摘要
一粒系小麦(Einkorn wheat, AA)作为小麦的基础物种,在形成普通小麦的过程中染色体组部分位点丢失,评价一粒系小麦的遗传多样性及对病害抗性的水平对普通小麦育种和遗传改良具有重要的理论意义和育种价值。本研究利用15对条带清晰、多态性高的SSR引物对170份一粒系小麦材料进行遗传多样性分析,并接种条锈菌流行生理小种CYR34进行抗病性评价。结果表明,SSR分析获得71个等位变异,引物平均多态性信息含量为0.6540;聚类分析和群体结构分析均将170份供试材料分为两个类群,两类群内的平均遗传距离分别为0.4732和0.5404;抗病性评价获得19份抗性较好的材料,其中免疫材料3份,近免疫材料2份,高抗1份,中抗13份,占供试材料的11.17 %;有3对SSR引物与一粒系小麦抗条锈病显著相关。综上所述,一粒系小麦存在较多的等位基因变异,含有优异的抗条锈病基因,具有提高小麦抗条锈病的育种潜力。
小麦条锈病是由条形柄锈菌小麦专化型(Puccinia striiformis f. sp. tritici)引起的世界范围内的重要病害,选育和利用抗病品种是控制该病害最经济、有效和安全的手
一粒系小麦(Einkorn wheat, AA)是小麦的野生近缘物种,是普通六倍体小麦(Triticum aestivum L., AABBDD)A基因组的原始供体之一。董玉琛
当前,小麦育种中大量使用相同或相近的亲本,导致新育成品种遗传基础日益狭窄、遗传变异率
供试材料为170份一粒系小麦种质资源,包括143份乌拉尔图小麦和27份野生一粒小麦,感病对照小麦品种铭贤169以及条锈菌生理小种CYR34的整套鉴别寄主。苗期鉴定菌系为小麦条锈菌生理小种CYR34。以上材料均由中国农业科学院植物保护研究所麦类真菌病害研究组提供。
取出液氮中保存条锈菌菌种的玻璃管,经42 ℃水浴活化5 min,放在垫有湿润滤纸的培养皿中,置于4 ℃冰箱中黑暗保湿12 h左右;然后利用电子氟化液(Nove
每份供试材料挑选出饱满籽粒10粒左右,用清水浸种1 d,覆盖纱布催芽露白后,按照材料编号将测试的一粒系小麦材料播种到长宽高25 cm × 30 cm × 10 cm的花盆中并置于人工气候室(光周期昼/夜:12 h/12 h,温度昼/夜:17~20 ℃/13~16 ℃)中培养,待麦苗第一片叶完全展开、第二片叶初生时,采用喷雾法接种扩繁的CYR34条锈菌夏孢子悬浮液(2 mg孢子+ 1 mL Nove
侵染型 Infection type | 症状描述 Symptoms described | 抗性评价 Resistance evaluation |
---|---|---|
0 | 叶片上无任何病症 | 免疫 |
0; | 叶上产生小型枯死斑,不产生夏孢子堆 | 近免疫 |
1 | 叶上产生枯死条点或条斑,夏孢子堆很小,数目很少 | 高抗 |
2 | 夏孢子堆小到中等大小,较少,其周围叶组织枯死或显著褪绿 | 中抗 |
3 | 夏孢子堆较大、较多,其周围叶组织有褪绿现象,夏孢子堆大而多,周围不褪绿 | 中感 |
4 | 夏孢子堆大而多,周围不褪绿 | 高感 |
播种在温室内的170份供试一粒系小麦材料,待其长到两叶一心期剪取幼叶2 g左右,用改良 CTAB
在小麦A组染色体上随机选择99对SSR引物(来源:GrainGenes 2.0,http:// www.wheat.pw.usda.gov),筛选获得条带清晰、多态性好的15对SSR引物(
引物名称 Primer name | 正向引物(5′-3′) Forward primer(5′-3′) | 反向引物(5′-3′) Reverse primer(5′-3′) | 位置 Position |
---|---|---|---|
Xwmc522 | AAAAATCTCACGAGTCGGGC | CCCGAGCAGGAGCTACAAAT | 2A |
Xwmc382 | CATGAATGGAGGCACTGAAACA | CCTTCCGGTCGACGCAAC | 2A |
Xgwm356 | AGCGTTCTTGGGAATTAGAGA | CCAATCAGCCTGCAACAAC | 6A |
Xwmc333 | TCAAGCATAGGTGGCTTCGG | ACAGCAGCCTTCAAGCGTTC | 1A |
Xgpw2032 | CCTGGAAGAATAGACGTGCC | CAAGATGGGGCAGAAGATGT | 1A |
Xgpw2246 | GCTTCACCCGAGTGTCAAAT | AGCACCTCTCAACACCCATC | 1A |
Xcfd65 | AGACGATGAGAAGGAAGCCA | CCTCCCTTGTTTTTGGGATT | 1A |
Xbarc222 | AAATCCGGCATCTGCTGTATCCATA | GTCCGGCCGCTGAATACTGTT | 7A |
Xgpw4453 | CTCTGTATCCCCATCCACTCA | CAACGGCACCATCTACTGC | 1A |
Xcfd58 | AATGGGCCTTTAAGAGCAAAA | AGGGGTGAAAGGTTGGAGAC | 1A |
Xwmc179.1 | CATGGTGGCCATGAGTGGAGGT | CATGATCTTGCGTGTGCGTAGG | 2A |
Xgwm311 | TCACGTGGAAGACGCTCC | CTACGTGCACCACCATTTTG | 2A |
Xgpw297 | TCCAACTCTCGTTTGAACTACT | CTTTGTCACCCATGACCTGC | 3A |
Xwmc63 | GTGCTCTGGAAACCTTCTACGA | CAGTAGTTTAGCCTTGGTGTGA | 2A |
Xgwm558 | GGGATTGCATATGAGACAACG | TGCCATGGTTGTAGTAGCCA | 2A |
