摘要
玉米穗腐病是一种主要由拟轮枝镰孢和禾谷镰孢引起的真菌性病害,严重威胁国家粮食安全。随着气候和耕作制度的变化,穗腐病已成为玉米生产上发生最普遍、危害最重的病害之一,大规模的抗病种质资源鉴定有利于解决因优良抗病种质资源缺乏而导致的抗病品种培育困难的问题。本研究在建立了玉米穗腐病高通量抗性鉴定平台的基础上,采用滚动式抗源鉴定策略,在初级鉴定阶段采用单环境、单重复的策略对大量种质进行初步筛选,随后对初级鉴定中的高抗种质进行多重复、多环境、多年份的次级鉴定,逐步淘汰感病种质。2018-2020年间对10524份玉米种质资源进行了抗镰孢穗腐病的初级鉴定,共筛选到191份高抗种质,进一步对高抗种质进行滚动式次级鉴定,最终筛选出18XDHNAM11-20、H5084、MC303等59份具有稳定抗性的种质,其中24份种质在5年的鉴定中均表现为抗病。从59份抗病种质的杂种优势类群看,抗病种质可分为5个类群:温热互导群、国内Reid群、NSS群、SS群及黄改群,基本涵盖国内最主要的杂种优势类群,其中来自温热互导群的抗病材料有24份,占抗病材料总数的41%。本研究抗病种质资源的发掘为玉米抗穗腐病育种提供了重要资源。
玉米(Zea mays L.)是我国主要的粮食作物、饲料来源和工业原料,在国民生产生活中占有重要地位,据国家统计局数据(https://data.stats.gov.cn/easyquery.htm?cn=C01)显示,2012年玉米产量超过水稻成为我国第一大粮食作物,并呈现逐年增长的趋势。2023年,我国玉米播种面积达4421.9万公顷,占三大主要粮食作物(稻、小麦、玉米)的44.25%,总产量为28884.2万吨,占三大主要粮食作物的45.03%(https://www.stats.gov.cn/sj/zxfb/202312/t20231211_1945417.html)。因此保障玉米的产量和品质对于确保国家粮食安全具有重要意义。
玉米穗腐病是由病原菌侵染引起果穗或籽粒病变的一种真菌性病害,在世界玉米种植区域普遍发
目前,国内外已经报道了一些抗玉米穗腐病的种质资源。2006-2012年,段灿星
近年来,兼抗拟轮枝镰孢和禾谷镰孢混合菌的玉米种质开始引起国内外学者的关注。董华芳
2018-2020年间,在国家良种重大科研联合攻关项目的支持下,共集结了10524份种质资源(
材料来源 Source | 2018 | 2019 | 2020 |
---|---|---|---|
中国农业科学院CAAS | 3210 | 1076 | 1556 |
云南省农业科学院YAAS | 1449 | 1140 | 350 |
北京市农林科学院BAAFS | 600 | - | 337 |
河南农业大学HAU | 532 | 274 | - |
总计Total | 5791 | 2490 | 2243 |
-:无数据
-:No data;CAAS:Chinese Academy of Agricultural Sciences; YAAS: Yunnan Academy of Agricultural Sciences; BAAFS: Beijing Academy of Agriculture and Forestry Sciences; HAU: Henan Agricultural University
传统的抗性鉴定方法是对每一份种质资源进行多环境、多重复的表型鉴定,再对种质资源进行抗性评价。这种方法的工作量较大,效率相对较低,极大地增加了大范围筛选抗病种质的成本。为了解决这一问题,本课题组采用了“滚动式抗源鉴定方法”(

图1 滚动式抗源鉴定流程
Fig.1 The flow chart of the rolling resistant germplasm identification method
HR:Highly resistance;R:Resistance;The same as below
2018年,在焦作市修武县对5791份种质进行单环境初步鉴定。2019年,在焦作市对集结到的2490份种质进行单环境初级鉴定的同时,在焦作市修武县和郑州市惠济区河南农业大学科教园区对2018年筛选到的高抗种质分别进行2个和1个重复的滚动式次级鉴定,淘汰中抗与感病种质。2020年,在焦作市对2243份种质进行单环境初级鉴定,同时在焦作市和郑州市对2019年初级鉴定筛选到的高抗种质和次级鉴定筛选到的高抗和抗的种质分别进行2个重复的滚动式次级鉴定,继续淘汰中抗与感病种质。按照滚动式抗源鉴定模式(
将本课题组保存的拟轮枝镰孢菌种转接于PDA固体培养基,28℃恒温培养7~10 d进行扩繁。把扩繁完成的菌种切块,接种于玉米固体培养基中,28℃恒温培养10~14 d(

图2 两种病原菌的培养
Fig.2 The culture of two kinds of pathogenic bacteria
A:拟轮枝镰孢菌种;B:转接菌种于玉米培养基的过程;C:拟轮枝镰孢在玉米培养基中培养过程;D:拟轮枝镰孢培养完成(15 d)的状态;E:禾谷镰孢菌种;F:转接菌种于牙签培养基的过程;G:禾谷镰孢在牙签培养基中培养过程;H:禾谷镰孢培养完成(15 d)的状态
A: Fusarium verticillioides; B: The process of transferring bacteria to maize medium; C: The culture process of Fusarium verticillioides in corn medium; D: The state in which the culture of Fusarium verticillioides was completed (15 d) ; E: Fusarium graminearum; F: The process of transferring bacteria to the toothpick medium; G: The culture process of Fusarium graminearum in toothpick medium; H: State in which the culture of Fusarium graminearum has been completed (15 d)
