摘要
我国盐碱地分布广、面积大,是重要的后备耕地资源、粮食增产的“潜在粮仓”。挖掘负调控大豆耐混合盐碱性的基因,通过基因敲除创制耐混合盐碱大豆新品种,是合理开发利用盐碱地,提高我国大豆产量的有效途径之一。课题组前期筛选到1个混合盐碱胁迫下调表达的基因Glyma.02g271000(GmDUF247-1)。其编码的GmDUF247-1蛋白包含1个DUF247结构域和1个跨膜结构域,利用烟草叶片瞬时表达发现GmDUF247-1-GFP融合蛋白定位在细胞膜上。荧光定量PCR显示,GmDUF247-1基因在大豆根中表达量最高,在混合盐碱处理下显著下调。为研究GmDUF247-1在大豆混合盐碱胁迫下的功能,利用大豆毛状根系统过表达GmDUF247-1基因,发现混合盐碱胁迫处理后,GmDUF247-1过表达大豆毛状根复合植株叶片萎蔫程度明显高于空载体对照,存活率、根长和株高显著低于对照。对GmDUF247-1基因在大豆自然群体中的单倍型分析发现,其启动子区有8个SNPs和4个InDels,可能导致与逆境应答和生长发育相关的转录因子识别元件序列发生改变;CDS区存在3种单倍型,GmDUF247-
盐碱土含有较多的水溶性盐或碱性物质,土壤板结,透水透气性差,影响土壤中功能微生物活性和组成,导致土壤养分利用率、有机质含量和肥力下降,阻碍农作物生长发育,最终影响产
大豆(Glycine max)是植物蛋白、食用油和动物饲料的重要来
耐盐碱大豆新品种培育的关键是挖掘鉴定可供育种利用的耐盐碱基因资源。国内外研究人员通过正向遗传学,定位和克隆到多个调控大豆耐盐性的关键基因,如正调控大豆耐盐基因GmSALT3(Salt tolerance-associated gene on chromosome 3
随着基因编辑技术的迅速发展和应用,挖掘负调控大豆耐盐碱性的基因,直接通过基因敲除创制耐盐碱大豆新种质,是耐盐碱大豆新品种培育的有效途径。本研究基于前期大豆混合盐碱转录组测序,筛选到1个下调表达基因Glyma.02G271000,包含1个DUF247结构域,命名为GmDUF247-1。DUF(Domain of unknown function)是所有尚未研究清楚功能的结构域统称,DUF247结构域广泛分布在各种植物
大豆品种东农50(DN50)、本氏烟草(Nicotiana benthamiana)、农杆菌菌株GV3101、载体K599、pGreen II-62-SK-GFP和pCAMBIA1300-3FLAG均由本实验室保存;大肠杆菌DH5α菌株购自唯地生物有限公司;限制性内切酶Spe I和EcoR I购自赛默飞世尔科技公司;在生工生物工程有限公司完成测序。
在NCBI(https://www.ncbi.nlm.nih.gov/)检索并下载GmDUF247-1和已报道DUF247(拟南芥AtDUF247-1、黑麦草LpSDUF247、拟南芥DLE1、大麦HvSR1)的氨基酸序列。通过NCBI-CDD(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)和SMART(http://smart.embl.de/index2)网站分析蛋白结构域。利用Clustal X软件进行氨基酸序列比对。
挑选颗粒饱满、大小一致的大豆种子,以蛭石为基质培养至一节期,将根部洗净后液氮研磨成粉末, 利用TRIzol
引物 Primer | 引物序列(5′-3′) Primer sequence (5′-3′) | 用途 Application |
---|---|---|
GmDUF247-1-GFP-F | GGCGGCCGCTCTAGAACTAGTATGGAAGAAACGAAGTGGGTGG | 亚细胞定位载体构建 |
GmDUF247-1-GFP-R | GCCCTTGCTCACCATGAATTCGGGACGAAACCAAGGTCTTGG | |
GmDUF247-1-qF | AGAAACGAAGTGGGTGGTCC | 实时荧光定量PCR |
GmDUF247-1-qR | GCCTTTTGGTTCAACGCAGT | |
SUB-qF | GTGTAATGTTGGATGTGTTCCC | 内参基因 |
SUB-qR | ACACAATTGAGTTCAACACAAACCG | |
GmDUF247-1-F | GGGGTACCATGGAAGAAACGAAGTG | 过表达载体构建 |
GmDUF247-1-R | GGACTAGTGGGACGAAACCAAGGTC | |
pCAMBIA1300-3FLAGR | TCTAGATCTCAGGCGCC | 载体通用引物 |
利用SoyOmics网站(https://ngdc.cncb.ac.cn/soyomics/index)调取GmDUF247-1在大豆不同组织中的表达数据。分别取大豆根(Root)、茎(Stem)、子叶(Cotyledon)、叶芽(Leaf bud)、三出复叶(Leaf 1-3)、2~4周(即分别在第2周、第3周、第4周取样)豆荚(Pod)和种子(seed)、3~10周种子(Seed)等组织,用于GmDUF247-1基因组织表达分析。将大豆种子以蛭石为基质催芽5 d,转移至含有1/4 Hoagland营养液的水培盒中继续培养至一节期,用60 mmol/L混合盐碱(NaCl、Na2CO3、NaHCO3和Na2SO4按摩尔比1∶1∶9∶9混合,pH=8.9)处理大豆幼苗,模拟大庆盐碱土成
采用pCAMBIA1300-3FLAG作为GmDUF247-1植物超量表达载体,该载体含有潮霉素(Hygromycin)植物选择标记基因,以组成型启动子CaMV35s驱动GmDUF247-1基因表达。利用Primer 5.0设计含有酶切位点的基因特异性引物GmDUF247-1-F和GmDUF247-1-R(
