利用BSR-Seq定位小麦品种郑麦103抗条锈病基因YrZM103. 作物学报,2017, 43(11):1643-1649 [百度学术]
Zhang H Z, Xie J Z, Chen Y X, Liu X, Wang Y, Yan S H, Yang Z S, Zhao H, Wang X C, Jia L H, Can T J, Liu Z Y. Mapping stripe rust resistance gene YrZM103 in wheat cultivar Zhengmai 103 by BSR-Seq. Acta Agronomica Sinica, 2017, 43(11): 1643-1649. [百度学术]
Song J, Li L, Liu B Y, Dong Y, Dong Y C, Li F J, Liu S Y, Luo X M, Sun M J, Ni Z Q, Fei S P, Xia X C, Ni Z F, He Z H, Cao S H. Fine mapping of reduced height locus RHT26 in common wheat. Theoretical and Applied Genetics, 2023, 136(3):1-10 [百度学术]
Dong Y, Xu D A, Xu X W, Ren Y, Gao F M, Song J, Jia A L, Hao Y F, He Z H, Xia X C. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135(3):1083-1099 [百度学术]
Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129(10):1843-1860 [百度学术]