读取条带信息,同一SSR引物的每1条多态性条带为1个等位基因变异,根据每个SSR标记检测的结果,将多态性信息分别以0、1记
在小麦A染色体组上随机挑选的99对SSR标记中,共筛选出条带清晰、多态性好的15对SSR引物,占所选引物的15%。在A染色体组的7条染色体(染色体1A~7A)上分别有6、6、1、0、0、1、1对引物。利用这15对标记对供试的170份一粒系小麦材料进行遗传多样性分析,共检测到71个等位变异,每个位点上有2~10个变异,平均每个位点上的变异为4.7个。多态性最高的位点为Xcfd65,有10个等位基因变异,其次为Xbarc222,有8个等位基因变异(

图1 引物Xbarc222对部分一粒系小麦的聚丙烯酰胺凝胶电泳检测
Fig. 1 Polyacrylamide gel electrophoresis patterns of partial einkorn wheat detected by primer Xbarc222
M:100bp Ladder Marker; 1-20: PI 272519, PI 428202, PI 538740, PI 428221, PI 352504, PI 662227, PI 401408, PI 428261, PI 428320, PI 4-28327, PI 401412, PI 427999, P I428330, PI 538727, PI 427760, PI 427990, PI 538726, PI 352501, PI 538730, PI 538733;The same as below
引物名称 Primer name | 等位基因数 Na | 有效等位基因数 Ne | Shannon′s 多样性指数 I | Nei′s 多样性指数 H | 多态性信息含量 PIC |
---|---|---|---|---|---|
Xcfd65 | 10 | 3.4752 | 1.5825 | 0.7122 | 0.7331 |
Xgpw4453 | 2 | 1.5793 | 0.5533 | 0.3668 | 0.4313 |
Xcfd58 | 4 | 2.8285 | 1.2048 | 0.6465 | 0.6917 |
Xwmc179.1 | 4 | 3.1445 | 1.2419 | 0.6820 | 0.7149 |
Xgwm311 | 4 | 3.3453 | 1.2824 | 0.7011 | 0.7019 |
Xgpw297 | 5 | 4.9200 | 1.6011 | 0.7967 | 0.8061 |
Xwmc63 | 4 | 3.8888 | 1.3719 | 0.7429 | 0.7507 |
Xgwm558 | 5 | 2.1111 | 1.0379 | 0.5263 | 0.5934 |
Xwmc356 | 4 | 2.9521 | 1.1968 | 0.6613 | 0.6959 |
Xbarc222 | 8 | 6.8303 | 1.9903 | 0.8536 | 0.8419 |
Xgpw2246 | 4 | 1.1428 | 0.3056 | 0.1249 | 0.3292 |
Xwmc333 | 4 | 3.9558 | 1.3807 | 0.7472 | 0.7543 |
Xwmc522 | 6 | 3.0503 | 1.3075 | 0.6722 | 0.7073 |
Xgpw2032 | 2 | 1.9042 | 0.6678 | 0.4748 | 0.4853 |
Xwmc382 | 5 | 1.8185 | 0.8160 | 0.4501 | 0.5729 |
平均值 Mean | 4.7333 | 3.1298 | 1.1694 | 0.6106 | 0.6540 |
PIC:Polymorphism information content
通过遗传距离的分析可以判断物种间的遗传差异,利用15对SSR引物得到的遗传信息将供试材料处理成遗传距离矩阵,经统计,170份一粒系小麦的遗传距离范围在0~0.9199之间,其中,PI 427992与PI 352504、PI 427462的遗传距离均大于0.9,全部种质的平均遗传距离为0.5223。在遗传距离矩阵的14365对组合中,有7662对的遗传距离大于0.5,占53.34%。为探究不同一粒系小麦种类内部的遗传关系,本研究分别统计了乌拉尔图小麦和野生一粒小麦组内的遗传距离,乌拉尔图小麦间遗传距离范围在0~0.8607,平均遗传距离为0.4732;野生一粒小麦之间遗传距离范围在0~0.9199,平均遗传距离为0.5404,高于乌拉尔图小麦。这些结果表明,一粒系小麦材料中存在较多的等位基因变异,且野生一粒小麦较乌拉尔图小麦的遗传变异更为丰富。
通过聚类分析可以明确物种间的亲缘关系,对170份一粒系小麦的遗传距离矩阵进行非加权组平均法分析得到聚类图(

图2 170份一粒系小麦聚类分析
Fig. 2 The clustering analysis of 170 einkorn wheat
PIxxxxxx为材料名称;I: 免疫; NIM:近免疫; HR: 高抗; MR: 中抗; MS: 中感; HS: 高感; -:Unknown;下同
PIxxxxxx is the material name;I: Immunity; NIM: Nearly immunity; HR: Highly resistant; MR: Moderately resistant; MS: Moderately susceptible; HS: Highly susceptible; -:Unknown;The same as below
利用STRUCTURE 2.3.1 软件对170份一粒系小麦的群体结构进行分析,结果表明在 K=2 时平均对数似然概率Delta K值出现最大值(