通过冻融转化法将重组质粒pCAMBIA1300-GmDUF247-1-3FLAG转入根癌农杆菌GV3101,注射烟草叶片后于第48 h、60 h和72 h取样,提取总蛋白,采用Anti-Flag抗体进行Western blot检测,丽春红染色用于蛋白浓度检测。
通过冻融转化法将重组质粒pCAMBIA1300-GmDUF247-1-3FLAG和空载体质粒pCAMBIA1300-3FLAG分别转入发根农杆菌K599,挑取阳性单菌落活化后收集菌体,使用侵染液(10 mmol/L MgCl2、10 mmol/L MES和150 mmol/L AS)重悬至OD600=1.0。通过发根农杆菌介导的毛状根转化法获得转基因毛状根复合植
利用SoyOmics(https://ngdc.cncb.ac.cn/soyomics/ haplotype/)数据库在3000份大豆种质资源重测序数据中提取GmDUF247-1(SoyZH13_02G248900)基因的SNP/InDel变异数据和对应的品种编
通过SMART和NCBI网站分析GmDUF247-1和已报道DUF247蛋白AtDUF247-

图1 GmDUF247-1和同源蛋白序列比对
Fig.1 Sequence alignment of GmDUF247-1 and homologous proteins
“*”、“· ”以及不同颜色表示氨基酸残基在不同序列中的保守性程度,其中“*”高度保守,“· ”保守性次之
' * ', '·' and ' different colors ' indicate the degree of conservation of amino acid residues in different sequences, among which ' * ' is highly conserved, followed by '·'
GmDUF247-1基因全长2814 bp,CDS全长1380 bp,编码460个氨基酸。将GmDUF247-1 CDS全长构建至pGreenII-62-SK-GFP融合表达载体。利用基因特异引物进行PCR扩增,在Marker条带1500 bp左右出现一条扩增条带,与预期目的片段长度1380 bp相符,说明克隆成功(

图2 GmDUF247-1基因克隆及GmDUF247-1-GFP与AtPIP2A-RFP蛋白共定位分析
Fig. 2 Cloning of GmDUF247-1 and co-localization analysis of GmDUF247-1-GFP with AtPIP2A-RFP
A:GmDUF247-1基因PCR扩增结果,M:DL2000 Marker;1~5:GmDUF247-1基因扩增产物;B:GmDUF247-1-GFP重组载体菌落PCR鉴定;-:阴性H2O对照;+:连接产物对照,1~5:GmDUF247-1-GFP单菌落;C:GmDUF247-1-GFP与AtPIP2A-RFP蛋白在烟草细胞中的共定位
A: PCR amplification of GmDUF247-1 gene; 1-5: GmDUF247-1 PCR amplification product; B: Colony PCR identification of GmDUF247-1-GFP recombinant vector; -: Negative H2O control; +: Ligation product control, 1-5: GmDUF247-1-GFP single colony; C: GmDUF247-1-GFP co-localizes with AtPIP2A-RFP in tobacco leaves; GFP: Green fluorescent protein; RFP: Red fluorescent protein; Bright: Bright field; Merged: Merged image
在SoyOmics网站调取GmDUF247-1基因在大豆不同组织中的转录组数据,发现其在花中表达量最高,其次是萌发期的根(

图3 GmDUF247-1基因在大豆不同组织中的表达模式
Fig.3 Expression pattern of GmDUF247-1 in different tissues of soybean
A:转录组测序数据分析GmDUF247-1基因在大豆不同组织的表达;B:qRT-PCR验证GmDUF247-1基因的组织表达模式;图中不同字母表示差异显著(P<0.05);下同
A: Expression pattern of GmDUF247-1 in different tissues of soybean based on RNA-seq data; B: qRT-PCR assays of the tissue expression pattern of GmDUF247-1 in different tissues of soybean;Different letters in the figure indicate significant differences (P<0.05);The same as below
本研究对GmDUF247-1基因在60 mmol/L混合盐碱(NaCl∶Na2SO4∶NaHCO3∶Na2CO3按摩尔比1∶9∶9∶1配制,pH=8.9)处理下的表达量进行分析。结果显示在混合盐碱处理1 h时,GmDUF247-1基因的表达量显著下降至未处理时的0.2倍,并且这种下调表达趋势一直持续到胁迫处理的6 h(

图4 GmDUF247-1基因在混合盐碱胁迫下的表达模式
Fig. 4 Expression pattern of GmDUF247-1 under mixed salt-alkaline treatment
为验证GmDUF247-1基因在盐碱胁迫应答中的功能,以pGreenII-GmDUF247-1-GFP质粒为模板,克隆GmDUF247-1基因CDS区并构建到植物表达载体pCAMBIA1300-3FLAG(

