摘要
马铃薯(Solanum tuberosum L.)是全球第四大粮食作物,挖掘鉴定抗旱基因,是培育抗旱马铃薯新品种的重要途径。马铃薯StAVP1基因参与跨液泡膜物质运输,在植物应对物质运输和非生物胁迫中发挥重要作用。本研究从马铃薯品种大西洋的叶片中克隆得到编码区全长2301 bp的StAVP1基因,生物信息学分析表明,其包含典型的
马铃薯(Solanum tuberosum L.)是仅次于玉米、小麦和水稻的全球第四大粮食作物,在确保全球粮食和营养安全方面发挥着重要作
以马铃薯品种大西洋为试验材料,野生型拟南芥为Columbia(以下简称Col)。农杆菌 GV3101 ,植物表达载体 PCambia1300-35S-GFP 、pCambia1301S 为宁夏农林科学院农业生物技术研究中心实验室长期保存的材料。大肠杆菌菌株DH5α、限制性内切酶购自Sigma,克隆载体pMD20-T购自TaKaRa,DNA 提取试剂盒购自宝生物工程(大连)有限公司。
载体构建参考孔佑宾
以马铃薯叶片cDNA序列为模板,采用Primer Premier 6.0设计引物,扩增全长StAVP1基因。扩增产物经琼脂糖凝胶电泳检测并回收目的片段,将目的基因连接克隆载体,转化大肠杆菌,筛选阳性单克隆进行测序与验
利用TMHMM Server v 2.0(http://www.cbs.dtu.dk/services/TMHMM/)在线分析跨膜结构域,GS-DS网站(http://gsds.cbi.pku.edu.cn/)在线分析基因结构,利用LocTREE 3(https://rostlab.org/services/loctree3/)在线预测蛋白亚细胞定位,SWISS-MODEL(https://swissmodel.expasy.org/)预测蛋白质三维结构,WebLogo(http://weblogo.berkeley.edu/)分析蛋白保守序列,Mega X软件分析蛋白系统进化关
重组表达载体StAVP1-GFP转化农杆菌GV3101,再通过花侵法转化拟南芥,采收T0代种子在含有潮霉素(25 μg/ml)的MS固体培养基上筛选阳性株系。移栽穴盘培养并经PCR特异性鉴定,筛选阳性株系连续自交获得T3代StAVP-GFP拟南芥株系,用于后续功能分析。
转基因阳性株系和野生型拟南芥种子经75%乙醇消毒1 min,10% NaClO和0.01% Triton混合液消毒5 min,接着用无菌水清洗4次,每次1 min。将消毒后的种子平铺到1/2 MS培养基上于4 ℃春化2 d,后置于人工气候箱培养,光照/黑暗时间为16 h/8 h,温度22 ℃,相对湿度80%±5
培养皿垂直放置,培养7 d后,测定根长;培养10 d后选择长势大小一致的幼苗移栽至含有灭菌基质的穴盘,3 d补水1次,基质配比为营养土∶蛭石∶珍珠岩=6∶3∶1。
转基因拟南芥移栽基质后生长21 d后,正常条件组定期补水7 d,干旱胁迫组倒空穴盘中剩余水,停止补水7 d,取叶片以备后续试验分
取野生型和不同过表达株系分别提取总RNA(RNAprep Pure 植物总 RNA 提取试剂盒,天根生化科技(北京)有限公司),反转录合成cDNA(HiScript IV 1st Strand cDNA Synthesis Kit(+gDNA wiper),南京诺唯赞生物科技股份有限公司)。根据不同基因设计实时荧光定量PCR特异引物(
基因名称 Gene name | 上游引物序列(5′-3′) Forward primer sequence(5′-3′) | 下游引物序列(5′-3′) Reverse primer sequence(5′-3′) | 用途 Purpose |
---|---|---|---|
AtEF1α | TACGCATTGAAGACCCTCCAC | TGGCCACACTTGCTTAGACAA | 内参基因 |
StAVP1 | GGATCCATGGGGTCGGCGTTGTTG | GTCGACAAAGATCTTGAAAAGGATAC | 扩增StAVP1基因全长 |
qStAVP1 | TCCTGCTGTGATTGCTGATAA | ACAAGAGCAGCACAAGATGAT | qRT-PCR检测基因表达量 |
qAtDREB | TAAACCAGCTCACCCAATCCC | CGGTTCTTGGGGAGTCTGATC | |
qAtNCED1 | TGTCCTGTCTGAAATCCGCC | CCCTGCTTCGAGGTTGACTT | |
qAtP5CS1 | GCAGGCAAAGGCTTCGTTATC | AGCACAAGCCTTCCCATCAA | |
qAtRD22A | GACCTTTAACTCTCCCGCTA | GGAAGAGAGAAACCCTCGTA | |
qAtLEA | CGAAGGATACGGGACAGGAAC | GTGAAGCATTCCTCCCAAGCC | |
qAtRAB | CGTCAGATTCTCGTTGAGGGA | TCCAGGTAAGAATCATCAGCAA |
