摘要
花作为被子植物的繁殖器官,是植物的重要组成部分,也是研究植物进化、分类的重要依据。花器官的发育受到外部环境和内部生理等多种因素的影响,不同物种或同一物种间出现不同的性状,基因作为其中的关键因子,在整个过程中发挥着重要作用,其在花发育调控中的作用一直都是大家研究的热点。花器官的花萼、花冠、雄蕊、雌蕊、胚珠五轮结构分别受到AE花发育模型中A、B、C、D、E五类基因的调控,这些基因在花器官发育过程中形成了一个复杂的基因调控网络。各类基因的表达或沉默均会导致花器官的结构发生改变,但不同的物种之间又存在差异。本研究综述了MADS-box、AP2/ERF基因家族相关成员AP1、AP2、AP3、PI、AG、SEP、AGL6、SHP、STK及其他基因NAP、SPL、TGA、PAN、WOX等在花器官建成中的调控作用,从分子水平解析了基因在花器官发育中的影响,为进一步深入了解基因在各植物花器官发育调控中的作用提供参考。
花作为种子植物特有的繁殖器官,是植物重要的组成部分,决定植物是否能形成果实和种子。完整的花由花萼、花冠、雄蕊、雌蕊、胚珠五轮结构组成,但杜仲、垂柳等部分植物的花却只有雄蕊或雌蕊,雪球荚蒾只有花萼和花瓣,桑树则没有花
花器官发育模型最先是在20世纪90年代初,由Coen

图1 植物的花发育ABCDE模型及四聚体模
Fig.1 ABCDE model and tetramerization model of flower development in plant
基因类型 Gene classes | 基因成员 Gene members | 主要功能 Main features | 突变体表型 Mutant phenotype |
---|---|---|---|
A类 Class A | AP1 | 决定花分生组织的形成及萼片、花瓣花器官原基的发生 | 强突变体萼片不发育或转化成叶状,中、弱突变体花瓣常退化为叶、雄蕊和心皮的特征 |
A类 Class A | AP2 | 与AP1一起决定萼片和花瓣两轮花器官原基的发生 | 由外向内出现心皮-雄蕊-雌蕊-心皮的四轮花器官结构 |
B类 Class B | AP3、PI | AP3和PI共同调控花瓣和雄蕊的发育 | 花瓣和雄蕊分别转化成萼片和心皮,强AP3突变体会出现一个扩大的中央雄蕊,无花瓣结构 |
C类 Class C | AG | 调控雄蕊和心皮发育 | 花变成萼片-花瓣-花瓣-萼片-萼片的五轮结构,部分植物胚珠突变成一朵只有花瓣的小花 |
D类 Class D | STK、SHP1/2 | 调控胚珠发育 | 花变成萼片-花瓣-雄蕊-雌蕊结构,部分胚珠退化成叶状或心皮状 |
E类 Class E | SEP1/2/3/4 | 花器官发育辅助因子,参与五轮花器官的发育 | sep1sep2sep3sep4四突变体使得花的五轮结构都变成叶状结构,sep1sep2 sep3三突变体则出现五轮结构转变为萼片 |
A类基因主要包括AP1和AP2。AP1作为MADS-box家族中的A类基因,既是花分生组织的特征基因,又是花器官形态特征基因,在花器官发育过程中与AP2基因相互作用可使萼片和花瓣特异化,同时还能激活B类基因,其编码的蛋白属于转录激活因子,通过与特定的DNA序列相结合来调控基因的表
物种 Species | 功能描述 Function description | 参考文献 Reference |
---|---|---|
月季 Rosa chinensis | RcAP1基因使花序分生组织向花分生组织转变,使其提前开花,在花器官发育中调控萼片的形成 |
[ |
山茶Camellia japonica L. | CjAP2参与萼片瓣化过程,导致山茶花出现重瓣现象 |
[ |
矮牵牛Petunia hybrida (Hook.) E. Vilm. | 转基因矮牵牛R0 代植株表现出提前且持续不断开花的特性 |
[ |
苹果、兰花 Malus pumila Mill.、Cymbidium ssp. | 苹果MdMADS2和兰花OMADS1基因转入烟草中均使烟草出现提前开花、花器官发生变化的现象 |
[ |
大豆Glycine max (L.) Merr. | 烟草中过表达大豆GmAP1基因可促进烟草提早开花,并参与花器官的特化,影响花分生组织的形成 |
[ |
拟南芥Arabidopsis thaliana | CtMADS24过表达导致部分花发育特征基因上调表达,从而缩短开花时间,而沉默株系开花时间明显延迟 |
[ |
麝香百合Lilium longiflorum Thumb. | LMADS5、LMADS6、LMADS7 3个基因过表达均会使植株提前开花,同源异型转化表现出萼片心皮化、花瓣雄蕊化 |
[ |
白桦Betula platyphylla Suk | BpAP1基因过表达会使白桦出现早花现象, 且影响许多开花相关基因的表达及二萜化合物的合成;遗传了BpAP1基因的白桦子代仍然呈现出提前开花结实的表型,转BpAP1基因的烟草也出现早花性状 |
[ |
梅花Prunus mume | 将 PmAG 超量表达载体转入野生型拟南芥后,转基因植株花瓣和雄蕊退化,花序和荚果出现败育现象 |
[ |
草莓Fragaria × ananassa Duch. | 转基因株系早花明显,花器官异常,不能形成种子;同时营养生长受到抑制,出现植株个体矮小,莲座叶数目减少 |