图5 GmDUF247-1基因过表达载体构建和表达检测
Fig. 5 Construction of GmDUF247-1 overexpression vector and detection of GmDUF247-1-3FLAG protein expression
A:GmDUF247-1-3FLAG载体菌落PCR鉴定;-:阴性H2O对照;+:pGreen II-GmDUF247-1-GFP质粒;2:GmDUF247-1-3FLAG单菌落;B:GmDUF247-1-3FLAG蛋白在烟草叶片中的表达检测,Anti-FLAG:采用Anti-FLAG抗体Western Blot检测GmDUF247-1蛋白表达;Rubisco:丽春红染色确认总蛋白含量;+:CHYR16-3FLAG蛋白;WT:未注射的烟草叶片总蛋白;48 h、60 h、72 h:注射不同时间点的烟草叶片总蛋白
A: Colony PCR identification of GmDUF247-1-3FLAG recombinant vector; -: Negative H2O control; +: pGreen II-GmDUF247-1-GFP; 2: GmDUF247-1-3FLAG single colony; B: Identification of GmDUF247-1 protein expressed in tobacco leaves, Anti-FLAG: Western Blot assays with the anti-FLAG antibody to detect GmDUF247-1-3FLAG protein; Rubisco: Ponceau S staining showing the total protein concentration of different samples; +: CHYR16-3FLAG protein is used as a positive control; WT: Total proteins from un-infiltrated tobacco leaves; 48 h, 60 h, 72 h: Total proteins from infiltrated tobacco leaves at indicated time points
为初步分析GmDUF247-1基因在调控大豆混合盐碱胁迫耐性中的作用,本研究通过根癌农杆菌将空载体(EV,empty vector)和GmDUF247-1-3FLAG侵染大豆子叶节获得大豆毛状根复合植株。由

图6 大豆毛状根复合体植株耐盐碱性分析
Fig.6 Salinity tolerance analysis of soybean hairy root composite plants
A:大豆毛状根复合体植株PCR检测,M:DL2000 marker;-:H2O对照;+:GmDUF247-1-3FLAG质粒;EV:空载体大豆毛状根植株;1~10:过表达GmDUF247-1大豆毛状根植株;B:大豆毛状根复合体植株盐碱处理前后叶片形态和根部形态,对照:0 mmol/L混合盐碱处理,处理:60 mmol/L混合盐碱处理;C、D、E:大豆毛状根60 mmol/L混合盐碱处理下6 d的根长、株高和存活率相对生长量;本实验共计3次生物学重复,每次重复每个处理每个载体设置12个样本,***表示差异极显著(P<0.001)
A: PCR identification of soybean hairy root composite plants, M: DL2000 marker; -: H2O control; +: GmDUF247-1-3FLAG plasmid; EV: Empty vector soybean hairy root plant; 1-10: GmDUF247-1 overexpression soybean hairy root plants; B: Leaf morphology and root morphology of soybean hairy root composite plants before and after saline-alkali treatment, Control: 0 mmol/L mixed salt-alkaline treatment, Treatment: 60 mmol/L mixed salt-alkaline treatment; C,D,E: The relative growth of root length, plant height and survival rate of soybean hairy root composite plants under 60 mmol/L mixed salt-alkaline treatment for 6 days; Three biological replicates were performed with 12 plants from each vector and each treatment. *** indicates significant difference(P<0.001)
将培养4周的大豆毛状根复合植株移至含有1/4 Hoagland营养液中适应1 d,进行0和60 mmol/L混合盐碱处理。如
在SoyOmics数据库检索3000份大豆种质中GmDUF247-1基因5′UTR前2000 bp启动子区和CDS区单倍型。发现GmDUF247-1启动子存在8个SNPs和4个InDels变异导致bHLH、NAC、CPP、MIKC-MADS等转录因子识别的元件序列发生改变(

图7 GmDUF247-1基因在大豆种质中单倍型分析
Fig.7 Haplotype analysis of GmDUF247-1 in soybean germplasms
