摘要
大豆籽粒中氨基酸含量丰富,是大豆品质的重要组成部分,具有较高的营养价值和生理功能。本研究利用高效液相色谱法测定264份大豆品种干籽粒中精氨酸、甘氨酸、谷氨酸、赖氨酸等4种游离氨基酸含量。结果表明,游离氨基酸中精氨酸含量最高、谷氨酸含量次之、甘氨酸含量最低,筛选出四种游离氨基酸均高含量的3个大豆优质品种,分别为海门羊104、辽鲜豆12号、灌云大四粒。结合大豆自然群体四种游离氨基酸含量和基因型进行全基因组关联分析,大豆四种氨基酸2年均可定位到的显著SNP位点共27个,其中精氨酸有2个SNP位点,包括S17_19067780和S17_19067789,甘氨酸有19个SNP位点,包括S01_53974257、S08_38878988等,谷氨酸有1个SNP位点,S18_53291599,赖氨酸有5个SNP位点,包括S08_18555689、S08_18567542等;并推测大豆氨基酸高含量相关候选基因,精氨酸为Glyma.17G177400和Glyma.17G177600,甘氨酸为Glyma.11G157000和Glyma.11G161700,谷氨酸为Glyma.18G244200和Glyma.18G244700,赖氨酸为Glyma.08G227600和Glyma.08G228100。本研究结果为大豆品种改良、辅助大豆分子育种提供理论基础。
大豆(Glycine max(L.)Merr.)是我国的重要经济油料作物,种植历史悠久。随着生活水平的不断提高,人们对大豆品质的需求日益增加。蛋白质含量及氨基酸组成是大豆品质的重要指标,大豆籽粒中氨基酸具有重要的生理功能,因此选育品质优良、营养丰富的大豆种质资源是大豆分子育种研究的重要目标。
大豆籽粒中的水解氨基酸包括游离氨基酸和蛋白质水解生成的氨基酸,游离氨基酸可以用于能量供应、生化途径等生理过程。大豆籽粒中游离精氨酸、甘氨酸、谷氨酸、赖氨酸具有重要生理功能。精氨酸参与机体代谢,作为游离氨基酸发挥作用,是哺乳动物蛋白质的组成部分,在尿素循环中起着中间体的作
全基因组关联分析(GWAS , genome-wide association analysis)是以连锁不平衡原理(LD, linkage disequilibrium)为基础,通过将检测的表型数据与群体重测序获得的基因型信息进行关联分析,精确定位可能关联表型数据的SNP位点,挖掘与表型相关的基
264份大豆代表性种质材料,包括地方种和栽培
四种氨基酸标准样品的制备 称取四种氨基酸(甘氨酸、精氨酸、谷氨酸、赖氨酸)标准品各10 mg,加入0.1 mol/L 盐酸溶液溶解至10 mL量瓶,并稀释至刻度,摇匀,制成1 mg/mL标准品母液,取标准品母液适量,用0.1 mol/L盐酸制成200 μg/mL、150 μg/mL、100 μg/mL、75 μg/mL、20 μg/mL 5个不同浓度梯度的线性溶液,绘制标准曲线。
四种游离氨基酸的提取 根据《粮食、油料检验—水分测定法
HPLC条件 色谱柱:日本岛津shim-pack GIST-NH2;A相:0.1 mol/L醋酸钠溶液(pH=6.5)∶乙腈=93∶7(v∶v);B相:乙腈∶水=80∶20(v∶v);流速:1.0 mL/min;温度:36℃;检测:UV 254 nm;进样量:20 μL;检测器:(RID)示差折光检测器。
利用本课题组前期获得的重测序数据,选择高密度物理图谱中的2,597,425个SN
大豆干籽粒中四种氨基酸含量与基因型进行全基因组关联分析,定位显著关联SNP位点,利用在线数据库Phytozome 13中大豆基因组信息(https://phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a2_v1),在显著关联的SNP位点前后120 kb区间筛选与大豆四种氨基酸显著相关候选基因,通过拟南芥基因组数据库(https://www.arabidopsis.org/Blast/index.jsp)的基因序列进行Blastp比对,确定候选基因。
利用高效液相色谱仪(日本岛津)可以分离洗脱四种氨基酸,洗脱顺序是谷氨酸、甘氨酸、精氨酸、赖氨酸,出峰时间分别是4.966 min、11.440 min、13.656 min、28.996 min(

图1 大豆四种氨基酸标准液HPLC图谱
Fig. 1 HPLC chromatogram of four amino acid standard liquids of soybean
A:谷氨酸;B:甘氨酸;C:精氨酸;D:赖氨酸
A: Glutamate; B: Glycine; C: Arginine; D: Lysine
配制不同浓度梯度的精氨酸、甘氨酸、谷氨酸、赖氨酸标准品溶液,经过HPLC分析,浓度、峰面积分别为横坐标和纵坐标,得到回归方程,精氨酸的标准曲线回归方程为Y=6126.89X-44643.27(
2021年、2022年精氨酸、甘氨酸、谷氨酸和赖氨酸四种游离氨基酸的含量检测结果(

图2 大豆四种游离氨基酸含量箱线图
Fig.2 Box diagram of content of four free amino acids in soybean
氨基酸种类 Amino acid type | 年份 Year | 最小值 Min. | 最大值 Max. | 均值 Mean | 标准差 SD | 变异系数(%)CV |
---|---|---|---|---|---|---|
精氨酸(mg/g) Arginine | 2021 | 0.46 | 12.00 | 2.81 | 1.77 | 63.12 |
2022 | 0.73 | 8.43 | 3.01 | 1.71 | 57.87 | |
甘氨酸(mg/g) Glycine | 2021 | 0.03 | 0.37 | 0.08 | 0.04 | 55.38 |
2022 | 0.03 | 0.25 | 0.07 | 0.03 | 48.88 | |
谷氨酸(mg/g) Glutamate | 2021 | 0.22 | 1.29 | 0.55 | 0.19 | 34.91 |
2022 | 0.25 | 1.35 | 0.58 | 0.23 | 33.03 | |