图3 Delta K值随 K 值变化折线图
Fig. 3 Line chart of K with Delta K
群体 Population | 类群1(红色) Group 1(Red) | 类群2(蓝色) Group 2(Blue) |
---|---|---|
乌拉尔图小麦Triticum urartu | 127 | 9 |
野生一粒小麦Triticum boeoticum | 4 | 21 |

图4 170份供试材料群体结构图
Fig. 4 Population structure of 170 materials
横坐标为两类群分组情况,纵坐标为Q值(0~1.0),两类群间用黑线分隔;红色为类群1;蓝色为类群2
The abscissa is the grouping of two groups, the ordinate is Q value (0-1.0), and the two groups are separated by black lines; Red is group 1 ; Blue is group 2
利用小麦条锈菌生理小种CYR34对170份一粒系小麦材料进行苗期抗性鉴定(
序号 No. | 编号 Code | 品种 Variety | 侵染型 Infection type | 抗性水平 Resistance level | 序号 No. | 编号 Code | 品种 Variety | 侵染型 Infection type | 抗性水平 Resistance level |
---|---|---|---|---|---|---|---|---|---|
1 | PI 352269-3 | 乌拉尔图小麦 | 0; | NIM | 4 | PI 428193 | 乌拉尔图小麦 | 3 | MS |
2 | PI 428223 | 乌拉尔图小麦 |
| MS | 5 | PI 428195 | 乌拉尔图小麦 |
| MS |
3 | PI 428186 | 乌拉尔图小麦 | 3 | MS | 6 | PI 428221 | 乌拉尔图小麦 |
| MS |
7 | PI 428222 | 乌拉尔图小麦 | 4 | HS | 50 | PI 538735 | 乌拉尔图小麦 |
| MS |
8 | PI 428225 | 乌拉尔图小麦 | 3 | MS | 51 | PI 538738 | 乌拉尔图小麦 |
| MS |
9 | PI 428227 | 乌拉尔图小麦 |
| MS | 52 | PI 538739 | 乌拉尔图小麦 | 4 | HS |
10 | PI 428228 | 乌拉尔图小麦 |
| MS | 53 | PI 277123-2 | 乌拉尔图小麦 |
| MS |
11 | PI 428229 | 乌拉尔图小麦 |
| MS | 54 | PI 538740 | 乌拉尔图小麦 |
| MS |
12 | PI 428231 | 乌拉尔图小麦 | 3 | MS | 55 | PI 538743 | 乌拉尔图小麦 |
| MS |
13 | PI 428255 | 乌拉尔图小麦 | 0 | NIM | 56 | PI 538744-1 | 乌拉尔图小麦 |
| MS |
14 | PI 428257 | 乌拉尔图小麦 |
| MS | 57 | PI 538749 | 乌拉尔图小麦 |
| MS |
15 | PI 428260 | 乌拉尔图小麦 |
| MS | 58 | PI 554599 | 乌拉尔图小麦 |
| MS |
16 | PI 428261 | 乌拉尔图小麦 | 3 | MS | 59 | PI 428210-2 | 乌拉尔图小麦 |
| MS |
17 | PI 428263-1 | 乌拉尔图小麦 |
| MS | 60 | PI 428226-1 | 乌拉尔图小麦 | 3 | MS |
18 | PI 428264 | 乌拉尔图小麦 | 3 | MS | 61 | PI 428234 | 乌拉尔图小麦 |
| MS |
19 | PI 428265 | 乌拉尔图小麦 |
| MS | 62 | PI 428254-1 | 乌拉尔图小麦 |
| MS |
20 | PI 428266-1 | 乌拉尔图小麦 |
| MS | 63 | PI 428272 | 乌拉尔图小麦 |
| MS |
21 | PI 428252 | 乌拉尔图小麦 | 0 | IM | 64 | PI 428291-1 | 乌拉尔图小麦 |
| MS |
22 | PI 428273 | 乌拉尔图小麦 |
| MS | 65 | PI 428311-1 | 乌拉尔图小麦 |
| MS |
23 | PI 428274 | 乌拉尔图小麦 |
| MS | 66 | PI 428321 | 乌拉尔图小麦 | 0 | IM |
24 | PI 428281 | 乌拉尔图小麦 | 3 | MS | 67 | PI 662226-2 | 乌拉尔图小麦 |
| MS |
25 | PI 428282 | 乌拉尔图小麦 |
| MS | 68 | CITR 17741-1 | 乌拉尔图小麦 | 3 | MS |
26 | PI 428283 | 乌拉尔图小麦 | 0; | NIM | 69 | PI 428319 | 乌拉尔图小麦 |
| MS |
27 | PI 428284 | 乌拉尔图小麦 | 3 | MS | 70 | PI 662224 | 乌拉尔图小麦 |
| MS |
28 | PI 428287 | 乌拉尔图小麦 | 3 | MS | 71 | PI 428278-1 | 乌拉尔图小麦 |
| MS |
29 | PI 428328 | 乌拉尔图小麦 |
| MS | 72 | PI 662227 | 乌拉尔图小麦 | 4 | HS |
30 | PI 428333 | 乌拉尔图小麦 | 3 | MS | 73 | PI 428002-1 | 乌拉尔图小麦 | 3 | MS |
31 | PI 428334 | 乌拉尔图小麦 | 3 | MS | 74 | PI 428204 | 乌拉尔图小麦 |
| MS |
32 | PI 428336 | 乌拉尔图小麦 |
| MS | 75 | PI 330527-1 | 乌拉尔图小麦 |
| MR |
33 | PI 428338 | 乌拉尔图小麦 |
| MS | 76 | PI 272519 | 野生一粒小麦 |
| MR |
34 | PI 428339 | 乌拉尔图小麦 | 1 | HR | 77 | PI 401408 | 野生一粒小麦 | 3 | MR |
35 | PI 487265 | 乌拉尔图小麦 | 3 | MS | 78 | PI 427996 | 野生一粒小麦 | 3 | MR |
36 | PI 487266 | 乌拉尔图小麦 | 3 | MS | 79 | PI 487249 | 野生一粒小麦 |
| MS |
37 | PI 487267 | 乌拉尔图小麦 |
| MR | 80 | PI 471744 | 野生一粒小麦 | 3 | MS |
38 | PI 487269 | 乌拉尔图小麦 | 3 | MS | 81 | PI 428010 | 野生一粒小麦 | 3 | MS |
39 | PI 487270 | 乌拉尔图小麦 | 3 | MS | 82 | PI 503578 | 野生一粒小麦 |
| MR |
40 | PI 538724 | 乌拉尔图小麦 | 2 | MR | 83 | PI 554519 | 野生一粒小麦 |
| MS |
41 | PI 538725 | 乌拉尔图小麦 |
| MS | 84 | PI 542475 | 野生一粒小麦 |
| MR |
42 | PI 538726 | 乌拉尔图小麦 | 3 | MS | 85 | PI 427760 | 野生一粒小麦 |
| MS |
43 | PI 538727 | 乌拉尔图小麦 |
| MS | 86 | PI 272520 | 野生一粒小麦 |
| MS |
44 | PI 538728 | 乌拉尔图小麦 |
| MS | 87 | PI 306532 | 野生一粒小麦 |
| MR |
45 | PI 538729 | 乌拉尔图小麦 |
| MS | 88 | PI 352501 | 野生一粒小麦 | 2 | MS |
46 | PI 538730 | 乌拉尔图小麦 |
| MS | 89 | PI 352502 | 野生一粒小麦 |
| MS |
47 | PI 538732 | 乌拉尔图小麦 | 3 | MS | 90 | PI 427990 | 野生一粒小麦 | 3 | MR |
48 | PI 538733 | 乌拉尔图小麦 |
| MS | 91 | PI 427992 | 野生一粒小麦 | 3 | MR |
49 | PI 538734 | 乌拉尔图小麦 |
| MS | 92 | PI 554520 | 野生一粒小麦 | 3 | MS |
侵染型可在原有级别基础上附加“+”或“-”号,以表示偏重或偏轻

图5 CYR34对一粒系小麦的不同侵染型
Fig. 5 Different infection types of CYR34 on einkorn wheat
“()”内数字表示侵染型级别
The number in “( )” indicates the infection type level
;Infection type can be added “+” or “-” on the normal type to indicate heavier or lighter
利用K=2时群体材料的Q矩阵做协变量,通过TASSEL 5软件的GLM模型进行SSR位点与抗病表型之间的关联分析。结果表明共有3个SSR标记与抗病性状显著关联,各标记解释变异范围为2.1%~9.3%(
引物名称 Primer name | P值 P-value | 解释率(%) Explanation rate |
---|---|---|
Xcfd65 | 0.0001** | 9.3 |
Xwmc2032 | 0.0043** | 4.0 |
Xwmc356 | 0.0414* | 2.1 |
**表示极显著差异(P<0.01);*表示显著差异(P<0.05)
**indicated extremely significant difference (P<0.01); *indicated significant difference (P<0.05)

图6 引物Xcfd65对部分一粒系小麦的聚丙烯酰胺凝胶电泳检测
Fig. 6 Polyacrylamide gel electrophoresis patterns of partial einkorn wheat detected by primer Xcfd65
优异的种质资源是开展育种工作的基础。明晰种质资源间的遗传多样性和群体结构是提高利用效率、加快育种进程的前
施永泰
小麦的抗病育种工作要考虑多方面问题,对亲本抗源的要求极高,而在育种中发挥重要作用的抗源极少,大都是几个优良骨干品种来回使用,导致小麦种质同质化严
当前我国小麦育成品种中携带的抗条锈病基因有限,仅Yr5、Yr15和Yr45对条锈生理小种CYR34具有苗期抗
目前,小麦育种家通过远缘杂交已成功将小麦近缘属的多个基因导入到普通小麦中,如黑麦1RS、华山新麦草2Ns等染色体上携带的优异基
参考文献
陈万权,康振生,马占鸿,徐世昌,金社林,姜玉英.中国小麦条锈病综合治理理论与实践.中国农业科学, 2013, 46(20): 4254-4262 [百度学术]
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262 [百度学术]
康振生,王晓杰,赵杰,汤春蕾,黄丽丽.小麦条锈菌致病性及其变异研究进展.中国农业科学, 2015, 48(17): 3439-3453 [百度学术]
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015, 48(17): 3439-3453 [百度学术]
韩德俊,康振生.中国小麦品种抗条锈病现状及存在问题与对策.植物保护, 2018, 44(5): 1-12 [百度学术]
Han D J, Kang Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5): 1-12 [百度学术]
Xu L S, Wang M N, Cheng P, Hulbert S H, Chen X M. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theoretical and Applied Genetics, 2013, 126: 523-533 [百度学术]
Marais G F, Pretorius Z A, Wellings C R, McCallum B, Marais A S. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica, 2005, 143: 115-123 [百度学术]
董玉琛,郑殿升.中国小麦遗传资源.北京:中国农业出版社, 1998: 31-56 [百度学术]
Dong Y C, Zheng D S. Wheat genetic resources in China. Beijing: China Agriculture Press, 1998: 31-56 [百度学术]
Дорофеев B Ф, Коровина О Н. Пшеница, Культурная Флора в СССР. Лениград: колос, 1979: изд [百度学术]
Multani D S, Dhaliwal H S, Sharma S K, Gill K S. Inheritance of isoproturon tolerance in durum transferred from Triticum monococcum. Plant Breeding, 1989, 102: 166-168 [百度学术]
Shi A N, Leath S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology, 1998, 88(2): 144-147 [百度学术]
Olson E L, Guedira G B, Marshall D, Stack E, Bowden R L, Jin Y, Rouse M, Pumphrey M O. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Science, 2010, 50(5): 1823-1830 [百度学术]
Shi S C, Hegarty J, Shen T, Hua L, Li H N, Luo J, Li H Y, Bai S S, Zhang C Z, Dubcovsky J. Stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal translocation of Triticum monococcum chromosome 5
王明玉,冀凯燕,冯晶,蔺瑞明,王凤涛,徐世昌.104个小麦品种抗条锈性及遗传多样性分析.植物保护学报, 2018, 45(1): 27-36 [百度学术]
Wang M Y, Ji K Y, Feng J, Lin R M, Wang F T, Xu S C. Identification of the resistance of 104 wheat varieties to stripe rust and analysis of their genetic diversity. Journal of Plant Protection, 2018, 45(1): 27-36 [百度学术]
刘博,刘太国,章振羽,贾秋珍,王保通,高利,彭云良,金社林,陈万权.中国小麦条锈菌条中34号的发现及其致病特性.植物病理学报, 2017, 47(5): 681-687 [百度学术]
Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2017, 47(5): 681-687. [百度学术]
中华人民共和国农业部. NY/T 2953—2016小麦区域试验品种抗条锈病鉴定技术规程. 北京:中国农业出版社, 2016 [百度学术]
Agricultural Ministry of the People's Republic of China. NY/T 2953—2016 technical specification for identification of stripe rust resistance of wheat regional test varieties. Beijing: China Agriculture Press, 2016 [百度学术]
Hill-ambroz K L, Brown-guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Science, 2002, 42: 2088-2091 [百度学术]
Lelley T, Stachel M, Grausgruber H, Vollmann J. Analysis of relationship between Aegilops tauschil and the D genome of wheat utilizing microsatellites. Genome, 2000, 43: 661-668 [百度学术]
樊文强,盖红梅,孙鑫,杨爱国,张忠锋,任民. SSR数据格式转换软件DataFormater.分子植物育种, 2016, 14: 265-270 [百度学术]
Fan W Q, Ge H M, Sun X, Yang A G, Zhang Z F, Ren M. DataFormater, a software for SSR data formatting to develop population genetics analysis. Molecular Plant Breeding, 2016, 14: 265-270 [百度学术]
Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant marker and quantitative traits. Belgian Journal of Botany, 1997, 130: 129-157 [百度学术]
Liu K J, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129 [百度学术]
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:A simulation study. Molecular Ecology, 2005, 14(8):2611-2620 [百度学术]
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19):2633-2635 [百度学术]
Letunic I, Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 2016, 44: 242-245 [百度学术]
Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28: 511-526 [百度学术]
刘玉玲,张红岩,滕长才,周仙莉,侯万伟.蚕豆SSR标记遗传多样性及与淀粉含量的关联分析.作物学报, 2022, 48: 2786-2805 [百度学术]
Liu Y L, Zhang H Y, Teng C C, Zhou X L, Hou W W. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.). Acta Agronomica Sinica, 2022, 48: 2786-2805 [百度学术]
Devos K M, Dubcovsky J, Dvořák J, Chinoy C N, Gale M D. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theoretical and Applied Genetics, 1995, 91: 282-288 [百度学术]
施永泰,边红武,韩凝,潘建伟,童微星,朱睦元.中国江、浙地区栽培大麦遗传资源的RAPD研究.作物学报, 2004, 30: 258-265 [百度学术]
Shi Y T, Bian H W, Han N, Pan J W, Tong W X, Zhu M Y. Genetic variation analysis by RAPD of some barley cultivars in China. Acta Agronomica Sinica, 2004, 30: 258-265 [百度学术]
Fricano A, Brandolini A, Rossini L, Sourdille P, Wunder J, Effgen S, Hidalgo A, Erba D, Piffanelli P, Salamini F. Crossability of Triticum urartu and Triticum monococcum wheats, homoeologous recombination, and description of a panel of interspecific introgression lines. G3-Genes Genomes Genetics, 2014, 4(10): 1931-1941 [百度学术]
董宏图,刘婉辉,彭福祥,李映辉,赵传志,唐华山,张晶,耿妙苗,解超杰,孙其信.一粒系小麦遗传多样性分析及抗病性鉴定.植物遗传资源学报, 2014, 15(2): 377-382 [百度学术]
Dong H T, Liu W H, Peng F X, Li Y H, Zhao C Z, Tang H S, Zhang J, Geng M M, Xie C J, Sun Q X. Evaluation of the genetic diversity and disease resistance of einkorn wheats. Journal of Plant Genetic Resources, 2014, 15(2): 377-382 [百度学术]
孙果忠.我国小麦种业发展现状及未来建议.农业科技通讯, 2021, (7): 4-8 [百度学术]
Sun G Z. Development status and future suggestions of wheat seed industry in China. Bulletin of Agricultural Science and Technology, 2021, (7): 4-8 [百度学术]
曹廷杰,谢菁忠,吴秋红,陈永兴,王振忠,赵虹,王西成,詹克慧,徐如强,王际睿,罗明成,刘志勇.河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析.作物学报, 2015, 41(2): 197-206 [百度学术]
Cao T J, Xie J Z, Wu Q H, Chen Y X, Wang Z Z, Zhao H, Wang X C, Zhan K H, Xu R Q, Wang J R, Luo M C, Liu Z Y. Genetic diversity of registered wheat varieties in Henan province based on pedigree and single-nucleotide polymorphism. Acta Agronomica Sinica, 2015, 41(2): 197-206 [百度学术]
梅铭凤,姚国旗,江玉梅,马正强.一粒小麦种质遗传多样性分析.麦类作物学报, 2005, (1): 20-25 [百度学术]
Mei M F, Yao G Q, Jiang Y M, Ma Z Q. Characterizing the genetic diversity of a group of einkorn wheat lines. Journal of Triticeae Crops, 2005, (1): 20-25 [百度学术]
Ciaffi M, Dominici L, Lafiandr A D. Gliadin polymorphism in wild and cultivated einkorn wheats. Theoretical and Applied Genetics, 1997, 94: 68-74. [百度学术]
胡朝月,王凤涛,郎晓威,冯晶,李俊凯,蔺瑞明,姚小波.小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析.中国农业科学, 2022, 55(3): 491-502 [百度学术]
Hu C Y, Wang F T, Lang X W, Feng J, Li J K, Lin R M, Yao X B. Resistance analyses on wheat stripe rust resistance genes to the predominant races of Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2022, 55(3): 491-502 [百度学术]
Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains N S, Goel R K, Keller B, Dhaliwal H S, Singh K. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theoretical and Applied Genetics, 2008, 116: 313-324 [百度学术]
文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析: I.群体结构及关联标记.作物学报, 2008, 34: 1169-1178 [百度学术]
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic quality traits and SSR markers in chinese cultivated and wild soybeans: I. Population structure and associated markers. Acta Agronomica Sinica, 2008, 34: 1169-1178 [百度学术]
Marais G F, McCallum B, Marais A S. Leaf rust and stripe rust resistance genes derived from Aegilops Sharonensis. Euphytica, 2006, 149: 373-380 [百度学术]
Marais F, Marais A, Mccallum B, Pretorius Z. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Science, 2009, 49(3): 871-879 [百度学术]
Mesfin G, Bariana H, Wong D, Hayden M, Bansal U. Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Disease, 2019, 103(6): 1166-1171 [百度学术]
Singh S P, Hurni S, Ruinelli M, Brunner S, Martin J S, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Molecular Biology, 2018, 98(3): 249-260 [百度学术]
Du W L, Zhao J X, Wang J, Wang L M, Wu J, Yang Q H, Liu S H, Chen X H. Cytogenetic and molecular marker-based characterization of a wheat-Psathyrostachys huashanica Keng 2Ns(2D) substitution line. Plant Molecular Biology Reporter, 2015, 33(3): 414-423 [百度学术]