A:GmDUF247-1启动子区单倍型分析,bHLH:碱性螺旋―环―螺旋转录因子,Dof:单锌指结构蛋白,MYB(v-mybavian myeloblastosis viral oncogene homolog),ERF:乙烯响应因子,TALE:转录激活因子类效应因子,CPP:富含半胱氨酸的多梳样蛋白,MIKC_MADS:MIKC型MADS盒转录因子,ARF:生长素响应因子;B:GmDUF247-1启动子单倍型分布;C:GmDUF247-1 CDS区单倍型分析;D:GmDUF247-1 CDS单倍型分布
A: GmDUF247-1 promoter region haplotype analysis, bHLH: basic helix-loop-helix, Dof: DNA binding with one finger, MYB: v-mybavian myeloblastosis viral oncogene homolog, ERF: Ethylene response factor, NAC: NAM, ATAF1/2, CUC1/2, TALE: Transcription activator-like effector, C2H2: C2H2-type zinc finger transcription factor, CPP: Cysteine-rich polycomb-like protein, MIKC_MADS: MIKC-type MADS box transcription factor, ARF: Auxin response factor; B: Haplotype distribution in the promoter region of GmDUF247-1; C: Analysis of haplotypes in the CDS region of GmDUF247-1; D: Haplotype distribution in the CDS region of GmDUF247-1
GmDUF247-1基因外显子处发生2个非同义突变,形成3种不同单倍型(
国内外研究人员已挖掘到多个负调控大豆耐盐性基因GmCDF
研究发现含有DUF247结构域的大麦根部特异性基因HvSR1(Salt responsive gene 1
基因序列的多态性导致物种遗传的多样性,是作物改良的关键,其中单碱基的改变是较为常见的遗传变
参考文献
董红云, 朱振林, 李新华, 杨丽萍, 张正. 山东省盐碱地分布、改良利用现状与治理成效潜力分析. 山东农业科学, 2017, 49(5): 134-139 [百度学术]
Dong H Y, Zhu Z L, Li X H, Yang L P, Zhang Z. Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong province. Shandong Agricultural Sciences, 2017, 49(5): 134-139 [百度学术]
王世平, 陈月, 潘大伟, 薛文多, 周雷, 赵娜, 巩宗强, 张晓蓉. 盐碱地治理研究综述: 现状、问题与对策. 化工矿物与加工, 2023, 52(11): 59-68 [百度学术]
Wang S P, Chen Y, Pan D W, Xue W D, Zhou L, Zhao N, Gong Z Q, Zhang X R. Review on salt marshes management: Status, problems and counter measures. Industrial Minerals and Processing, 2023, 52(11): 59-68 [百度学术]
杨久涛, 孙红滨, 王桂峰, 汪丽, 邢晓飞, 杨武杰. 山东盐碱地农业综合开发利用现状与展望. 中国农业综合开发, 2023, (6): 7-12 [百度学术]
Yang J T, Sun H B, Wang G F, Wang L, Xing X F, Yang W J. Current situation and prospect of comprehensive agricultural development and utilization of saline and alkaline land in Shandong province. China Comprehensive Agricultural Development, 2023, (6): 7-12 [百度学术]
Liu L L, Wang B S. Protection of halophytes and their uses for cultivation of saline-alkali soil in China. Biology: Basel, 2021, 10(5): 353 [百度学术]
韩毅强, 高亚梅, 杜艳丽, 张玉先, 杜吉到, 张文慧, 潘绍玉. 大豆耐盐碱种质资源鉴定. 中国油料作物学报, 2021, 43(6): 1016-1024 [百度学术]
Han Y Q, Gao Y M, Du Y L, Zhang Y X, Du J D, Zhang W H, Pan S Y. Identification of saline-alkali tolerant germplasm resources of soybean during the whole growth stage. Chinese Journal of Oil Crop Sciences, 2021, 43(6): 1016-1024 [百度学术]