赖氨酸(mg/g) Lysine | 2021 | 0.05 | 0.25 | 0.11 | 0.03 | 28.13 |
2022 | 0.02 | 0.31 | 0.15 | 0.05 | 44.06 |
本研究264份大豆品种中部分材料游离氨基酸含量表现优异,筛选出2021年、2022年两种或两种以上游离氨基酸含量排名前五的大豆品种共3个,分别是海门羊104、辽鲜豆12号、灌云大四粒(
品种名称 Cultivar name | 年份 Year | 精氨酸含量(mg/g) Arginine content | 甘氨酸含量(mg/g) Glycine content | 谷氨酸含量(mg/g) Glutamate content | 赖氨酸含量(mg/g) Lysine content |
---|---|---|---|---|---|
海门羊104 Haimen Yang 104 | 2021 | 12.00 | 0.20 | 1.29 | 0.21 |
2022 | 8.43 | 0.25 | 1.32 | 0.19 | |
辽鲜豆12号 Liaoxian Bean 12 | 2021 | 7.16 | 0.37 | 1.28 | 0.25 |
2022 | 6.41 | 0.22 | 1.01 | 0.22 | |
灌云大四粒 Guanyun Dasiyu | 2021 | 6.93 | 0.15 | 0.62 | 0.16 |
2022 | 6.10 | 0.18 | 0.70 | 0.14 |
2021年大豆籽粒中四种游离氨基酸共关联到109个SNP位点。大豆精氨酸含量显著相关的SNPs共有11个(-Log10(P)≥6.0),分布在第1、9、11、17、18号染色体上(
名称 Name | 年份 Year | 染色体 Chromosome | SNP数目 SNP number | 最显著SNP位置(bp) Peak SNP position | -Log10(P)值 极大值 -Log10(P)max |
---|---|---|---|---|---|
精氨酸 Arginine | 2021 | 1 | 2 | 11721470 | 6.81 |
9 | 1 | 7711564 | 6.17 | ||
11 | 1 | 15826079 | 6.07 | ||
17 | 2 | 19067780 | 7.63 | ||
18 | 5 | 19067789 | 6.66 | ||
2022 | 4 | 26 | 49708503 | 6.72 | |
17 | 2 | 19067780 | 6.49 | ||
甘氨酸 Glycine | 2021 | 1 | 9 | 81559 | 8.45 |
3 | 1 | 14208230 | 6.28 | ||
4 | 1 | 11098818 | 6.22 | ||
5 | 2 | 10644040 | 6.93 | ||
7 | 2 | 29891911 | 6.28 | ||
8 | 4 | 38885282 | 7.69 | ||
10 | 2 | 45863879 | 7.92 | ||
11 | 20 | 14276392 | 7.27 | ||
12 | 13 | 20760427 | 10.87 | ||
13 | 16 | 15808471 | 7.59 | ||
14 | 2 | 4979609 | 7.10 | ||
15 | 9 | 38947949 | 8.35 | ||
16 | 2 | 2150636 | 7.06 | ||
17 | 1 | 3674 | 6.95 | ||
18 | 3 | 58009016 | 6.10 | ||
2022 | 1 | 2 | 53974257 | 7.89 | |
3 | 3 | 40650830 | 6.17 | ||
4 | 7 | 46581622 | 6.57 | ||
5 | 1 | 15535820 | 6.03 | ||
7 | 1 | 27072107 | 6.99 | ||
8 | 29 | 38885282 | 9.29 | ||
10 | 3 | 45863879 | 9.31 | ||
11 | 31 | 13780991 | 7.58 | ||
12 | 5 | 11366121 | 6.47 | ||
13 | 30 | 41191811 | 8.15 | ||
14 | 2 | 4979609 | 7.22 | ||
15 | 8 | 47570209 | 7.98 | ||
18 | 9 | 6088561 | 7.36 | ||
20 | 2 | 5221048 | 6.89 | ||
谷氨酸 Glutamate | 2021 | 1 | 2 | 53229579 | 6.56 |
18 | 2 | 53291599 | 6.44 | ||
2022 | 9 | 4 | 1925853 | 6.28 | |
18 | 5 | 53291599 | 6.14 | ||
赖氨酸 Lysine | 2021 | 8 | 6 | 18610062 | 6.09 |
19 | 1 | 49980979 | 6.08 | ||
2022 | 8 | 8 | 18610062 | 6.49 | |
19 | 1 | 49115726 | 6.20 |

图3 2021年大豆籽粒中四种游离氨基酸含量全基因组关联分析结果的曼哈顿图和QQ图
Fig. 3 Manhattan map and Quantile-Quantile plot of genome-wide association analysis results of the contents of four free amino acids in soybean grains in 2021
A、B、C、D分别对应游离精氨酸、甘氨酸、谷氨酸和赖氨酸,下同
A, B, C and D are free arginine, glycine, glutamate and lysine, respectively,the same as below
2022年大豆籽粒中四种游离氨基酸共关联到177个SNP位点。大豆游离精氨酸含量显著相关的SNPs共有28个(-Log10(P)≥6.0),分布在第4、17号染色体上(

图4 2022年大豆籽粒中四种游离氨基酸含量全基因组关联分析结果的曼哈顿图和 QQ 图
Fig. 4 Manhattan map and Quantile-Quantile plot of genome-wide association analysis results of the contents of four free amino acids in soybean grains in 2022
GWAS结果表明,两年大豆籽粒中游离精氨酸共定位到2个SNP位点,分别为S17_19067780、S17_19067789;游离甘氨酸共定位到19个SNP位点;游离谷氨酸共定位到1个SNP位点,为S18_53291599;游离赖氨酸共定位到5个SNP位点,为S08_18555689、S08_18567542、S08_18583122、S08_18603949、S08_18610062(
名称 Name | SNP位置 SNP position |
---|---|
精氨酸 Arginine | S17_19067780、S17_19067789 |
甘氨酸 Glycine |
11_14837422、S11_14984873、S11_14984877、S11_14985048、S11_15269923、S11_15269925、S14_4979609、S15_47569362、S15_47570050、S15_47570209、S15_47570419 S01_53974257、S08_38878988、S08_38883478、S08_38884153、S08_38885282、S11_13780991、S11_13804849、S11_14837079、S |
谷氨酸 Glutamate | S18_53291599 |
赖氨酸 Lysine | S08_18555689、S08_18567542、S08_18583122、S08_18603949、S08_18610062 |
进一步选择两年显著性较高的SNP位点,筛选四种游离氨基酸含量相关候选基因。在大豆游离精氨酸共定位的S17_19067780,游离甘氨酸共定位的S11_14837079,游离谷氨酸共定位的S18_53291599,游离赖氨酸共定位的S08_18555689上下游120 kb区间,筛选可能控制大豆干籽粒四种游离氨基酸含量的候选基因。通过phytozome 13数据库网站(https://phytozome. jgi. doe. gov/pz/portal. html)中大豆基因组注释信息,在4个区间内分别有13个、32个、31个、27个候选基因。根据拟南芥中同源基因比对结果,推测可能控制大豆四种游离氨基酸的候选基因(
氨基酸种类 Amino acid type | 基因ID Gene ID | 同源基因 Homologous gene | 功能注释 Function annotation |
---|---|---|---|
精氨酸 Arginine | Glyma.17G177400 | AT3G11290 | Myb/SANT样DNA结合域蛋白 |
Glyma.17G177600 | AT2G15790 | 肽基脯氨酸顺反异构酶 | |
甘氨酸 Glycine | Glyma.11G157000 | AT5G07030 | 天冬氨酸蛋白酶家族蛋白 |
Glyma.11G161700 | AT4G33950 | 蛋白激酶超家族蛋白 | |
谷氨酸 Glutamate | Glyma.18G244200 | AT4G36950 | 丝裂原活化蛋白激酶激酶激酶20 |
Glyma.18G244700 | AT1G09620 | 氨酰基-tRNA连接酶 | |
赖氨酸 Lysine | Glyma.08G227600 | AT5G59500 |
蛋白质C端S -异戊酰半胱氨酸 羧基O -甲基转移酶 |
Glyma.08G228100 | AT4G33270 |
转导蛋白家族蛋白/ WD-40重复家族蛋白 |
通过高效液相色谱法检测264份大豆品种的精氨酸、甘氨酸、谷氨酸、赖氨酸四种游离氨基酸的含量,结果表明四种氨基酸在不同品种间差异显著,群体遗传变异丰富,分别筛选出精氨酸、甘氨酸、谷氨酸和赖氨酸四种游离氨基酸高含量的优质品种,为海门羊104、辽鲜豆12号、灌云大四粒,为大豆游离氨基酸含量较高优异品种选育提供种质资源。
种子中约90%~99%的氨基酸参与蛋白质的合成,只有1%~10%是游离氨基
张红梅
本研究针对四种游离氨基酸含量共筛选出3个优异品种,可用于大豆优质种质资源的选育,后续可对四种游离氨基酸高含量相关候选基因进行功能验证。
参考文献
Nieves C J, Langkamp-Henken B. Arginine and immunity: A unique perspective. Biomed Pharmacother, 2002, 56(10):471-82 [百度学术]
Wu G, Bazer F W, Davis T A,Kim S W, Li P, Rhoads J M, Satterfield M C, Smith S B, Thomas E, Yin Y L . Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 2009, 37(1):153-168 [百度学术]
Kim S H, Roszik J, Grimm E A, Ekmekcioglu S. Impact of L-Arginine metabolism on immune response and anticancer immunotherapy. Frontiers in Oncology, 2018, 8:67 [百度学术]
Steggerda S M, Bennett M K, Chen J, Emberley E, Huang T, Janes J R, Li W, MacKinnon A L, Makkouk A, Marguier G, Murray P J, Neou S, Pan A,Parlati F, Rodriguez M L, Van de Velde L A, Wang T, Works M, Zhang J, Zhang W, Gross M I. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. Journal for Immunotherapy of Cancer, 2017, 5(1):101 [百度学术]
Kesarwani P, Prabhu A, Kant S, Chinnaiyan P. Metabolic remodeling contributes towards an immune-suppressive phenotype in glioblastoma. Cancer Immunology Immunotherapy, 2019, 68(7):1107-1120 [百度学术]
Afshinpour M, Mahdiuni H. Arginine transportation mechanism through cationic amino acid transporter 1: Insights from molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 2023, 10:1-15 [百度学术]
Buford B N, Koch A J. Glycine-arginine-alpha-ketoisocaproic acid improves performance of repeated cycling sprints. Medicine and Science Sports and Exercise, 2004, 36(4):583-587 [百度学术]
Satyanarayana G, Turaga R C, Sharma M, Wang S, Mishra F, Peng G, Deng X, Yang J, Liu Z R. Pyruvate kinase M2 regulates fibrosis development and progression by controlling glycine auxotrophy in myofibroblasts. Theranostics, 2021, 11(19):9331-9341 [百度学术]
Den B G, Marsh D C, Lindell S L. Effect of glycine on isolated, perfused rabbit livers following 48-hour preservation in University of Wisconsin solution without glutathione. Transplant International, 1994, 7(3):195-200 [百度学术]
Paoletti P, Neyton J. NMDA receptor subunits: Function and pharmacology. Current Opinion in Pharmacology, 2007, 7(1):39-47 [百度学术]
Hardingham G E, Bading H. Synaptic versus extra synaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nature Reviews Neuroscience, 2010, 11(10):682-696 [百度学术]
Geneva A. Safety evaluation of certain contaminants in food prepared by the sixty-fourth meeting of the Joint FAO/WHO expert committee on food additives (JECFA). FAO Food Nutrition Paper, 2006, 82:1-778 [百度学术]
Ishida A, Kyoya T, Nakashima K, Katsumata M. Muscle protein metabolism during compensatory growth with changing dietary lysine levels from deficient to sufficient in growing rats. Journal of Nutritional Science and Vitaminology, 2011, 57(6):401-408 [百度学术]
Mastellar S L, Coleman R J, Urschel, K L. Controlled trial of whole body protein synthesis and plasma amino acid concentrations in yearling horses fed graded amounts of lysine. Veterinary Journal, 2016, 216:93-100 [百度学术]
Huang D, Maulu S, Ren M, Liang H, Ge X, Ji K, Yu H. Dietary lysine levels improved antioxidant capacity and immunity via the TOR and p38 MAPK signaling pathways in grass carp, Ctenopharyngodon idellus fry. Frontiers in Immunology, 2021, 25(12):635015 [百度学术]
姚炜, 库宝善, 李中华, 李雪林. L-赖氨酸对大鼠脑损伤的作用. 青岛大学医学院学报, 2001,37(4):282-284 [百度学术]
Yao W, Ku B S, Li Z H, Li X L. Effect of L-lysine on brain injury in rats.Journal of Medical College of Qingdao University, 2001,37(4):282-284 [百度学术]
Qian L, Hickey L T, Stahl A, Werner C R, Hayes B, Snowdon R J, Voss-Fels K P. Exploring and harnessing haplotype diversity to improve yield stability in crops. Frontiers in Plant Science, 2017, 8:1534 [百度学术]
Wainschtein P, Jain D P, Yengo L. Recovery of trait heritability from whole genome sequence data. Yearbook of Paediatric Endocrinology, 2019, 21:345 [百度学术]
张红梅,熊雅文,许文静,张威,王琼,刘晓庆,刘慧,崔晓艳,陈新,陈华涛.大豆R6期籽粒氨基酸含量的全基因组关联分析.作物学报,2023,49(12):3277-3288 [百度学术]
Zhang H M, Xiong Y W, Xu W J, Zhang W, Wang Q, Liu X Q, Liu H, Cui X Y, Chen X, Chen H T. Genome- wide association analysis of amino acid content in soybean R6 grain. Acta Agronomica Sinica, 2013,49(12):3277-3288 [百度学术]
Zhang W, Xu W J, Zhang H M, Liu X Q, Cui C Y, Li S S, Zhu Y L, Chen X , Chen H T. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theoretical and Applied Genetics,2021,134(5):1329-1341 [百度学术]
高修吾,杨浩然,吴艳霞,吕桂芬. GB/T 5497-1985粮食、油料检验水分测定法. 北京:国家标准局,1985 [百度学术]
Gao X W, Yang H R, Wu G F,Lv G F. GB/T 5497-1985 grain, oil inspection-determination of moisture. Beijing: State Bureau of Standards, 1985 [百度学术]
Cohen H, Israeli H, Matityahu I, Amir R. Seed-specific expression of a feedback-insensitive form of cystathionine-gamma-synthase in arabidopsis stimulates metabolic and transcriptomic responses associated with desiccation stress. Plant Physiology, 2014, 166:1575-1592 [百度学术]
Angelovici R, Fait A, Fernie A R. A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. New Phytologist, 2011, 189:148-159 [百度学术]
Galili G, Amir R, Fernie A R. The regulation of essential amino acid synthesis and accumulation in plants. Annual Review of Plant Biology, 2016, 67:153-178 [百度学术]
李楠. 利用近红外光谱技术快速检测大豆氨基酸含量及分析其相关性研究. 北京:北京交通大学, 2012 [百度学术]
Li N. Rapid determination of amino acid content of soybean by near infrared spectroscopy and correlation analysis. Beijing:Beijing Jiaotong University, 2012 [百度学术]
Panthee D R, Pantalone V R, Saxton A M. Quantitative trait loci for agronomic traits in soybean. Plant Breeding, 2007, 126(1):51-57 [百度学术]
王丽, 宋志峰, 纪锋, 黄璜. 高效液相色谱法测定大豆中游离氨基酸含量. 中国粮油学报, 2008, 1(23):180-184 [百度学术]
Wang L, Song Z F, Ji F, Huang H. Determination of free amino acids in soybean by high performance liquid chromatography. Journal of the Chinese Cereals and Oils, 2008, 1(23):180-184 [百度学术]
李爱君, 王迪, 阳刚, 宋军, 孔祥兵, 廖胜蓝, 阚建全. 后发酵温度对不同大豆品种细菌型豆豉氨基酸态氮生成动力学及理化性质的影响. 食品科学, 2023, 44(2):195-203 [百度学术]
Li A J, Wang D, Yang G, Song J, Kong X B, Liao S L, Kan J Q. Effects of post-fermentation temperature on the kinetics and physicochemical properties of amino acid nitrogen formation in bacterial tempeh of different soybean varieties. Food Science, 2023, 44(2):195-203 [百度学术]