取野生型与不同过表达株系叶片检测超氧化物歧化酶(SOD,superoxide dismutase)、过氧化物酶(POD,peroxidase)活性,丙二醛(MDA,malondialdehyde)、脯氨酸(Pro,proline)含量采用南京建成生物工程研究所试剂盒测定,每个样本重复3
分别全基因合成StAVP1-GST和StRAB-GFP融合基因,将Kpn I和Sal I双酶切后产物通过T4 DNA连接酶连接,使融合基因构建到 pCambia1301S 表达载体的Kpn I和Sal I酶切位点之间,重组后的表达载体转化大肠杆菌DH5α并依次在含卡那霉素(100 μg/mL)的 LB 固体平板上和 LB 液体培养基中培养,提取质粒后将经过双酶切鉴定正确的重组表达载体命名为p1301S-GST-StAVP1和p1301S-GFP-StRAB。单克隆菌落用10 mmol/L MgCl2悬浮液(含120μmol/L AS)重悬菌体,注射合适大小的烟草叶片并标记对应区域,之后用保鲜膜封闭,黑暗培养2 d,再转入光下培养2~3 d,荧光显微镜观察表达情况。取标记的烟草叶片提取总蛋白,置于4 ℃备
参考MCE Protein A/G Magnetic Beads(MedChem Express, 美国)说明书,用洗涤缓冲液预处理磁珠,消除非特异性结合;将anti-GFP和anti-GST抗体分别加入处理后磁珠,孵育形成抗体-磁珠复合体;重复洗涤,加入400~600 μg总蛋白,充分混悬,孵育形成抗原-抗体-磁珠复合体;重复洗涤,在复合物中加入25~50 μL 1×SDS-PAGE loading buffer 混合均匀,95 ℃加热5 mins。分离磁珠,收集上清,进行SDS-PAGE和Western Blot检
以马铃薯叶片cDNA为模板,PCR扩增StAVP1全长编码区,预期大小为2301 bp ,数据来自网站Ensembl Genomes(https://ensemblgenomes.org/,PGSC0003DMG400014208)。凝胶电泳检测显示,PCR产物条带单一清晰,与预期大小一致(

图1 StAVP1基因克隆和生物信息分析
Fig.1 StAVP1 gene cloning and bioinformatics analysis
A:StAVP1基因克隆;B:StAVP1蛋白跨膜结构域分析;C:StAVP1基因结构分析;D:StAVP1蛋白亚细胞定位预测;E:StAVP1蛋白三维结构预测
A:StAVP1 gene cloning;B:StAVP1 protein transmembrane domain analysis;C:StAVP1 gene structure analysis;D:StAVP1 prediction of protein subcellular localization;E:StAVP1 prediction of protein three-dimensional structure
通过生物信息学软件分析预测,StAVP1蛋白在20~752位氨基酸之间有13个跨膜结构域(
利用邻接法构建系统发育树,对马铃薯StAVP1蛋白及番茄(Solanum lycopersicum L.)、拟南芥(Arabidopsis thaliana H.)、大豆(Glycine max M.)等14种植物AVP1氨基酸序列进行亲缘关系分析,发现茄科番茄与马铃薯StAVP1蛋白序列亲缘关系最近,与单子叶植物粳稻和豆科苜蓿的亲缘关系最远(

图2 StAVP1蛋白系统进化分析
Fig.2 StAVP1 phylogenetic analysis of proteins
为了研究StAVP1基因在不同器官中的表达模式,提取马铃薯根、茎、叶、块茎、全花、花瓣和雄蕊的总RNA,反转录合成cDNA,利用荧光实时定量PCR检测StAVP1的组织表达特异性。qRT-PCR结果显示,StAVP1基因在全花中表达量最高,为叶片的4倍;根、雄蕊和花瓣中的表达量次之,分别为叶片的2.5倍、2.3倍和1.4倍;在块茎中的表达量最低,仅为叶片中的0.3倍(

图3 StAVP1在不同器官中的表达特异性
Fig.3 StAVP1 tissue expression specificity
*、**分别表示与叶片相比较在P< 0.05 、P<0.01 水平差异显著
* and ** indicated significant differences compared with leaves at P<0.05 and P<0.01 levels, respectively
为明确拟南芥中异源表达StAVP1是否会影响植株的生长发育,选取StAVP1表达量最高的3个T3代转基因拟南芥株系,以野生型拟南芥为对照,对比同时期表型。同时,在干旱胁迫组的莲座叶时期对转基因和野生型株系停止补水7 d。结果发现,正常生长条件下,种子萌发阶段,3个过表达株系的平均根长显著高于野生型(

图4 异源表达StAVP1对拟南芥生长和生理指标影响