Sun S L, Liu X, Zhang T L, Yang H, Yu B J. Functional characterisation of the transcription factor GsWRKY23 gene from Glycine soja in overexpressed soybean composite plants and Arabidopsis under salt stress. Plants: Basel, 2023, 12(17): 3030 [百度学术]
Phang T H, Shao G, Lam H M. Salt tolerance in soybean. Journal of Integrative Plant Biology, 2008, 50(10): 1196-1212 [百度学术]
胡壮壮, 王路路, 姜雪冰, 尹毛珠, 姜磊, 李进步, 沈维良. 我国大豆产业发展现状分析及对策. 大豆科技, 2023, (4): 1-11 [百度学术]
Hu Z Z, Wang L L, Jiang X B, Yin M Z, Jiang L, Li J B, Shen W L. Analysis and countermeasure of soybean industry development status in China. Soybean Science and Technology, 2023, (4): 1-11 [百度学术]
Guan R X, Qu Y, Guo Y, Yu L L, Liu Y, Jiang J H, Chen J G, Ren Y L, Liu G Y, Tian L G, Jin L, Liu Z X, Hong H L, Chang R Z, Gilliham M, Qiu L J. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. The Plant Journal, 2014, 80(6): 937-950 [百度学术]
Liu Y, Yu L L, Qu Y, Chen J J, Liu X X, Hong H L, Liu Z X, Chang R Z, Gilliham M, Qiu L J, Guan R X. GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf C
Li Y, Ye H, Vuong T D, Zhou L J, Do T D, Chhapekar S S, Zhao W Q, Li B, Jin T, Gu J B, Li C, Chen Y H, Li Y, Wang Z Y, Nguyen H T. A novel natural variation in the promoter of GmCHX1 regulates the conditional gene expression to improve salt tolerance in soybean. Journal of Experimental Botany, 2023: erad404 [百度学术]
Jin T, Sun Y Y, Shan Z, He J B, Wang N, Gai J Y, Li Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. Plant Biotechnology Journal, 2021, 19(6): 1155-1169 [百度学术]
Zhang W, Liao X L, Cui Y M, Ma W Y, Zhang X N, Du H Y, Ma Y J, Ning L H, Wang H, Huang F, Yang H, Kan G Z, Yu D Y. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genetics, 2019, 15(1): e1007798 [百度学术]
杨天瑞. 中间锦鸡儿3个DUF基因的生物信息学分析和CiDUF966-1基因功能分析. 呼和浩特: 内蒙古农业大学, 2018 [百度学术]
Yang T R. Bioinformatic analysis of three DUF genes from caragana intermedia and function characterization of CiDUF966-1. Hohhot: Inner Mongolia Agricultural University, 2018 [百度学术]
Lv P Y, Wan J L, Zhang C T, Hina A, Al Amin G M, Begum N ,Zhao T J. Unraveling the diverse roles of neglected genes containing domains of unknown function (DUFs): Progress and perspective. International Journal of Molecular Sciences, 2023, 24(4): 4187 [百度学术]
白子彧. 大麦盐诱导根系表达基因HvSR1的鉴定及其功能分析专用载体的构建. 天津: 天津农学院, 2016 [百度学术]
Bai Z Y. The roots salt-induced genes HvSR1 identification in barley and construction of vector specially used in gene function analysis. Tianjin: Tianjin Agricultural University, 2016 [百度学术]
周敏, 付金娥, 韦树根, 潘丽梅. 青蒿不同部位总RNA提取方法比较. 江苏农业科学, 2017, 45: 31-33 [百度学术]