[ |
欧洲慈姑Sagittaria sagittifolia L. | SsAP2过量表达使欧洲慈姑开花时间延迟、花瓣数量增加 |
[ |
挪威云杉Picea abies | PaAPETALA2-LIKE2(AP2L2)过量表达导致拟南芥雌蕊和雄蕊数目增加,并推迟开花时间,在拟南芥ap1突变体中可决定花瓣特征。在矮牵牛中的表达信号强度在苞叶、萼片、花瓣、子房壁等器官外层中的表达随着器官成熟逐渐降低,具有时空性 |
[ |
AP3、PI作为MADS-box家族中的B类基因,是编码花发育的重要调控因子,在花的雄蕊、花瓣发育过程中发挥着重要作用。AP3基因的启动子为花器官特异表达的启动子,在花瓣和雄蕊细胞形成过程中具有重要意
物种 Species | 功能描述 Function description | 参考文献 Reference |
---|---|---|
拟南芥 Arabidopsis thaliana | 将拟南芥PI基因AtPI转移到烟草,烟草的花器官明显出现花冠变小、雄蕊变短、果实和子房异常等现象 |
[ |
金丝楸Catalpa bungei C. A. Mey | PI基因CabuPI 转移到拟南芥中,转35S:CabuPI基因的拟南芥产生了正常的花瓣和不同数量的雄蕊 |
[ |
五峰玉兰 Magnolia wufengensis L. Y. Ma et L. R. Wang | MAwuPI 基因仅在花被片和雄蕊中表达,参与五峰玉兰雄蕊发育,该基因在拟南芥pi-1突变体中异位表达可使第三轮花器官呈现花丝状 |
[ |
惠兰Cymbidium faberi Rolfe | HoPI在所有花器官中广泛表达,并能恢复拟南芥pi-1突变体的雄蕊和花瓣发育,但不能恢复雄蕊上花药的发育 |
[ |
麝香百合Lilium longiflorum Thumb. | LMADS8/9的异位表达可以挽救拟南芥pi-1突变体第二轮花瓣的发育,并使部分萼片转化为花瓣状 |
[ |
蝴蝶兰Phalaenopsis aphrodite Rchb. f. | PI-like基因PeMADS6在拟南芥中过表达会导致拟南芥萼片向花瓣转化 |
[ |
苹果Malus pumila Mill. | MdPI的过表达也出现萼片转化为花瓣的现象,野生型苹果花药的长度与柱头的长度相似,而转基因苹果表现出花药长是柱头长度的1/2 |
[ |
荞麦Fagopyrum esculentum Moench | 荞麦AP3基因FaesAP3在拟南芥中过表达时,植株外轮短雄蕊变为花瓣状,内轮长雄蕊出现花丝状 |
[ |
蒺藜苜蓿Medicago truncatula | 降低MtNMH7(RNAi-MtNMH7)的表达量会导致植株出现轻微的花瓣形状缺陷和雄蕊心皮样等现象,MtTomato MADS6(TM6)表达量的减少则会导致部分雄蕊分化为花药和花丝,但不会产生花粉粒,当MtTM6完全丧失表达时,出现所有花药完全转化为心皮的现象 |
[ |
芸薹属植物Brassica L. Plants | AP3基因,该基因功能的丧失也出现雄蕊向心皮转化的趋势 |
[ |
枇杷Eriobotrya japonica (Thunb.) Lindl. | 将EjAP3突变体导入拟南芥中时,转基因植株出现花瓣变窄和雄蕊变绿的异常性状 |
[ |
AG作为MIK
物种 Species | 功能描述 Function description | 参考文献 Reference |
---|---|---|
玫瑰Rosa ssp. | 沉默玫瑰中AG的同源基因RhAG以及低温都会增加花瓣数量,限制重瓣玫瑰RhAG的表达也得到了重瓣的玫瑰花 |
[ |
月季Rosa chinensis | 重瓣花中RhAG的表达量较单瓣花中低,重瓣花中RhAG的表达域收缩,进而形成花的雄蕊数量减少、花瓣数量增多的现象 |
[ |
仙客来Cyclamen persicum Mill. | 抑制仙客来中AG基因CpAG1的表达时,花朵出现了10片花瓣的半重瓣型,当同时抑制CpAG1/2表达时,出现40片花瓣的重瓣型花朵 |
[ |
金露梅、扶桑 Potentilla fruticosa L.、Hibiscus rosa-sinensis L. | 金露梅和扶桑中也得到C类基因表达范围收缩会导致雄蕊转化成花瓣,从而使花朵出现重瓣现象 |
[ |
豌豆Pisum sativum L. | 沉默豌豆PsAGs基因后,豌豆的花出现雄蕊花瓣化、心皮开裂的表型,而且内生出一朵不完整的小花 |
[ |
菊花Chrysanthemum morifolium Ramat. | 通过敲除CAG1s、CAG2s基因发现,菊花出现多花瓣的表型,管状和舌状花的生殖器官均会转化为管状或舌状的花瓣 |
[ |
梅花Prunus mume | 梅花PmAG参与多个营养器官的生长发育过程,拟南芥中过表达梅花PmAG基因时,转基因的拟南芥植株花瓣变小,雄蕊和雌蕊明显膨大 |
[ |
在花发育AE模型中,D类基因STK及SHP1/2(SHATTERPROOF1/2)主要控制胚珠的发育,胚珠是雌配子体发育的重要结构,受精后产生种