Fig.4 Effects of StAVP1 on growth and physiological indexes of Arabidopsis thaliana
A:正常条件下拟南芥种子萌发情况;B:正常条件下野生型与3个转基因株系(OE1、OE2、OE3)平均根长比较;C~E:正常和干旱胁迫下拟南芥生长情况;F~I:正常和干旱胁迫下拟南芥生理指标变化;*、**分别表示在同等条件下与野生型相比较在P< 0.05 、P<0.01 水平差异显著,下同
A:Seed germination of Arabidopsis thaliana under normal conditions;B: The average root length of 3 transgenic lines (OE1, OE2, OE3) was compared with that of wild type under normal conditions; C-E:Growth of Arabidopsis thaliana under normal and drought stress conditions;F-I:Changes of physiological indexes of Arabidopsis thaliana under normal and dought stress conditions;* and ** indicated that there were significant differences at P<0.05 and P<0.01 levels compared with wild type under the same conditions, respectively; The same as below
干旱胁迫下,各株系均表现出叶片萎蔫失水表型(
为了进一步研究StAVP1基因响应干旱胁迫的分子机制,通过qRT-PCR分析了DREB、NCED1、P5CS1、RD22A、LEA胁迫应答相关基因表达水平。结果显示(

图5 水分胁迫条件下转基因植株胁迫应答相关基因表达
Fig.5 Expression of stress-related genes in transgenic plants under water stress
为明确StAVP1与RAB的互作关系,本研究在马铃薯数据库中比对到AtRAB的同源蛋白,构建p1301S-StAVP1-GFP和p1301S-RAB-GST载体并分别转化农杆菌,混合2种菌液侵染烟草叶片,提取总蛋白利用GST和GFP抗体进行蛋白杂交试验,通过Western Blot验证互作关系,已知融合蛋白StAVP1-GFP和StRAB-GST分子量大小分别为107 kD和120 kD。结果表明,对照蛋白IgG与全蛋白没有杂交目的条带,而用anti-GFP和anti-GST磁珠分别进行总蛋白的免疫沉淀,目标位置有杂交条带,说明StAVP1和StRAB在植物细胞内存在相互作用(

图6 StAVP1和StRAB蛋白互作关系验证
Fig.6 Verification of the interaction between StAVP1 and StRAB proteins
A:Co-IP蛋白互作验证;B:AtRAB基因表达水平
A:Co-IP verificate protein interaction;B:AtRAB gene relative expression level
前人研究表明,AVP1蛋白在应答非生物胁迫中发挥着重要调节作用,但马铃薯AVP1应答干旱胁迫的生理和分子机制尚不清楚。本研究在马铃薯中克隆了StAVP1基因,以拟南芥为材料通过基因表达分析和蛋白互作验证等方法探究了该基因响应干旱胁迫的调控机制。
马铃薯StAVP1蛋白与其他物种中AVP1蛋白的多序列比对和系统进化分析显示,在多种植物中克隆得到的AVP1基因大小相似,氨基酸序列在多种植物中高度保守,包含
已有研究结果表明,AVP1通过增加根系生物量、提高株系存活率等方式提高植物的抗旱耐盐
非生物胁迫会引起转录因子或功能基因的表达以促使植株从多个代谢途径应答逆
RAB蛋白是小分子GTP结合蛋白,也是根据细胞需要将不同分子通过囊泡运输移动到特定区域的关键调节因
参考文献
Tang D, Jia Y, Zhang J, Li H, Cheng L, Wang P, Bao Z, Liu Z, Feng S, Zhu X, Li D, Zhu G, Wang H, Zhou Y, Zhou Y, Bryan G J, Buell C R, Zhang C, Huang S. Genome evolution and diversity of wild and cultivated potatoes. Nature, 2022, 606(7914): 535-541 [百度学术]