Zhou M, Fu J E, Wei S G, Pan L M. Comparison of total RNA extraction methods from different parts of Artemisia annua. Jiangsu Agricultural Sciences 2017, 45: 31-33 [百度学术]
Jia B W, Wang Y, Zhang D J, Li W H, Cui H L, Jin J, Cai X X, Shen Y, Wu S Y, Guo Y X, Sun M Z, Sun X L. Genome-wide identification, characterization and expression analysis of soybean CHYR gene family. International Journal of Molecular Sciences, 2021, 22(22): 12192 [百度学术]
Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Analytical Biochemistry, 2008, 379(1): 127-129 [百度学术]
Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols, 2007, 2(4): 948-952 [百度学术]
Wei P P, Wang L C, Liu A L, Yu B J, Lam H M. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Frontiers in Plant Science, 2016, 7: 1082 [百度学术]
Liu L, Wang J B, Zhang Q, Sun T T, Wang P W. Cloning of the soybean GmNHL1 gene and functional analysis under salt stress. Plants: Basel, 2023, 12(22): 3869 [百度学术]
魏胜华, 孟娜. 改良CTAB法提取大戟属药用植物叶片总DNA试验. 湖北农业科学, 2011, 50: 3418-3420 [百度学术]
Wei S H, Meng N. A modified CTAB method for total DNA extraction from the medicinal herb leaves of Euphorbia Linn. Hubei Agricultural Sciences, 2011, 50: 3418-3420 [百度学术]
Xu C J, Shan J M, Liu T M, Wang Q, Ji Y J, Zhang Y T, Wang M Y, Xia N, Zhao L. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiology, 2023, 191(4): 2427-2446 [百度学术]
Liu Y C, Zhang Y, Liu X N, Shen Y T, Tian D M, Yang X Y, Liu S L, Ni L B, Zhang Z, Song S H, Tian Z X. SoyOmics: A deeply integrated database on soybean multi-omics. Molecular Plant, 2023, 16(5): 794-797 [百度学术]
Wannitikul P, Wattana-Amorn P, Sathitnaitham S, Sakulkoo J, Suttangkakul A, Wonnapinij P, Bassel G W, Simister R, Gomez L D ,Vuttipongchaikij S. Disruption of a DUF247 containing protein alters cell wall polysaccharides and reduces growth in Arabidopsis. Plants: Basel, 2023, 12(10): 1977 [百度学术]
Rohner M, Manzanares C, Yates S, Thorogood D, Copetti D, Lübberstedt T, Asp T, Studer B. Fine-mapping and comparative genomic analysis reveal the gene composition at the S and Z self-incompatibility loci in grasses. Molecular Biology and Evolution, 2023, 40(1): msac259 [百度学术]
Kondou Y, Noguchi K, Kutsuna S, Kawashima M, Yoneda A, Ishibashi M, Muto S, Ichikawa T, Nakazawa M, Matsui M. Overexpression of DWARF AND LESION FORMATION 1 (DLE1) causes altered activation of plant defense system in Arabidopsis thaliana. Plant Biotechnology, 2013, 30(4): 385-392 [百度学术]
He Y X, Yang X D, Xu C, Guo D Q, Niu L, Wang Y, Li J W, Yan F, Wang Q Y. Overexpression of a novel transcriptional repressor GmMYB3a negatively regulates salt-alkali tolerance and stress-related genes in soybean. Biochemical and Biophysical Research Communications, 2018, 498(3): 586-591 [百度学术]
Li L, Zhu Z, Liu J, Zhang Y, Lu Y, Zhao J M, Han X, Guo N. Transcription factor GmERF105 negatively regulates salt stress tolerance in Arabidopsis thaliana. Plants: Basel, 2023, 12(16): 3007 [百度学术]
Leung H S, Chan L Y, Law C H, Li M W, Lam H M. Twenty years of mining salt tolerance genes in soybean. Molecular Breeding, 2023, 43(6): 45 [百度学术]
Qu Y, Guan R X, Bose J, Henderson S W, Wege S, Qiu L J, Gilliham M. Soybean CHX-type ion transport protein GmSALT3 confers leaf N
Cai X X, Jia B W, Sun M Z, Sun X L. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Frontiers in Plant Science, 2022, 13: 1002302 [百度学术]
Li J W, Sun M Z, Liu Y, Sun X L, Yin D K. Genome-wide identification of wild soybean mitochondrial calcium uniporter family genes and their responses to cold and carbonate alkaline stresses. Frontiers in Plant Science, 2022, 13: 867503 [百度学术]
Cao Y X, Wang J, Zhao S Q, Fang Q X, Ruan J W, Li S L, Liu T X, Qi Y X, Zhang L, Zhang X M, Meng F L. Overexpression of the aldehyde dehydrogenase AhALDH3H1 from Arachis hypogaea in soybean increases saline-alkali stress tolerance. Frontiers in Plant Science, 2023, 14: 1165384 [百度学术]
Saini H, Thakur R, Gill R, Tyagi K, Goswami M. CRISPR/Cas9-gene editing approaches in plant breeding. GM Crops & Food-Biotechnology in Agriculture and the Food Chain, 2023, 14(1): 1-17 [百度学术]
Cao L, Yu Y, DuanMu H Z, Chen C, Duan X B, Zhu P H, Chen R R, Li Q, Zhu Y M, Ding X D. A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC Plant Biology, 2016, 16(1): 184 [百度学术]
Pisias M T, Bakala H S, McAlvay A C, Mabry M E, Birchler J A, Yang B, Pires J C. Prospects of feral crop de novo redomestication. Plant Cell Physiology, 2022, 63(11): 1641-1653 [百度学术]
Li F F, Chen G P, Xie Q L, Zhou S G, Hu Z L. Down-regulation of SlGT-26 gene confers dwarf plants and enhances drought and salt stress resistance in tomato. Plant Physiology and Biochemistry, 2023, 203: 108053 [百度学术]
Li F F, Chen X Y, Zhou S G, Xie Q L, Wang Y S, Xiang X X, Hu Z L, Chen G P. Overexpression of SlMBP22 in tomato affects plant growth and enhances tolerance to drought stress. Plant Science, 2020, 301: 110672 [百度学术]
Cheng Q, Gan Z R, Wang Y P, Lu S J, Hou Z H, Li H Y, Xiang H T, Liu B H, Kong F J, Dong L D. The soybean gene J contributes to salt stress tolerance by pup-regulating salt-responsive genes. Frontiers in Plant Science, 2020, 11: 272 [百度学术]