SEP(SEPALLATA)属于AE模型中的E类基因,主要参与调控花萼、花瓣、雄蕊和雌蕊的发育,在拟南芥中,SEP基因SEP1/2/3/4与A、B、C类基因共同调控花瓣、雄蕊和心皮的发
物种 Species | 功能描述 Function description | 参考文献 Reference |
---|---|---|
小麦Triticum aestivum L. | 将小麦的SEP-like基因TaMADS1转移到拟南芥中,拟南芥出现提前开花的现象,而且改变了花器官的发育,如:萼片变成叶、花瓣和柱头的数目减少 |
[ |
拟南芥Arabidopsis thaliana | 拟南芥sep1sep2sep3sep4 四突变体中,4种花器官全部突变为叶状的结构,sep1sep2sep3三突变体则突变为萼片状,但除了AtSEP3的表达出现在花发育的后期外,AtSEP1/2/4均在早期表达。SEP3突变会导致花的雄蕊数量显著减少,雄蕊转化为丝状心皮结构或与心皮融合 |
[ |
甜樱桃Prunus avium (L.) | PavSEP与Pav Short Vegetative Phase(SVP)互作可促进成花转变 |
[ |
黄瓜Cucumis sativus L. | 黄瓜中也得到SEP与SHP基因互作来调控花器官的形成 |
[ |
菘蓝Isatis indigotica Fortune | 菘蓝中IiSEP4可以与IiSVP、IiSHP2、IiFruitfull(FUL)之间互作来调控开花时间和柱头、果实的发育 |
[ |
番茄Solanum lycopersicum L. | 抑制SEP1同源基因Tomato MADS29(TM29)导致番茄雄蕊和花瓣部分转化为萼片 |
[ |
水稻Oryza sativa L. | SEP基因OsMADS5/34可以调控水稻花序的分枝状态 |
[ |
梅花Prunus mume | PmSEP2和PmSEP3参与梅花雄蕊和雌蕊的形成,而PmSEP4和PmSEP1/2之间两两互作,却参与萼片的形成 |
[ |
除了AE花发育模型相关基因外,AGL6、NAP、SPL、TGA、PAN、WOX等基因在花发育中也起到一定的作用。AGL6基因是MADS-box家族的一个分支,参与花分生组织分化、花器官和胚珠的调
Sablowski
PAN是TGA家族中最为独特的一个基因,该基因突变导致拟南芥形成5枚萼片、5枚花瓣的表
花是植物的繁殖器官,花器官形态不仅是植物多样性的体现,也是对环境的适应,不同植物的花器官在生产实践中有不同的优势,如提高观赏价值、增强抗逆性、增加单位面积产量等。近年来,随着分子生物学的快速发展,转录组、基因组、代谢组、蛋白组等多组学研究的不断深入,与花发育调控相关基因的挖掘成为研究的热点,许多与花发育相关的基因被发现并报道。
对于木兰科、毛茛科、杜鹃花科、木犀科、兰科以及蔷薇科等绝大多数观花植物而言,花是观赏的重要部位,花瓣的数量、大小、颜色、形状以及开花的时间直接影响花的观赏价值,通过基因调控研究各观花植物的形态结构及开花时间,根据需求培育观赏价值更高的新品种是观赏性植物研究的重要途径;其次,花发育AE模型的研究表明,不同类型基因的缺失或表达会导致花器官5轮结构之间发生转化,可通过基因调控的方式改变花器官的结构,增加花瓣的数量来提高花的观赏价值。
花作为种子植物特有的繁殖器官,在植物传粉和受精、执行生殖功能中发挥着重要作用,对于大多数粮食、果树等经济作物而言,果实和种子的数量、质量才是价值的体现,而花的数量以及开花的时间决定当年的产量,在花数量得到保障的情况下,花的结构也是植物能否结实的关键,可通过开花相关基因之间的相互转化,增加雄蕊的数量来增加花粉量,提高授粉受精的概率,也可通过基因调控来转化健壮的雌蕊、胚珠,或是增强其在逆境下的耐受性;其次,如今极端天气频繁出现,通过调控开花的时间来躲避逆境或增加抗性也是今后经济作物研究的重要方向。
目前,基因调控花器官发育的功能研究在模式植物中较多,虽然也有很多学者研究了其他植物的相关基因,但应用到生产实践中的相对较少,如何把科研成果从实验室带到生产实践中仍然是科研工作者需要解决的难题。
参考文献
孟雨婷,黄晓晨,侯元同,邱念伟. 花的形态与花发育的ABCDE模型. 生物学杂志, 2017, 34(6): 105-107,115 [百度学术]
Meng Y T, Huang X C, Hou Y T, Qiu N W. The floral morphology and the ABCDE model of floral organ development. Journal of Biology, 2017, 34(6): 105-107,115 [百度学术]
Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37 [百度学术]
Meyerowitz E M. Plants and the logic of development. Genetics, 1997, 145(1): 5-9 [百度学术]
彭洁,刘引,武荣花,冯慧,镡媛,杨一鹏,张华. 重瓣花及其分子机制的研究进展. 中国农学通报, 2023, 39(19): 65-72 [百度学术]
Peng J, Liu Y, Wu R H, Feng H, Chan Y, Yang Y P, Zhang H. Research progress of double flower and its molecular mechanism. Chinese Agricultural Science Bulletin, 2023, 39(19): 65-72 [百度学术]
Colombo L, Franken J, Koetje E, van Went J, Dons H J, Angenent G C, van Tunen A J. The petunia MADS-box gene FBP11 determines ovule identity. Plant Cell, 1995, 7(11): 1859-1868 [百度学术]
Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Münster T, Winter K U, Saedler H. A short history of MADS-box genes in plants. Plant Molecular Biology, 2000, 42(1): 115-149 [百度学术]
Theißen G, Melzer R, Rümpler F. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution. Development, 2016, 143(18): 3259-3271 [百度学术]
何荆洲,范继征,曾艳华,李秀玲,卢家仕,卜朝阳. 蝴蝶兰“大辣椒”APETALA1基因的克隆及表达. 北方园艺,2021, 474(3): 83-90 [百度学术]
He J Z, Fan J Z, Zeng Y H, Li X L, Lu J S, Bu Z Y. Molecular cloningand expression of APETALA1 gene from phalaenopsis ‘Big Chili’. Northern Horticulture, 2021, 474(3): 83-90 [百度学术]
Bendahmane M, Dubois A, Raymond O, Bris M L. Genetics and genomics of flower initiation and development in roses. Journal of Experimental Botany, 2013, 64(4): 847-857 [百度学术]
Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022-2025 [百度学术]
Han Y, Tang A, Wan H, Zhang T, Cheng T, Wang J, Yang W, Pan H, Zhang Q. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Frontiers in Plant Science, 2018, 9: 481 [百度学术]
Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky M F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992, 360: 273-277 [百度学术]
甄妮. 月季A类花器官发育基因的克隆与功能分析. 北京:北京林业大学, 2017 [百度学术]
Zhen N. Isolation and function analysis of class a genes related to flower development in roses. Beijing: Beijing Forestry University, 2017 [百度学术]
孙迎坤. 山茶花MADS-box家族A类和C类基因克隆及功能分析. 北京: 中国林业科学研究院,2013 [百度学术]
Sun Y K. Isolation and function analysis of class A and C genes of MADS-box family from Camellia japonica. Beijing: Chinese Academy of Forestry,2013 [百度学术]
安利忻,刘荣维,陈章良,李毅. 花分生组织决定基因AP1转化矮牵牛的研究. 植物学报, 2001(1): 63-66 [百度学术]
An L X, Liu R W, Chen Z L, Li Y. Studies on petunia hybrida transformed with flower-meristem-identity gene AP1. Acta Botanica Sinica, 2001(1): 63-66 [百度学术]
Sung S K, Yu G H, An G. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology, 1999, 120: 969-978 [百度学术]
Hsu H F, Huang C H, Chou L H, Yang C H. Ectopic expression of an orchid(Oncidium Gower Ramsey)AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiology, 2003, 44: 783-794 [百度学术]
Chi Y, Huang F, Liu H, Yang S, Yu D. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. Journal of Plant Physiology, 2011, 168(18): 2251-2259 [百度学术]
王一非. 红花MADS-box基因家族生物信息学分析及CtMADS24调控功能研究. 长春:吉林农业大学, 2022 [百度学术]
Wang Y F. Bioinformatics analysis and CtMADS24 regulation function of MADS-box gene family in Carthamus tinctorius L. Changchun: Jilin Agricultural University, 2022 [百度学术]
Chen M K, Lin I C, Yang C H. Functional analysis of three lily(Lilium longiflorum)APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiology, 2008, 49: 704-717 [百度学术]
Huang H J,Chen S,Li H Y,Jiang J. Next-generation transcriptome analysis in transgenic birch overexpressing and suppressing APETALA1 sheds lights in reproduction development and diterpenoid biosynthesis. Plant Cell Reports, 2015, 34(9): 1663-1680 [百度学术]
王朔,黄海娇,杨光,姜静,刘桂丰.转基因白桦杂种T1代的生长发育及AP1基因的遗传分析. 北京林业大学学报,2016,38(9):1-7 [百度学术]
Wang S, Huang H J, Yang G, Jiang J, Liu G F. Growth and developmental analysis of T1 generation from BpAP1 transgenic birch. Journal of Beijing Forestry University, 2016,38(9):1-7 [百度学术]
肖晨星. 梅花PmAG基因功能验证和重瓣候选基因的筛选. 武汉:华中农业大学, 2021 [百度学术]
Xiao C X. Functional analysis of Prunus mume PmAG and selection of candidated genes for double flower.Wuhan: Huazhong Agricultural University, 2021 [百度学术]
袁友泉,李超超,许馨月,张志宏,刘月学.草莓FaAP1基因植物表达载体构建及在拟南芥中的超表达. 华中农业大学学报,2015,34(5):13-18 [百度学术]
Yuan Y Q, Li C C, Xu X Y, Zhang Z H, Liu Y X. Constructing FaAP1 expression vector of strawberry and its ectopic-expression in Arabidopsis. Journal of Huazhong Agricultural University, 2015,34(5):13-18 [百度学术]
Gao M, Jiang W, Lin Z, Lin Q, Ye Q, Wang W, Xie Q, He X, Luo C, Chen Q. SMRT and illumina RNA-Seq identifies potential candidate genes related to the double flower phenotype and unveils SsAP2 as a key regulator of the double-flower trait in Sagittaria sagittifolia. International Journal of Molecular Sciences, 2022, 23(4): 2240 [百度学术]
Maes T, Van de Steene N, Zethof J, Karimi M, D′Hauw M, Mares G, Van Montagu M, Gerats T. Petunia Ap2-like genes and their role in flower and seed development. Plant Cell, 2001, 13(2): 229-244 [百度学术]
董姬秀. 荷花APETALA3、LEAFY基因的克隆与表达分析.郑州: 河南农业大学,2014 [百度学术]
Dong J X. Cloning and expression analysis of APETALA3 and LEAFY gene in lotus. Zhengzhou: Henan Agricultural University, 2014 [百度学术]
蒋素华,黄萍,王默霏,梁芳,许申平,崔波.萼脊兰MADS-box基因的克隆及表达载体构建.华北农学报,2017,32(3):65-69 [百度学术]
Jiang S H, Huang P, Wang M F, Liang F, Xu S P, Cui B. Cloning and construction of expression vector of MADS-box gene from Sedirea japonica. Acta Agriculturae Boreali-Sinica, 2017,32(3): 65-69 [百度学术]
Irish V F. Evolution of petal identity. Journal of Experimental Botany, 2009, 60(9): 2517-2527 [百度学术]
刘轶,郑唐春,代丽娟,刘彩霞,王庆娜,曲冠证. 拟南芥AtPAP1基因植物表达载体构建及在烟草中遗传转化分析. 植物生理学报, 2017, 53(7): 1199-1207 [百度学术]
Liu Y, Zheng T C, Dai L J, Liu C X, Wang Q N, Qu G Z. Construction of plant expression vector and genetic transformation analysis of Arabidopsis thaliana AtPAP1 gene in Nicotiana tabacum. Plant Physiology Journal, 2017, 53(7): 1199-1207 [百度学术]
Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J. Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant. Plant Science, 2015, 231: 40-51 [百度学术]
Liu W, Shen X, Liang H, Wang Y, He Z, Zhang D, Chen F. Isolation and functional analysis of PISTILLATA homolog from Magnolia wufengensis. Frontiers in Plant Science, 2018, 9: 1743 [百度学术]
Fei Y, Liu Z X. Isolation and characterization of the PISTILLATA ortholog gene from Cymbidium faberi Rolfe. Agronomy, 2019, 9(8): 425 [百度学术]
Chen M K, Hsieh W P, Yang C H. Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. Journal of Experimental Botany, 2012, 63(2): 941-961 [百度学术]
Tsai W C, Lee P F, Chen H I, Hsiao Y Y, Wei W J, Pan Z J, Chuang M H, Kuoh C S, Chen W H, Chen H H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiology, 2005, 46(7): 1125-1139 [百度学术]
Yao J L, Xu J, Tomes S, Cui W, Luo Z, Deng C, Ireland H S, Schaffer R J, Gleave A P. Ectopic expression of the PISTILLATA homologous MdPI inhibits fruit tissue growth and changes fruit shape in apple . Plant Direct, 2018, 2(4): 15-19 [百度学术]
Fang Z W, Qi R, Li X F, Liu Z X. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant. Gene, 2014, 550(2): 200-206 [百度学术]
Roque E, Serwatowska J, Cruz Rochina M, Wen J, Mysore K S, Yenush L, Beltrán J P, Cañas L A. Functional specialization of duplicated AP3-like genes in Medicago truncatula. Plant Journal, 2013, 73(4): 663-675 [百度学术]
Zhang Y, