摘要
杂种优势利用是显著提高作物产量的主要途径,有助于解决日益增长的人口数量与有限耕地之间的矛盾。大豆作为世界上重要的粮油饲兼用作物,其开展杂种优势利用已有30余年。其中,基于细胞质雄性不育的三系法杂交育种系统是大豆杂种优势利用的主要途径。目前,已有40余个杂交大豆品种通过审定并在生产上推广应用,杂交大豆正处于由中试向产业化推进阶段。本文对大豆细胞质雄性不育遗传基础与育种应用进行了综述,系统阐述了各类型细胞质雄性不育系的发现及利用、不育性状的遗传和分子机制、育性恢复基因和恢复抑制基因的定位和克隆等方面的研究进展。基于大豆杂种优势利用研究现状论述和分析,提出了三系法杂交大豆育种中存在的问题、挑战及解决路径,并对三系法杂交大豆育种技术的创新进行了展望,旨在为大豆杂种优势分子基础和应用研究提供新方法、新思路。
大豆是重要的粮油饲兼用作物,原产于中国,古称菽,在中国各地均有栽培,同时广泛种植于世界各地。中国作为全球主要的大豆进口国,2015-2022年连续8年进口量超过8000万吨,其中2020年的进口量突破1亿
杂种优势利用可以大幅提高作物单位面积产量,已在水稻、玉米和油菜等作物中成功应用。目前作物杂种优势利用的途径主要为基于细胞质雄性不育(CMS, cytoplasmic male sterility)系统的三系法和细胞核雄性不育(GMS, genic male sterility)系统的两系法。大豆同样具有较强的杂种优
自Rhoade
1983年,Sun
序号 No. | 品种名 Name | 审定年份 Year of variety approval | 母本 Female parent | 父本 Male parent | 脂肪含量(%) Oil content | 蛋白质 含量 (%) Protein content | 蛋脂含量(%) Oil and protein content | 区域试验较 对照增产(%) Yield increase compared with CK in regional test | 生产试验较 对照增产(%) Yield increase compared with CK in production test |
---|---|---|---|---|---|---|---|---|---|
1 | 杂交豆1号 | 2002 | JLCMS9A | JLR1 | 21.09 | 39.19 | 60.28 | 21.9 | 20.8 |
2 | 杂交豆2号 | 2006 | JLCMS47A | JLR2 | 20.54 | 40.75 | 61.29 | 22.7 | 14.3 |
3 | 杂交豆3号 | 2009 | JLCMS8A | JLR9 | 20.84 | 40.54 | 61.38 | 6.4 | 2.8 |
4 | 杂交豆4号 | 2010 | JLCMS47A | JLR83 | 19.57 | 40.48 | 60.05 | 12.3 | 6.1 |
5 | 杂交豆5号 | 2011 | JLCMS84A | JLR1 | 22.25 | 38.79 | 61.04 | 12.2 | 19.7 |
6 | 吉育606 | 2013 | JLCMS47A | JLR100 | 21.51 | 40.11 | 61.62 | 9.6 | 13.5 |
7 | 吉育607 | 2013 | JLCMS14A | JLR83 | 22.22 | 39.30 | 61.52 | 12.2 | 5.1 |
8 | 吉育608 | 2014 | JLCMS84A | JLR113 | 23.04 | 37.22 | 60.26 | 11.1 | 3.8 |
9 | 晋豆48 | 2014 | PZMS-1-1 | ZH-21-B-5 | 19.89 | 36.99 | 56.88 | 14.0 | 15.2 |
10 | 吉育609 | 2015 | JLCMS103A | JLR102 | 22.54 | 37.52 | 60.06 | 17.0 | 2.2 |
11 | 吉育610 | 2016 | JLCMS128A | JLR98 | 21.15 | 37.32 | 58.47 | 18.7 | 9.4 |
12 | 吉育611 | 2016 | JLCMS147A | JLR113 | 21.47 | 38.67 | 60.14 | 10.7 | 15.0 |
13 | 吉育612 | 2017 | JLCMS57A | JLR9 | 20.92 | 42.07 | 62.99 | 16.7 | 4.4 |
14 | 吉育626 | 2019 | JLCMS230A | JLR9 | 20.19 | 40.68 | 60.87 | 13.9 | 11.4 |
15 | 吉育627 | 2019 | JLCMS179A | JLR9 | 20.74 | 40.97 | 61.71 | 13.4 | 7.8 |
16 | 吉育635 | 2019 | JLCMS34A | JLR300 | 22.71 | 36.27 | 58.98 | 11.5 | 14.8 |
17 | 吉育639 | 2019 | JLCMS191A | JLR403 | 23.78 | 37.04 | 60.82 | 13.1 | 13.1 |
18 | 佳吉1号 | 2019 | JLCMS178A | JLR124 | 22.15 | 40.46 | 62.61 | 15.3 | 16.0 |
19 | 优势豆-A-5 | 2019 | JLSXCMS1 | 中119-99 | 20.96 | 42.10 | 63.06 | 13.5 | 12.1 |
20 | 吉育637 | 2020 | JLCMS210A | JLR209 | 20.19 | 41.70 | 61.89 | 11.8 | 8.3 |
21 | 吉育641 | 2020 | JLCMS191A | JLR158 | 22.43 | 38.58 | 61.01 | 17.4 | 3.3 |
22 | 吉育643 | 2020 | JLCMS212A | JLR346 | 21.69 | 38.14 | 59.83 | 15.3 | 11.2 |
23 | 吉育647 | 2020 | JLCMS5A | JLR2 | 19.12 | 42.52 | 61.64 | 14.5 | 18.3 |
24 | 吉农H1 | 2020 | JLCMS254A | JLR192 | 21.93 | 38.17 | 60.10 | 17.8 | 18.2 |
25 | 吉育633 | 2020 | JLCMS204A | JLR230 | 20.44 | 42.78 | 63.22 | 12.9 | 14.0 |
26 | 吉育653 | 2021 | JLCMS242A | JLR300 | 22.89 | 37.68 | 60.57 | 11.3 | 9.6 |
27 | 吉育654 | 2021 | JLCMS234A | JLR13 | 22.75 | 36.64 | 59.39 | 14.7 | 9.2 |
28 | 吉育660 | 2021 | JLCMS204A | JLR419 | 21.42 | 41.39 | 62.81 | 8.4 | 8.0 |
29 | 吉育645 | 2021 | JLCMS234A | JLR9 | 20.12 | 44.77 | 64.89 | 15.4 | 11.6 |
30 | 吉农H2 | 2021 | JLCMS212A | JLR414 | 22.91 | 38.86 | 61.77 | 17.8 | 9.6 |
31 | 晋豆52 | 2021 | H3A | 老品种4号 | 19.92 | 43.64 | 63.56 | 9.2 | 11.9 |
32 | 吉育649 | 2022 | JLCMS209A | JLR158 | 22.04 | 37.53 | 59.57 | 8.1 | 12.5 |
33 | 吉育667 | 2022 | JLCMS164A | JLR227 | 21.08 | 39.76 | 60.84 | 11.4 | 6.4 |
34 | 吉育668 | 2022 | JLCMS247A | JLR227 | 22.94 | 35.39 | 58.33 | 11.8 | 12.7 |
35 | 晋豆53 | 2022 | SXCMS13A | TH46 | 19.37 | 41.12 | 60.49 | 9.8 | 14.8 |
36 | 吉育613 | 2023 | JLCMS179A | JLR306 | 21.99 | 39.14 | 61.13 | 14.2 | 8.6 |
37 | 吉育671 | 2023 | JLCMS18A | JLR306 | 23.05 | 38.26 | 61.31 | 13.5 | 7.4 |
1994年,Peng
W931A、W936A、W933A,这些不育系是栽培大豆与栽培大豆杂交后获得的,因此命名为M型。由于中油89B的细胞质源于ZD8319,即中豆19,因此将上述来源的不育系统称为CMS-ZD型。目前CMS-ZD型不育胞质已育成了数10个适宜黄淮夏播区种植的不育系,其中安徽省农业科学院育成杂优豆1号、杂优豆2号、杂优豆3号和皖杂豆5号等4个杂交种;阜阳市农业科学院育成了阜杂交豆1号、阜杂交豆2号、阜豆123等3个杂交
1995年,Gai
细胞质雄性不育可分为孢子体不育和配子体不育两种类型。孢子体不育的育性受孢子体即植株本身的基因型控制,与花粉基因型无关。败育多发生在四分体时期至单核花粉时期,败育时期较早。若以孢子体不育胞质为母本,含1对恢复基因的恢复系为父本,其F1植株全部表现为可育,F2中可育株和不育株的分离比为3∶1,符合孟德尔遗传分离规
赵丽
细胞质雄性不育是质核基因相互作用的结果,特定的细胞核基因处于对应的细胞质环境下即可产生不育。目前在水
早期研究人员主要开展CMS-RN型不育系和保持系的分子标记多态性分析,以期找到二者差异片段,挖掘不育候选基因。于
不仅在分子遗传层面,表观遗传层面的差异同样可能对细胞质雄性不育产生影
CMS-ZD型不育机制的研究较少,陈培
CMS-N型的不育机制研究比较全面,在基因组、转录组、蛋白组和代谢组等多个层面上均有相关报道。早期研究人员从线粒体基因入手,韩利涛
在转录水平上,Li
在表观遗传水平上,CMS-N型同样开展了大量不育机制的研究。在DNA甲基化方面,Li
在植物进化过程中,恢复基因和不育基因是相辅相成的。根据两者的关系,不育基因能够被多个恢复(Rf,restorer-of-fertility)基因恢复,而Rf基因只能作用于不育基因,这有利于植物的进化和生存。因此,明确大豆细胞质雄性不育育性恢复基因的类型及数量是选育强恢复力恢复系的前提。
CMS-RN是世界上第一个被发现的大豆细胞质雄性不育胞质类型,属于典型的配子体不育,可育为显性性状,仅1对显性Rf基因即可调控细胞质雄性不育性恢复。赵丽梅
CMS-ZD型也属于配子体不育类型。汤复跃
Yang
研究人员在利用大豆CMS/Rf系统配制杂交组合时发现,部分拥有优良性状的不育系与恢复系杂交后,其杂种F1的育性不能被Rf基因恢复,出现F1高度不育的现象。因此,认为在大豆细胞质雄性不育系中可能存在影响育性恢复的抑制基
目前关于大豆细胞质雄性不育的遗传基础和育种应用都取得了显著的进展,但与玉米、水稻、小麦、油菜等作物相比,仍存在一定差距。丰富的亲本资源是基于细胞质雄性不育开展三系杂交育种的基础,这其中母本不育系和杂种F1的育性稳定性至关重要。目前已发现的大豆细胞质雄性不育胞质中仅N8855型为孢子体不
父本恢复系恢复能力的强弱直接影响杂种F1的育性稳定性。保证杂种F1可育的前提是恢复系中的恢复基因类型及数量。目前,在大豆中仅有恢复基因Rf1(PPR576)被图位克隆和鉴
近年来,随着生物技术领域的不断突破,有望加速三系法育种技术的创新,尤其是基因编辑和单倍体诱导技术在其中表现出众。2019年,Kazama
参考文献
国家统计局. 年度数据.[2024-01-12]. https://data.stats.gov.cn/easyquery.htm?cn=C01 [百度学术]
National Bureau of Statistics. Natinal data. [2024-01-12]. https://data.stats.gov.cn/easyquery.htm?cn=C01 [百度学术]
Palmer R G, Gai J Y, Sun H, Burton J W. Production and evaluation of hybrid soybean. Plant Breeding Review, 2001, 21:263-307 [百度学术]
王曙明, 孙寰, 王跃强, 赵丽梅, 李楠, 付连舜, 李卫东, 齐宁, 邢邯, 李磊. 大豆杂种优势及其高优势组合选配的研究Ⅰ. F1代子粒产量的杂种优势与高优势组合选配. 大豆科学, 2002, 21(3):161-167 [百度学术]
Wang S M, Sun H, Wang Y Q, Zhao L M, Li N, Fu L S, Li W D, Qi N, Xing H, Li L. Research on soybean heterosis and selection of high heterosis combinations I. The selection of hybrid and high heterosis combinations for F1 generation grain yield. Soybean Science, 2002, 21(3):161-167 [百度学术]
Sun H, Zhao L M, Huang M. Studies on cytoplasmic-nuclear male sterile soybeans. Chinese Science Bulletin, 1994, 38:175-176 [百度学术]
赵丽梅, 孙寰, 王曙明, 王跃强, 黄梅, 李建平. 大豆杂交种杂交豆1号选育报告. 中国油料作物学报, 2004, 26(3):15-17 [百度学术]
Zhao L M, Sun H, Wang S M, Wang Y Q, Huang M, Li J P. Breeding report of soybean hybrid No. 1. Chinese Journal of Oil Crop Sciences, 2004, 26(3):15-17 [百度学术]
Rhoades M. Cytoplasmic inheritance of male sterility in Zea mays. Science, 1931, 73:340-341 [百度学术]
Sampath S, Mohanty H. Cytology of semi-sterile rice hybrids. Current Science, 1954, 23:182-183 [百度学术]
Ogura H. Studies on the new male sterility in Japanese Radish with special references to the utilization of this sterility towards the practical raising of hybrid seed. Memoirs of the Faculty of Agriculture Kagoshima University, 1968, 6(2): 39-78 [百度学术]
Bradner N R. Hybrid soybean production. USA Patent, 3903645,1975-09-09 [百度学术]
Bradner N R. Hybridization of soybean via the leaf-cutter bee. USA Patent, 4077157, 1978-03-07 [百度学术]
Davis W H. Route to hybrid soybean production. USA Patent, 4545146,1985-10-08 [百度学术]
Davis W H. Process for forming seeds capable of growing hybrid soybean plants. USA Patent, 4648204,1987-03-10 [百度学术]
Davis W H. Process for forming substantially uniform seed assemblages capable of growing F1 hybrid and restorer soybean plants.USA Patent, 4763441, 1988-08-16 [百度学术]
Peng Y H, Yang G, Yuan J. Genetic analysis of a new type of a male-sterilesoybean // Banpot Napompeth. World soybean research conference V abstract. Bangkok, Thailand:Funny Publishing Limited Partnership, 1994: 90 [百度学术]
李磊, 杨庆芳, 胡亚敏, 祝利海, 葛浩新. 栽培大豆双亲基因互作型不育材料的发现及其遗传推断. 安徽农业科学, 1995, 23(4): 304-306 [百度学术]
Li L, Yang Q F, Hu Y M, Zhu L H, Ge H X. Discovery and genetic inference of parent-gene interaction type sterility materials in cultivated soybean. Journal of Anhui Agricultural Sciences, 1995, 23(4):304-306 [百度学术]
赵丽梅, 孙寰, 黄梅. 大豆细胞质雄性不育系ZA的选育和初步研究. 大豆科学, 1998, 17(3):268-270 [百度学术]
Zhao L M, Sun H, Huang M. The development and preliminary studies on cytoplasmic male sterile soybean line ZA. Soybean Science, 1998, 17(3): 268-270 [百度学术]
张磊, 戴瓯和, 黄志平, 李杰坤. 大豆质核互作M型雄性不育系的选育及其育性表现. 中国农业科学, 1999, 32(4):34-38 [百度学术]
Zhang L, Dai O H, Huang Z P, Li J K. Selection of soybean male sterile line of nucleo-cytoplasmic interaction and its fertility. Scientia Agricultura Sinica, 1999, 32(4):34-38 [百度学术]
孙妍妍, 赵丽梅, 张伟, 张春宝. 大豆杂种优势利用研究进展. 大豆科技, 2021, 175(6):26-35 [百度学术]
Sun Y Y, Zhao L M, Zhang W, Zhang C B. Research progress on utilization of soybean heterosis. Soybean Science&Technology, 2021, 175(6):26-35 [百度学术]
Gai J Y, Cui Z L, Ji D F, Ren Z J, Ding D R. A report on the nuclear cytoplasmic male sterility from a cross between two soybean cultivars. Soybean Newsletter, 1995, 22:55-58 [百度学术]
Ding D, Gai J, Cui Z, Qiu J. Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica, 2002, 124:85-91 [百度学术]
Zhao T J, Gai J Y. Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line NJCMS3A in soybean. Euphytica, 2006, 152:387-396 [百度学术]
Nie Z, Zhao T, Yang S, Gai J, Singh R. Development of a cytoplasmic male‐sterile line NJCMS4A for hybrid soybean production. Plant Breeding, 2017, 136(4): 516-525 [百度学术]
Fang X, Sun Y, Li J, Li M, Zhang C. Male sterility and hybrid breeding in soybean. Molecular Breeding, 2023, 43:47 [百度学术]
周天理. 第二讲 孢子体不育和配子体不育. 福建农业科技, 1986, 5:33-34 [百度学术]
Zhou T L. Sporophytic sterility and gametophytic sterility. Fujian Agricultural Science and Technology, 1986, 5:33-34 [百度学术]
郑用琏. 若干玉米细胞质雄性不育类型(CMS)育性机理的研究. 华中农学院学报, 1982, 1:44-68 [百度学术]
Zheng Y L. Study on the mechanism of the fertility about several types of cytoplasmic male-sterility in maize (Zea mays L.). Journal of Huazhong Agricultural College, 1982, 1:44-68 [百度学术]
张怀胜,张晓祥,王平喜,进茜宁,吴向远. 玉米细胞质雄性不育与恢复基因研究进展. 广东农业科学, 2022, 49(5):1-9 [百度学术]
Zhang H H, Zhang X X, Wang P X, Jin X N, Wu X Y. Research advances on cytoplasmic male sterility and restorer genes in maize. Guangdong Agricultural Sciences, 2022, 49(5):1-9 [百度学术]
高明尉. 野败型杂交籼稻基因型的初步分析. 遗传学报, 1981, 8 (1):66-74 [百度学术]
Gao M W. A preliminary analysis of the genotypes of hybrid shen rice with wild rice cytoplasm. Acta Genetica Sinica, 1981, 8 (1):66-74 [百度学术]
Wilson J, Ross W. Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevi cytoplasm. Wheat Information Service, 1962, 14:29-30 [百度学术]
Mukai Y, Tsunewaki K. Basic studies on hybrid wheat breeding:VIII. A new male sterility fertility restoration system in common wheat utilizing the cytoplasms of Aegilops kotschyi and Aegilops variabilis. Theoretical and Applied Genetics, 1979, 54:153-160 [百度学术]
Singh M, Brown G G. Characterization of expression of a mitochondrial gene region associated with the Brassica "Polima" CMS: Developmental influences. Current Genetics, 1993, 24:316-322 [百度学术]
Bannerot H, Boulidard L, Cauderon Y, Tempe J. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Proceedings of the Eucarpia Meeting on Cruciferae, 1974, 25:52-54 [百度学术]
Kirti P B, Banga S S, Prakash S, Chopra V L. Transfer of Ogu cytoplasmic male sterility to Brassica juncea and improvement of the male sterile line through somatic cell fusion. Theoretical and Applied Genetics, 1995, 91:517-521 [百度学术]
Liu X, Xu X, Tan Y, Li S, Hu J, Huang J, Yang D, Li Y, Zhu Y. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativa L.). Molecular Genetics & Genomics, 2004, 271(5):586 [百度学术]
Shinjyo C. Cytoplasmic-genetic male sterility in cultivated rice, Oryza sativa L. . The Japanese Journal of Genetics, 1969, 44(3):149-156 [百度学术]
赵丽梅. 大豆细胞质雄性不育的遗传和分子基础研究. 长春: 东北师范大学, 2005 [百度学术]
Zhao L M. Genetic and molecular basis of the cytoplasmic male sterility in soybean. Changchun: Northeast Normal University, 2005 [百度学术]
Bai Y N, Gai J Y. Inheritance of male fertility restoration of the cytoplasmic-nuclear male-sterile line NJCMS1A of soybean [Glycine max (L) Merr.]. Euphytica, 2005, 145:25-32 [百度学术]
Wang K, Peng X, Ji Y, Yang P, Zhu Y, Li S. Gene, protein, and network of male sterility in rice. Frontiers in Plant Science, 2013, 4:1-10 [百度学术]
Wang B, Farooq Z, Chu L, Liu J, Wang H, Guo J, Tu J, Ma C, Dai C, Wen J, Shen J, Fu T, Yi B. High-generation near-isogenic lines combined with multi-omics to study the mechanism of polima cytoplasmic male sterility. BMC Plant Biology, 2021, 21:130 [百度学术]
Yang H, Xue Y, Li B, Lin Y, Li H, Guo Z, Li W, Fu Z, Ding D, Tang J. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex. Molecular Plant,2022, 15(5):872-886 [百度学术]
Xiao S, Zang J, Pei Y, Liu J, Liu J, Song W, Shi Z, Su A, Zhao J, Chen H. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Molecular Plant, 2020, 13(9):1270-1283 [百度学术]
于铁. 大豆细胞质雄性不育系与保持系线粒体DNA的APLP分析. 长春: 吉林农业大学, 2005 [百度学术]
Yu T. AFLP analysis on mitoehondrial DNA of cytoplasmic male sterilities and its holdings. Changchun: Jilin Agricultural University, 2005 [百度学术]
唐月异. 大豆不育系及保持系线粒体DNA指纹图谱的构建. 长春: 吉林农业大学, 2006 [百度学术]
Tang Y Y. Establishment of mtDNA fingerprinting of CMS lines and maintainer lines of soybean by RAPD. Changchun:Jilin Agricultural University, 2006 [百度学术]
黄福龙. 大豆(Glycine max)细胞质雄性不育系线粒体基因组的RAPD分析. 长春: 东北师范大学, 2007 [百度学术]
Huang F L. RAPD analysis of soybean cytoplasmic male sterility mitochondrial genome. Changchun: Northeast Normal University, 2007 [百度学术]
刘海军, 赵丽梅, 董英山, 石瑛, 张春宝. 大豆细胞质雄性不育系及其保持系线粒体基因的RNA编辑位点研究. 分子植物育种, 2014, 12(4):694-700 [百度学术]
Liu H J, Zhao L M, Dong Y S, Shi Y, Zhang C B. RNA editing analysis of mitochondrial gene in cytoplasmic male sterile line and maintainer line in soybean. Molecular Plant Breeding, 2014, 12(4):694-700 [百度学术]
Lin C, Zhang C, Zhao H, Xing S, Wang Y, Liu X, Yuan C, Zhao L, Dong Y. Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers. Plant Science, 2014, 229:208-214 [百度学术]
林春晶, 张春宝, 赵洪锟, 董英山, 赵丽梅. 同核异质大豆叶绿体DNA的SNP分析. 吉林农业大学学报, 2017, 39(2):134-138 [百度学术]
Lin C J, Zhang C B, Zhao H K,Dong Y S,Zhao L M. SNP analysis of chloroplast DNA in isonuclear alloplasmic soybean. Journal of Jilin Agricultural University, 2017, 39(2):134-138 [百度学术]
Fan Y, Yang J, Mathioni S M, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyers B C, Zhang Q. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52):15144-15149 [百度学术]
Zhang M, Ma X, Wang C, Li Q, Meyers B C, Springer N M, Walbot V. CHH DNA methylation increases at 24‐PHAS loci depend on 24‐nt phased small interfering RNAs in maize meiotic anthers. New Phytologist, 2020, 229(5):2984-2997 [百度学术]
Lin C J, Peng B, Li Y, Wang P N, Zhao G L, Ding X Y, Li R, Zhao L M, Zhang C B. Cytoplasm types affect DNA methylation among different cytoplasmic male sterility lines and their maintainer line in soybean (Glycine max L.). Plants, 2020, 9:385 [百度学术]
Zhang C B, Fu F Y, Lin C J, Ding X Y, Zhang J Y, Yan H, Wang P N, Zhang W, Peng B, Zhao L M. MicroRNAs involved in regulatory cytoplasmic male sterility by analysis RNA-seq and small RNA-seq in soybean. Frontiers in Genetics, 2021, 12:654146 [百度学术]
Bai Z, Ding X, Zhang R, Yang Y, Wei B, Yang S, Gai J. Transcriptome analysis reveals the genes related to pollen abortion in a cytoplasmic male-sterile soybean (Glycine max (L.) Merr.). International Journal of Molecular Sciences, 2022, 23(20):12227 [百度学术]
陈培, 张磊. 大豆质核互作雄性不育系W931A及其保持系不同器官的可溶性蛋白的电泳分析. 种子, 2009, 28(10):33-35 [百度学术]
Chen P, Zhang L. Electrophoretic analysis of soluble proteins in different organs of soybean cytoplasmic nuclear interaction male sterile line W931A and its maintainer line. Seed, 2009, 28(10):33-35 [百度学术]
陈培, 张磊, 邱丽娟, 陆柏. 大豆质核互作雄性不育系W931A及其保持系的差异蛋白质组学比较分析. 作物杂志, 2009(6):17-21 [百度学术]
Chen P, Zhang L, Qiu L J, Lu B. Comparative analysis of differential proteomics between soybean cytoplasmic nuclear interaction male sterile line W931A and its maintainer line. Crops, 2009(6):17-21 [百度学术]
Wang D, Wang Y, Zhang L, Yang Y, Wu Q, Hu G, Wang W, Li J, Huang Z. Integrated transcriptomic and proteomic analysis of a cytoplasmic male sterility line and associated maintainer line in soybean. Frontiers in Plant Science, 2023, 14:1098125 [百度学术]
韩利涛, 杨守萍, 喻德跃, 盖钧镒. 大豆细胞质雄性不育系与保持系atp6基因的RNA编辑比较研究. 大豆科学, 2010, 29(3):361-365 [百度学术]
Han L T, Yang S P, Yu D Y, Gai J Y. Comparative study on RNA editing of ATP6 gene between soybean cytoplasmic male sterile line and maintaining line. Soybean Science, 2010, 29(3):361-365 [百度学术]
Jiang W, Yang S, Yu D, Gai J. A comparative study of ATPase subunit 9 (Atp9) gene between cytoplasmic male sterile line and its maintainer line in soybeans. African Journal of Biotechnology, 2011, 10(51):10387-10392 [百度学术]
He T, Ding X, Zhang H, Li Y, Chen L, Wang T, Yang L, Nie Z, Song Q, Gai J, Yang S. Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Functional and Integrative Genomics, 2021, 21(1):43-57 [百度学术]
Li J, Han S, Ding X, He T, Dai J, Yang S, Gai J. Comparative transcriptome analysis between the cytoplasmic male sterile line NJCMS1A and its maintainer NJCMS1B in soybean (Glycine max (L.) Merr.). PLoS ONE, 2015, 10(5):e0126771 [百度学术]
曾维英, 杨守萍, 盖钧镒, 喻德跃. 大豆质核互作雄性不育系 NJCMS1A 及其保持系的花药差异蛋白质组学研究. 中国农业科学, 2007, 40(12):2679-2687 [百度学术]
Zeng W Y, Yang S P, Gai J Y, Yu D Y. Differential proteomic analysis of anthers in soybean cytoplasmic nuclear interaction male sterile line NJCMS1A and its maintainer line. Scientia Agricultura Sinica, 2007, 40(12):2679-2687 [百度学术]
曾维英, 杨守萍, 喻德跃, 盖钧镒. 大豆质核互作雄性不育系 NJCMS2A 及其保持系的花药蛋白质组比较研究. 作物学报, 2007, 33(10):1637-1643 [百度学术]
Zeng W Y, Yang S P, Yu D Y, Gai J Y. Comparative study on the anther proteome of soybean cytoplasmic nuclear interaction male sterile line NJCMS2A and its maintainer line. Acta Agronomica Sinica, 2007, 33 (10): 1637-1643 [百度学术]
杨龙树, 李佳佳, 贺亭亭, 丁先龙, 张浩, 韩少怀, 盖钧镒, 杨守萍. 大豆质核互作雄性不育系NJCMS1A与其保持系NJCMS1B的生理生化特性比较分析. 大豆科学, 2017, 36(3):391-398 [百度学术]
Yang L S, Li J J, He T T, Ding X L, Zhang H, Han S H, Gai J Y, Yang S P. Comparative analysis of physiological and biochemical characteristics between soybean cytoplasmic nuclear interaction male sterile line NJCMS1A and its maintainer line NJCMS1B. Soybean Science, 2017, 36(3):391-398 [百度学术]
Ding X, Wang X, Li Q, Yu L, Song Q, Gai J, Yang S. Metabolomics studies on cytoplasmic male sterility during flower bud development in soybean. International Journal of Molecular Sciences, 2019, 20(12):2869 [百度学术]
Li Y, Ding X, Wang X, He T, Zhang H, Yang L, Wang T, Chen L, Gai J, Yang S. Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B. BMC Genomics, 2017, 18(1):596 [百度学术]
Han S, Li Y, Li J, Zhang H, Ding X, He T, Gai J, Yang S. Genome-wide analysis of DNA methylation to identify genes and pathways associated with male sterility in soybean. Molecular Breeding, 2018, 38(10):118 [百度学术]
Chen L, Ding X, Zhang H, He T, Li Y, Wang T, Li X, Jin L, Song Q, Yang S, Gai J. Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genomics, 2018, 19(1):663 [百度学术]
Ding X, Li J, Zhang H, He T, Han S, Li Y, Yang S, Gai J. Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics, 2016,17:24 [百度学术]
Ding X, Zhang H, Ruan H, Li Y, Chen L, Wang T, Jin L, Li X,Yang S, Gai J. Exploration of miRNA-mediated fertility regulation network of cytoplasmic male sterility during flower bud development in soybean. 3 Biotech, 2019, 9(1):22 [百度学术]
Ding X, Ruan H, Yu L, Li Q, Song Q, Yang S, Gai J. miR156b from soybean CMS line modulates floral organ development. Journal of Plant Biology,2020, 63(2):141-153 [百度学术]
Ding X, Chen L, Guo J, Gai J, Yang S. A small RNA of miR2119b from soybean CMS line acts as a negative regulator of male fertility in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 167:210-221 [百度学术]
赵丽梅, 王玉民, 孙寰, 赵洪锟, 程延喜, 彭宝, 王曙明, 张伟龙, 董英山. 大豆细胞质雄性不育恢复基因的SSR标记. 大豆科学, 2007, 26(6):835-839 [百度学术]
Zhao L M, Wang Y M, Sun H, Zhao H K, Cheng Y X, Peng B, Wang S M, Zhang W L, Dong Y S. Identification of SSR markers linked to the fertility restorer gene for the CMS in soybean. Soybean Science,2007, 26(6):835-839 [百度学术]
Wang Y, Zhao L, Wang X, Sun H. Molecular mapping of a fertility restorer gene for cytoplasmic male sterility in soybean. Plant Breeding, 2010, 129(1):9-12 [百度学术]
郭凤兰, 林春晶, 王鹏年, 杨绪磊, 吴铮, 彭宝, 赵丽梅, 张春宝. 大豆细胞质雄性不育恢复基因GmRf1的精细定位. 植物遗传资源学报,2022, 23(2):518-526 [百度学术]
Guo F L, Lin C J, Wang P N, Yang X L, Wu Z, Peng B, Zhao L M, Zhang C B. Fine mapping of a restorer-of-fertility gene GmRf1 for the cytoplasmic male sterility in Soybean. Journal of Plant Genetic Resources, 2022, 23(2):518-526 [百度学术]
杨绪磊, 郭凤兰, 高萌萌, 张泽东, 林春晶, 孙妍妍, 张井勇, 彭宝, 赵丽梅, 张春宝. 大豆CMS-RN型不育系育性恢复基因GmRf1的初步鉴定及其分子标记开发. 植物遗传资源学报,2023, 24(4):1186-1193 [百度学术]
Yang X L, Guo F L, Gao M M, Zhang Z D, Lin C J, Sun Y Y, Zhang J Y, Peng B, Zhao L M, Zhang C B. Preliminary identification and molecular marker development of the restorer-of-fertility gene GmRf1 in soybean CMS-RN type male sterile lines. Journal of Plant Genetic Resources,2023, 24(4):1186-1193 [百度学术]
贾顺耕, 郭凤兰, 林春晶, 孙妍妍, 张颖, 雷蕾, 彭宝, 赵丽梅, 张春宝. 大豆细胞质雄性不育育性恢复基因Rf3的定位. 植物遗传资源学报, 2021, 22(5):1411-1417 [百度学术]
Jia S G, Guo F L, Lin C J, Sun Y Y, Zhang Y, Lei L, Peng B, Zhao L M, Zhang C B. Mapping of fertility restoring gene Rf3 for cytoplasmic male sterility in soybean. Journal of Plant Genetic Resources, 2021, 22(5):1411-1417 [百度学术]
Sun Y, Zhang Y, Jia S, Lin C, Zhang J, Yan H, Peng B, Zhao L, Zhang W, Zhang C. Identification of a candidate restorer-of-fertility gene Rf3 encoding a pentatricopeptide repeat protein for the cytoplasmic male sterility in soybean. International Journal of Molecular Sciences, 2022, 23(10):5388 [百度学术]
汤复跃, 周立人, 程潇, 张磊, 陈培, 江莹芬. 大豆M型细胞质雄性不育恢复基因SSR标记初步定位. 大豆科学, 2008, 27(3):383-386 [百度学术]
Tang F Y, Zhou L R, Cheng X, Zhang L, Chen P, Jiang Y F. Preliminary mapping of SSR markers for restorer gene of soybean M-type cytoplasmic male sterility. Soybean Science, 2008, 27(3):383-386 [百度学术]
汤复跃, 张磊, 陈培, 陈渊, 梁江. 大豆M型细胞质雄性不育恢复基因标记定位. 大豆科学, 2009, 28(4):578-582 [百度学术]
Tang F Y, Zhang L, Chen P, Chen Y, Liang J. Mapping of markers for restoring M-type cytoplasmic male sterility in soybean. Soybean Science, 2009, 28(4):578-582 [百度学术]
Dong D K, Li Z, Yuan F J, Zhu S L, Chen P, Yu W, Yang Q H, Fu X J, Yu X M, Li B Q, Zhu D H. Inheritance and fine mapping of a restorer-of-fertility (Rf) gene for the cytoplasmic male sterility in soybean. Plant Science, 2012, 188-189:36-40 [百度学术]
Wang D, Zhang L, Li J, Hu G, Wu Q, Jiang H, Huang Z. The restorer gene for soybean M-type cytoplasmic male sterility, Rf-m, is located in a PPR gene-rich region on chromosome 16. Plant Breeding, 2016, 135(3):342-348 [百度学术]
Wang D, Chen S, Li J, Wu Q, Hu G, Huang Z. Molecular cloning and expression analysis of the Rf-m candidate genes encoding pentatricopeptide repeat proteins in soybean. Oil Crop Science, 2021, 6(3):128-136 [百度学术]
Yang S, Duan M, Meng Q, Qiu J, Fan J, Zhao T, Yu D, Gai J. Inheritance and gene tagging of male fertility restoration of cytoplasmic-nuclear male-sterile line NJCMS1A in soybean. Plant Breeding, 2007, 126(3):302-305 [百度学术]
董建生, 杨守萍, 喻德跃, 盖钧镒. 大豆质核互作雄性不育系NJCMS2A的育性恢复性遗传和育性恢复基因的SSR标记. 大豆科学, 2008, 27(2):181-185 [百度学术]
Dong J S, Yang S P, Yu D Y, Gai J Y. Inheritance of fertility restoration and SSR markers of fertility restoration genes in soybean cytoplasmic nuclear interaction male sterile line NJCMS2A. Soybean Science, 2008, 27(2):181-185 [百度学术]
李曙光, 赵团结, 盖钧镒. 大豆质核互作雄性不育系NJCMS3A双亲雄性育性基因的SSR标记. 作物学报, 2010, 36(7):1061-1066 [百度学术]
Li S G, Zhao T J, Gai J Y. SSR markers of parental male fertility genes in soybean cytoplasmic nuclear interaction male sterile line NJCMS3A. Acta Agronomica Sinica, 2010, 36 (7): 1061-1066 [百度学术]
陶银. 大豆质核互作雄性不育系NJCMS1A育性恢复基因的SSR标记定位研究. 南京: 南京农业大学, 2012 [百度学术]
Tao Y. SSR marker mapping of fertility restoration genes in soybean cytoplasmic nuclear interaction male sterile line NJCMS1A. Nanjing: Nanjing Agricultural University, 2012 [百度学术]
Wang T, He T, Ding X, Zhang Q, Yang L, Nie Z, Zhao T, Gai J, Yang S. Confirmation of GmPPR576 as a fertility restorer gene of cytoplasmic male sterility in soybean. Journal of Experimental Botany, 2021, 72(22):7729-7742 [百度学术]
张井勇, 孙寰, 赵丽梅, 彭宝, 张伟龙, 李曙光, 赵晓明. 大豆RN不育胞质不育与恢复类型的研究. 大豆科学, 2010, 29(4):559-564 [百度学术]
Zhang J Y, Sun H, Zhao L M, Peng B, Zhang W L, Li S G, Zhao X M. A study on the cytoplasmic sterility and restoration types of soybean RN sterility. Soybean Science, 2010, 29(4):559-564 [百度学术]
李永宽, 张井勇, 赵国龙, 李蓉, 林春晶, 赵丽梅, 彭宝, 张春宝. 大豆RN型细胞质雄性不育育性恢复抑制基因Rf-I的遗传分析与定位. 农业生物技术学报, 2020, 28(5):761-770 [百度学术]
Li Y K, Zhang J Y, Zhao G L, Li R, Lin C J, Zhao L M, Peng B, Zhang C B. Genetic analysis and mapping of Rf-I, an inhibitor of fertility restorer gene for CMS-RN in soybean (Glycine max). Journal of Agricultural Biotechnology, 2020, 28(5):761-770 [百度学术]
Zhang J Y, Sun H, Zhao L M, Zhang C B, Yan H, Peng B, Li W B. Nectar secretion of RN-type cytoplasmic male sterility three lines in soybean [Glycine max (L.) Merr.]. Journal of Integrative Agriculture, 2018, 17(5):1085-1092 [百度学术]
Yan H, Zhang J Y, Zhang C B, Peng B, ZHang W L, Wang P N, Ding X Y, Liu B H, Feng X Z, Zhao L M. Genetic effects and plant architecture influences on outcrossing rate in soybean. Journal of Integrative Agriculture, 2019, 18(9):1971-1979 [百度学术]
Lin C J, Duan Y D, Li R, Wang P N, Sun Y Y, Ding X Y, Zhang J Y, Yan H, Zhang W, Peng B, Zhao L M, Zhang C B. Flavonoid biosynthesis pathway may indirectly affect outcrossing rate of cytoplasmic male-sterile lines of soybean. Plants, 2023, 12:3461 [百度学术]
李蓉, 林春晶, 彭宝, 丁孝羊, 李永宽, 赵国龙, 赵丽梅, 张春宝. 不同异交率大豆细胞质雄性不育系的转录组分析. 中国油料作物学报, 2019, 41(5):696-704 [百度学术]
Li R, Lin C J, Peng B, Ding X Y, Li Y K, Zhao G L, Zhao L M, Zhang C B. Transcriptomic analysis of soybean cytoplasmic male sterile lines with different outcrossing rate. Chinese Journal of Oil Crop Sciences, 2019, 41(5):696-704 [百度学术]
韩博文, 姜楠, 杨绪磊, 林春晶, 彭宝, 赵丽梅, 吴松权, 张春宝. 基于SRAP分子标记的春大豆杂交种核心亲本杂种优势群划分. 中国农业大学学报, 2023, 28(10):38-49 [百度学术]
Han B W, Jiang N, Yang X L, Lin C J, Peng B, Zhao L M, Wu S Q, Zhang C B. Division of the heterotic groups of core parents in spring soybean hybrids based on SRAP molecular markers. Journal of China Agricultural University, 2023, 28(10):38-49 [百度学术]
Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, Sugaya H, Toyoda A, Itoh T, Tsutsumi N, Toriyama K, Koizuka N, Arimura S I. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nature Plants, 2019, 5(7):722-730 [百度学术]
Forner J, Kleinschmidt D, MeForner J, Kleinschmidt D, Meyer E H, Gremmels J, Morbitzer R, Lahaye T, Schöttler M A, Bock R. Targeted knockout of a conserved plant mitochondrial gene by genome editing. Nature Plants, 2023, 9(11):1818-1831 [百度学术]
Law S S Y, Liou G, Nagai Y, Giménez-Dejoz J, Tateishi A, Tsuchiya K, Kodama Y, Fujigaya T, Numata K. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nature Communications, 2022, 13(1):2417 [百度学术]
Lv J, Yu K, Wei J, Gui H, Liu C, Liang D, Wang Y, Zhou H, Carlin R, Rich R, Lu T, Que Q, Wang W C, Zhang X, Kelliher T. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nature Biotechnology, 2020, 38(12):1397-1401 [百度学术]
Wang J, Wang X F, Yang W C, Li H J. Loss of function of CENH3 causes genome instability in soybean. Seed Biology, 2023, 2:24 [百度学术]