Zhu X, Zhang N, Liu X, Li S, Yang J, Hong X, Wang F, Si H. Mitogen-activated protein kinase 11 (MAPK11) maintains growth and photosynthesis of potato plant under drought condition. Plant Cell Reports, 2021, 40(3): 491-506 [百度学术]
Wang D, Song J, Lin T, Yin Y, Mu J, Liu S, Wang Y, Kong D, Zhang Z. Identification of potato lipid transfer protein gene family and expression verification of drought genes StLTP1 and StLTP7. Plant Direct, 2023, 7(3): e491 [百度学术]
Jiang Y T, Tang R J, Zhang Y J, Xue H W, Ferjani A, Luan S, Lin W H. Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytologist, 2020, 225(4): 1606-1617 [百度学术]
Yang Y, Tang R J, Li B, Wang H H, Jin Y L, Jiang C M, Bao Y, Su H Y, Zhao N, Ma X J, Yang L, Chen S L, Cheng X H, Zhang H X. Overexpression of a Populus trichocarpa
Brini F, Gaxiola R A, Berkowitz G A, Masmoudi K. Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiology and Biochemistry, 2005, 43(4): 347-354 [百度学术]
Toranj S, Aliabad K K, Abbaspour H, Saeedpour A. Effect of salt stress on the genes expression of the vacuolar
Wijewardene I, Mishra N, Sun L, Smith J, Zhu X, Payton P, Shen G, Zhang H. Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA. Plant Science, 2020, 296: 110499 [百度学术]
Li Z, Zhou M, Hu Q, Reighard S, Yuan S, Yuan N, San B, Li D, Jia H, Luo H. Manipulating expression of tonoplast transporters. Methods in Molecular Biology, 2012, 913: 359-369 [百度学术]
Bhatti F, Asad S, Khan Q M, Mobeen A, Iqbal M J, Asif M. Risk assessment of genetically modified sugarcane expressing AVP1 gene. Food and Chemical Toxicology, 2019, 130: 267-275 [百度学术]
Park S, Li J, Pittman J K, Berkowitz G A, Yang H, Undurraga S, Morris J, Hirschi K D, Gaxiola R A. Up-regulation of a
Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F. Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biology, 2016, 16: 3 [百度学术]
Schilling R K, Marschner P, Shavrukov Y, Berger B, Tester M, Roy S J, Plett D C. Expression of the Arabidopsis vacuolar
Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P. Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signaling & Behavior, 2011, 6(6): 861-863 [百度学术]
Zhang H, Chen M, Xu C, Liu R, Tang W, Chen K, Zhou Y, Xu Z, Chen J, Ma Y, Chen W, Sun D, Fan H.
刘荣榜, 陈明, 郭萌萌, 司青林, 高世庆, 徐兆师, 李连城, 马有志, 尹钧. 拟南芥
Liu R B, Chen M, Guo M M, Si Q L, Gao S Q, Xu Z S, Li L C, Ma Y Z, Yin J. Characterization and functional analysis of a small GTP-binding protein AtRAB interacting with
孔佑宾,李喜焕,张彩英.大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析.中国农业科学,2017,50(3):582-590 [百度学术]
Kong Y B, Li H X, Zhang C Y. Construction and activity analysis of the promoter of purple acid phosphatase gene GmPAP4 in soybean. Scientia Agricultura Sinica, 2017,50(3):582-590 [百度学术]
李光胜, 卢翔, 刘洋, 张凯旋, 王海华, 唐新科, 周美亮.苦荞FtEIN3基因的克隆及其抗立枯病功能分析.植物遗传资源学报,2023,24(5):1389-1400 [百度学术]
Li G S, Lu X, Liu Y, Zhang K X, Wang H H, Tang X K, Zhou M L. Cloning and functional analysis of the FtEIN3 gene in Tartary Buckwheat against bacterial blight. Journal of Plant Genetic Resources, 2023,24(5):1389-1400 [百度学术]
张涛, 黄华梅, 徐玲, 吴晓媚, 袁长春, 蒋边, 刘锴栋. 基于转录组的番木瓜MYB基因家族的生物信息学分析. 分子植物育种, 2020, 18(15): 4908-4917 [百度学术]
Zhang T, Huang H M, Xu L, Wu X M, Yuan C C, Jiang B, Liu K D. Bioinformatics analysis of MYB transcription factor family genes based on the transcriptome of papaya (Carica papaya L.). Molecular Plant Breeding,2020,18(15):4908-4917 [百度学术]
Zhang L, Wan X, Xu Y, Niyitanga S, Qi J, Zhang L. De novo assembly of transcriptome and genome-wide identification reveal GA3 stress-responsive WRKY transcription factors involved in fiber formation in jute (Corchorus capsularis). BMC Plant Biology, 2020, 20(1): 403 [百度学术]
王娟, 陈皓宁, 石大川, 于天一, 闫彩霞, 孙全喜, 苑翠玲, 赵小波, 牟艺菲, 王奇, 李春娟, 单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究. 中国农业科学, 2022, 55(22): 4356-4372 [百度学术]
Wang J, Chen H N, Shi D C, Yu T Y, Yan C X, Sun Q X, Yuan C L, Zhao X B, Mou Y F, Wang Q, Li C J, Shan S H. Functional analysis of AhNRT2.7a in response to low-nitrogen in peanut. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549 [百度学术]
陈小晶, 王东梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素, 宋燕春, 王天宇, 黎裕, 刘颖慧, 李春辉.玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究. 植物遗传资源学报,2022,23(4):1064-1075 [百度学术]
Chen X J, Wang D M, Guan H H, Guo J, Sha X Q, Li Y X, Zhang D F, Liu X Y, He G H, Shi Y S, Song Y C, Wang T Y, Li Y, Liu Y H, Li C H. Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize. Journal of Plant Genetic Resources ,2022,23(4):1064-1075 [百度学术]
Yu H, Wang Q, Zhang Z, Wu T, Yang X, Zhu X, Ye Y, Leng J, Yang S, Feng X. Genetic mapping of the Gmpgl3 mutant reveals the function of GmTic110a in soybean chloroplast development. Frontiers In Plant Science, 2022, 13: 892077 [百度学术]
Holness S, Bechtold U, Mullineaux P, Serino G, Vittorioso P. Highlight induced transcriptional priming against a subsequent drought stress in Arabidopsis thaliana. International Journal of Molecular Sciences, 2023, 24(7): 6608 [百度学术]
孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用. 作物学报, 2021, 47(2): 224-236. [百度学术]
Meng Y Y, Wei C R, Fan R Q, Yu X M, Wang X D, Zhao W Q, Wei X Y, Kang Z S, Liu D Q. TaPP2-A13 gene ghows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex. Scientia Agricultura Sinica, 2021, 47(2): 224-236 [百度学术]
Zhang H, Chen M, Xu C, Liu R, Tang W, Chen K, Zhou Y, Xu Z, Chen J, Ma Y, Chen W, Sun D, Fan H.
刘雪. 转AVP1基因甜菜的分子检测和功能鉴定. 呼和浩特: 内蒙古农业大学, 2015 [百度学术]
Liu X. Molecular detection and functional identification of AVP1 transgenic sugar beets (Beta vulgaris L.). Hohhot: Inner Mongolia Agricultural University,2015 [百度学术]
Park J J, Dempewolf E, Zhang W, Wang Z Y. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS ONE, 2017, 12(6): e179410 [百度学术]
Wang Q, Zhao X, Sun Q, Mou Y, Wang J, Yan C, Yuan C, Li C, Shan S. Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses. International Journal of Biological Macromolecules, 2023, 254( 2): 127829 [百度学术]
Anwar K, Joshi R, Dhankher O P, Singla-Pareek S L, Pareek A. Elucidating the response of crop plants towards individual, combined and sequentially occurring abiotic stresses. International Journal of Molecular Sciences, 2021, 22(11): 6119 [百度学术]
Zhu X, Wang B, Liu W, Wei X, Wang X, Du X, Liu H. Genome-wide analysis of AP2/ERF gene and functional analysis of CqERF24 gene in drought stress in quinoa. International Journal of Biological Macromolecules, 2023, 253(8): 127582 [百度学术]
Zhang H, Zhang K, Liu T, Zhang Y, Tang Z, Dong J, Wang F. The characterization and expression analysis under stress conditions of PCST1 in Arabidopsis. Plant Signaling & Behavior, 2022, 17(1): 2134675 [百度学术]
Cui X, Zhang P, Chen C, Zhang J. VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera. Plant Cell Reports, 2023, 42(1): 181-196 [百度学术]
De Caroli M, Rampino P, Curci L M, Pecatelli G, Carrozzo S, Piro G. CiXTH29 and CiLEA4 role in water stress tolerance in Cichorium intybus varieties. Biology (Basel), 2023, 12(3): 444 [百度学术]
Khatoon U, Prasad V, Sawant S V. Expression dynamics and a loss-of-function of Arabidopsis RabC1 GTPase unveil its role in plant growth and seed development. Planta, 2023, 257(5): 89 [百度学术]
Ambastha V, Matityahu I, Tidhar D, Leshem Y. RabA2b overexpression alters the plasma-membrane proteome and improves drought tolerance in Arabidopsis. Frontiers in Plant Science, 2021, 12: 738694 [百度学术]
El-Esawi M A, Alayafi A A. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes (Basel), 2019, 10(1): 56 [百度学术]
Hong Z, Li Y, Zhao Y, Yang M, Zhang X, Teng Y, Jing L, Kong D, Liu T, Li S, Meng F, Wang Q, Zhang L. Heterologous expression of Arabidopsis AtARA6 in soybean enhances salt tolerance. Frontiers in Genetics, 2022, 13: 849357 [百度学术]