将100根牙签捆为一捆,加蒸馏水浸泡10 min,大火烧开后,用小火慢煮1 h,期间分3次加入蔗糖(每升蒸馏水每次加入1~2 g)。将水煮过的牙签装瓶,牙签尖部统一朝上,装满瓶子。向瓶中倒入PDA培养基,淹没牙签一半,封口,121℃高压蒸汽灭菌30 min。待培养基冷却凝固后,把前期在培养皿上扩繁的菌种切块,接种于牙签培养基中,28℃恒温培养15 d左右(
田间实验在河南省焦作市修武县和河南省郑州市惠济区河南农业大学科教园区试验基地进行。每份材料种植1行,行长4 m,行距0.6 m,株距0.22 m。每50份材料为一组,在每组的开始处设置抗病对照BT-1和感病对照N6。供试材料生育期有差异,因此在吐丝后7~10 d进行分批次接种。每批接种完成后在行头喷漆作为标记。每株玉米同时接种两种病菌,拟轮枝镰孢采用针刺果穗法接种于穗子中下部,禾谷镰孢菌采用牙签法接种于穗子顶端。接种过程如

图3 玉米穗腐病的大田接种和鉴定
Fig.3 Field inoculation and evaluation of Fusarium ear rot in maize
A:牙签通道法接种禾谷镰孢;B:改良针刺果穗法接种拟轮枝镰孢;C:2021年焦作试验基地玉米穗腐病大田发病情况;D:穗腐病抗性鉴定工作使用工具
A: Fusarium graminearum inoculation by silk channel injection method; B: Fusarium verticillioides inoculation by improved nail inoculation method; C: Typical field situation of Fusarium ear rot in maize; D: Tools for evaluation Fusarium ear rot
参照农业行业标准《NY/T 1248.8-2016玉米抗病虫性鉴定技术规范》(https://hbba.sacinfo.org.cn/attachment/onlineRead/95e138b5f17c1a958a26ca7ee87c9f0c24ee8eba69abd4117574239fe713aa15),对小区内的全部果穗进行穗腐病发病面积的调查(

图4 穗腐病发病面积表型评定标准
Fig.4 The phenotypic evaluation criteria for disease area to ear rot
发病等级 Disease scale | 发病面积(%) Area ratio of diseased |
---|---|
1 | 0~5 |
3 | 5~20 |
5 | 20~40 |
7 | 40~60 |
9 | >60 |
抗性评价 Resistant evaluation | 平均发病等级 Mean disease scale |
---|---|
高抗HR | <1.5 |
抗R | 1.5~3.5 |
中抗MR | 3.5~5.5 |
感S | 5.5~7.5 |
高感HS | 7.5~9.0 |
MR: Moderately resistant; S: Susceptible; HS: Highly susceptible;The same as below
2018-2020年初级鉴定的结果表明,每年鉴定的不同抗性的材料数量和比例均呈正态分布(

图5 2018-2020年供试种质穗腐病抗性分布
Fig.5 Distribution of resistance to ear rot in experimental germplasm from 2018 to 2020
从供试材料的来源来看,2018-2020年来源于云南省农业科学院的材料每年平均发病等级均低于当年供试材料平均等级,表现出较好的玉米穗腐病抗性。中国农业科学院和河南农业大学的供试材料的平均发病等级在3年间变化不大(

图6 2018-2020年不同来源供试种质对穗腐病的抗性
Fig.6 Comparison of resistance to ear rot disease among germplasms in different sources from 2018 to 2020
2019-2022年,针对上一年初级抗性鉴定表现为高抗的种质和次级鉴定中的高抗及抗病种质进行滚动式次级鉴定,同时也对部分种子量较大的高感及感病种质进行重复鉴定。通过对每个重复的描述性统计分析发现,各年重复间的平均值和标准误差等描述统计参数差异不大,表明次级鉴定重复性较好,鉴定结果比较可靠(
指标 Index | 2019 | 2020 | 2021 | 2022 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
重复一 Rep1 | 重复二 Rep2 | 重复三 Rep3 | 重复一 Rep1 | 重复二 Rep2 | 重复三 Rep3 | 重复四 Rep4 | 重复一 Rep1 | 重复二 Rep2 | 重复三 Rep3 | 重复四 Rep4 | 重复一 Rep1 | 重复二 Rep2 | 重复三 Rep3 | 重复四 Rep4 | |
平均值Mean | 4.01 | 4.51 | 3.93 | 3.65 | 3.65 | 3.77 | 3.58 | 4.54 | 5.04 | 4.51 | 4.63 | 4.75 | 4.46 | 2.97 | 3.22 |
标准误差SE | 0.22 | 0.16 | 0.16 | 0.17 | 0.18 | 0.16 | 0.17 | 0.14 | 0.18 | 0.17 | 0.13 | 0.29 | 0.24 | 0.22 | 0.30 |
中位数Median | 3.67 | 4.67 | 3.71 | 3.47 | 3.37 | 3.70 | 3.21 | 4.33 | 4.75 | 4.15 | 4.59 | 5.00 | 4.50 | 2.82 | 2.40 |
众数Mode | 1.00 | 5.00 | 3.00 | 1.00 | 1.00 | 3.00 | 2.50 | 3.00 | 3.00 | 3.00 | 5.00 | 5.00 | 3.00 | 2.00 | 1.00 |
标准差SD | 2.34 | 1.72 | 1.81 | 1.89 | 2.00 | 1.70 | 1.76 | 1.47 | 1.79 | 1.71 | 1.19 | 2.15 | 1.96 | 1.53 | 2.15 |
方差Variance | 5.47 | 2.96 | 3.27 | 3.56 | 4.01 | 2.91 | 3.09 | 2.15 | 3.21 | 2.92 | 1.42 | 4.63 | 3.84 | 2.35 | 4.61 |
峰度Kurtosis | -0.54 | -0.43 | 0.26 | -0.07 | -0.64 | 0 | 0.44 | 1.46 | -0.94 | -0.40 | -0.34 | -0.68 | -0.27 | 1.74 | 0.14 |
偏度Skewness | 0.66 | -0.07 | 0.71 | 0.54 | 0.45 | 0.54 | 0.81 | 1.17 | 0.45 | 0.41 | 0.16 | -0.23 | 0.37 | 1.23 | 1.09 |
区域Aria | 8.00 | 7.67 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 7.00 | 6.44 | 7.50 | 5.44 | 8.00 | 8.00 | 6.67 | 8.00 |
最小值Min. | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.56 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 |
最大值Max. | 9.00 | 8.67 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 8.50 | 7.44 | 9.00 | 9.00 | 7.67 | 9.00 |
求和Sum | 461.20 | 536.45 | 475.16 | 444.96 | 431.27 | 407.39 | 386.20 | 472.41 | 478.75 | 469.00 | 417.05 | 270.97 | 290.03 | 139.69 | 164.04 |
观测数Observation | 115.00 | 119.00 | 121.00 | 122.00 | 118.00 | 108.00 | 108.00 | 104.00 | 95.00 | 104.00 | 90.00 | 77.00 | 75.00 | 77.00 | 71.00 |
置信度(95.0%) Confidence level | 0.43 | 0.31 | 0.33 | 0.34 | 0.37 | 0.33 | 0.34 | 0.29 | 0.37 | 0.33 | 0.25 | 0.57 | 0.49 | 0.45 | 0.60 |
重复一和重复二种植于河南省焦作市修武县;重复三和重复四种植于河南省郑州市惠济区
Repetition 1 and repetition 2 were planted in Xiuwu county, Jiaozuo city, Henan province;Repetition 3 and repetition 4 were planted in Huiji district, Zhengzhou city, Henan province; Rep: Repetition

图7 2019-2022年穗腐病抗性滚动鉴定情况
Fig.7 The result of rolling resistant germplasm identification for ear rot resistance from 2019 to 2022
箱线图显示出次级鉴定中抗病和感病种质平均发病等级的最大值、最小值、中位数及上下四分位数;抗病:指上一年初级鉴定的高抗种质和次级鉴定的高抗和抗病种质;感病:指部分种子量较大的上一年抗性评价为感病和高感的种质
The boxplot shows the maximum, minimum, median and upper and lower quartiles of the average disease scale of disease resistant and susceptible germplasms in secondary identification; R:Refers to the germplasms that were highly resistant in the primary identification stage, and highly resistant and resistant in the secondary identification stage in the previous year; S: Refers to the germplasms that were highly susceptible in the primary identification stage, and susceptible and highly susceptible in the secondary identification stagy in the previous year

图8 多年抗病种质18XDHNAM11-20、18XDHNAM4-75、感病对照N6和抗病对照BT-1表型鉴定结果
Fig.8 Phenotypic of disease-resistant germplasm 18XDHNAM11-20, 18XDHNAM4-75 , susceptible control N6 and resistant control BT-1
利用4589个SNP位点将59份多年鉴定的玉米穗腐病抗病种质进行分类,共分为黄改群、NSS群、温热互导群、SS群和国内Reid 群5大类群。群体结构分析结果(

图9 59份抗病种质的遗传多样性分析
Fig.9 Genetic diversity analysis for 59 resistance germplasms
A:群体结构分析结果;B:进化树分析;C:主成分分析,x、y、z轴分别代表3个主成分PC1、PC2和PC3
A: Results of population structure analysis; B: Phylogenetic tree analysis results; C: Principal component analysis results, the x, y and z axes represent the three principal components PC1, PC2 and PC3, respectively
从59份抗病种质在5大类群中的占比来看(

图10 抗病种质在不同杂种优势类群中的比例
Fig.10 The proportion of resistant germplasms in different heterosis groups
玉米穗腐病是一种在全世界各玉米主产区均会出现的普遍性病害,其产生的毒素对人畜健康有极大的威胁,因此,玉米穗腐病的防控效果在一定程度上影响我国的粮食安全。目前,已发现的穗腐病病原菌高达70余种,大多数抗病种质对不同种病原菌引起的穗腐病的抗性有着较大的差
玉米穗腐病的发生受环境影响较大,且抗性机理复杂,大范围的抗源筛选有利于获得优良稳定的抗病种质。传统的多年多点多重复抗源筛选方法工作量大、效率低,很难兼顾大范围抗源筛选和精准抗源鉴定。本研究采用“滚动式抗源鉴定”方法:先对大规模的种质资源进行单环境单重复的初次鉴定,再对初次鉴定得到的高抗种质进行多环境、多重复、多年份的次级鉴定,每年淘汰感病种质,最终筛选到一批多年间表现稳定的优良抗病种质。本研究通过3年对10524份供试种质进行单环境、单重复穗腐病初级鉴定,筛选到191份高抗玉米穗腐病的种质;再针对初次鉴定到的高抗种质进行多环境、多重复、多年份的滚动式次级鉴定,最终筛选到24份5年均表现抗病的种质、2份4年均表现抗病的种质,实现了高通量大范围和精准鉴定的统一,并获得了良好的结果。
目前,国内外开展玉米穗腐病抗性鉴定主要采用花丝通道法和创伤接种法,花丝通道法分为使用雾化器将孢子悬浮液喷洒在玉米花丝上或使用注射器将孢子悬浮液注射到靠近穗轴尖端的花丝通道中两种,创伤接种法一般将孢子悬浮液直接注射到伤口部位或将病原菌定殖的牙签/海绵贴在伤口部
来源广泛的抗病种质是改良和培育玉米穗腐病抗病品种的基础,本研究筛选到59份穗腐病稳定抗病种质,来自于国内Reid群、NSS群、SS群、黄改群和温热互导群,涵盖国内主要的杂种优势类群,可实现优先同群改良的玉米育种原则。黄改群和SS群种质在已知的报道中抗源较少,本研究分别鉴定到14份黄改群以及6份SS群抗源,这些抗病种质资源的发掘为玉米抗穗腐病育种提供了重要资源。另外,感病种质在挖掘穗腐病抗病基因、解析玉米穗腐病发病机理等方面也是不可或缺的,本研究在筛选出59份高抗种质的同时,也筛选出了14份环境间稳定、农艺性状优良的高感种质(数据未展示),这为玉米穗腐病分子机理的深入研究提供了材料基础。
参考文献
李辉,向葵,张志明,袁广胜,潘光堂.玉米穗腐病抗性机制及抗病育种研究进展.玉米科学,2019,27(4):167-174 [百度学术]
Li H, Xiang K, Zhang Z M, Yuan G S, Pan G T. Research progress of resistance mechanism and breeding for ear rot in maize. Journal of Maize Sciences, 2019,27(4):167-174 [百度学术]
肖淑芹,李国福,路媛媛,马昌广,薛春生,陈捷.玉米镰孢穗腐病发生条件及化学防治效果研究.玉米科学, 2017,25(3):144-147 [百度学术]
Xiao S Q, Li G F, Lu Y Y, Ma C G, Xue C S, Chen J. Study on occurrence condition and chemical control effect of Fusarium ear rot in maize. Journal of Maize Sciences, 2017,25(3):144-147 [百度学术]
Goswami R S, Kistler H C. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 2004,5(6):515-525 [百度学术]
Santiago R, Reid L M, Arnason J T, Zhu X Y, Martinez N, Malvar R A. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Journal of Agricultural and Food Chemistry, 2007,55(13):5186-5193 [百度学术]
Atlin G N, Enerson P M, Mcgirr L G, Hunter R B. Gibberella ear rot development and zearalenone and vomitoxin production as affected by maize genotype and Gibberella zeae strain. Canadian Journal of Plant Science, 1983,63(4):847-853 [百度学术]
程璐,陈家斌,张艺璇,杨丹丹,谭静.两种优势病原菌玉米穗腐病的研究比较.云南大学学报:自然科学版,2022,44(3):647-654 [百度学术]
Cheng L, Chen J B, Zhang Y X, Yang D D, Tan J. Comparison of two dominant pathogens on ear rot of maize. Journal of Yunnan University: Natural Science Edition, 2022,44(3):647-654 [百度学术]
Gelderblom W, Cawood M, Snyman S, Marasas W. Fumonisin B1 dosimetry in relation to cancer initiation in rat liver. Carcinogenesis, 1994,15(2):209 [百度学术]
Krska R, Baumgartner S, Josephs R. The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius Journal of Analytical Chemistry, 2001,371(3):285 [百度学术]
Dong W M, Azconaolivera J I, Brooks K H, Linz J E, Pestka J J. Elevated gene expression and production of interleukins 2, 4, 5, and 6 during exposure to vomitoxin (deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicology & Applied Pharmacology, 1994,127(2):282 [百度学术]
商鸿生.玉米高粱谷子病虫害诊断与防治原色图谱.北京:北京金盾出版社,2005:93-96 [百度学术]
Shang H S. Primary color map for diagnosis and control of diseases and insect pests of maize and Sorghum.Beijing: Beijing Jindun Publishers, 2005:93-96 [百度学术]
凡卓,庄训宇,刘焱昆,刘庆强,施艳,李宇,袁虹霞,李洪连.玉米新品种对3种主要病害的抗性鉴定与评价.河南科学,2023,41(9):1292-1299 [百度学术]
Fan Z, Zhuang X Y, Liu Y K, Liu Q Q, Shi Y, Li Y, Yuan H X, Li H L. Identification and evaluation of resistance of new maize varieties to three major diseases. Henan Science, 2023,41(9):1292-1299 [百度学术]
段灿星,王晓鸣,武小菲,杨知还,宋凤景,赵立萍,孙素丽,朱振东.玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析.植物遗传资源学报,2015,16(5):947-954 [百度学术]
Duan C X, Wang X M, Wu X F, Yang Z H, Song F J, Zhao L P, Sun S L, Zhu Z D. Analysis of maize accessions resistance to Pythium stalk rot and Fusarium ear rot. Journal of Plant Genetic Resources, 2015,16(5):947-954 [百度学术]
Chen J, Shrestha R, Ding J, Zheng H, Mu C, Wu J, Mahuku G. Genome-wide association atudy and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3: Genes|Genomes|Genetics, 2016,6(12):3803-3815 [百度学术]
Santiago R, Reid L M, Zhu X, Butrón A, Malvar R A. Gibberella stalk rot (Fusarium graminearum) resistance of maize inbreds and their F1 hybrids and their potential for use in resistance breeding programs. Plant Breeding, 2010,129(4):454-456 [百度学术]
苏爱国,王帅帅,段赛茹,张如养,邢锦丰,杨扬,宋伟,赵久然.玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定.植物遗传资源学报,2021,22(4):971-978 [百度学术]
Su A G, Wang S S, Duan S R, Zhang R Y, Xing J F, Yang Y, Song W, Zhao J R. Identification for ear rot resistance against Fusarium graminearum in maize germplasm. Journal of Plant Genetic Resources, 2021,22(4):971-978 [百度学术]
何玥,郭爽,王栋,聂蕾,涂亮,刘鹏飞,郭向阳,王安贵,祝云芳,吴迅,陈泽辉.玉米地方种质资源对禾谷镰孢菌穗腐病的抗性评价.耕作与栽培,2023,43(5):1-5 [百度学术]
He Y, Guo S, Wang D, Nie L, Tu L, Liu P F, Guo X Y, Wang A G, Zhu Y F, Wu X, Chen Z H. Identification for ear rot resistance against Fusarium graminearum in maize landrace germplasm. Tillage and Cultivation, 2023,43(5):1-5 [百度学术]
董华芳,宋伟彬,代小冬,李晶晶,刘春元,吴建宇.玉米穗部不同组织对串珠镰刀菌和禾谷镰刀菌的抗性研究.玉米科学,2006,14(4):141-144 [百度学术]
Dong H F, Song W B, Dai X D, Li J J, Liu C Y, Wu J Y. Resistance of different tissues of maizeear to Fusarium moniliforme and Fusarium graminearum. Journal of Maize Sciences, 2006,14(4):141-144 [百度学术]
夏玉生,郭成,温胜慧,孙素丽,朱振东,段灿星.玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析.植物遗传资源学报,2022,23(1):61-71 [百度学术]
Xia Y S, Guo C, Wen S H, Sun S L, Zhu Z D, Duan C X. Identification of maize germplasm resistant to Fusarium ear rot and Gibberella ear rot and genetic diversity analysis of resistant lines.Journal of Plant Genetic Resources, 2022,23(1):61-71 [百度学术]
段灿星,崔丽娜,夏玉生,董怀玉,杨知还,胡清玉,孙素丽,李晓,朱振东,王晓鸣.玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析.作物学报,2022,48(9):2155-2167 [百度学术]
Duan C X, Cui L N, Xia Y S, Dong H Y, Yang Z H, Hu Q Y, Sun S L, Li X, Zhu Z D, Wang X M. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agronomica Sinica, 2022,48(9):2155-2167 [百度学术]
张鹏,管俊娇,黄清梅,杨晓洪,康祝科.基于SNP芯片的云南玉米自交系遗传多样性和群体遗传结构分析.南方农业学报, 2020,51(9):2082-2089 [百度学术]
Zhang P, Guan J J, Huang Q M, Yang X H, Kang Z K. Genetic diversity and population genetic structure analysis of maize inbred lines in Yunnan province based on SNP chip. Journal of Southern Agriculture, 2020,51(9):2082-2089 [百度学术]
Xu Y F, Zhang Z R, Lu P, Li R Q, Ma P P, Wu J Y, Li T.Increasing Fusarium verticillioides resistance in maize by genomics-assisted breeding: Methods, progress, and prospects.The Crop Journal, 2023,11(6):1626-1641 [百度学术]
Tahat M, Aldakil H, Alananbeh K, Salem N. First report of Fusarium verticillioides causing Fusarium ear rot of corn in Jordan. Plant Disease,2023,107:1632 [百度学术]
Giomi G, Kreff E, Iglesias J, Fauguel C, Fernandez M, Oviedo M, Presello D. Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm. Euphytica,2016,211:287-294 [百度学术]
Guo Z, Zou C, Liu X, Wang S H, Xu Y B. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Disease, 2020,104(6):1725-1735 [百度学术]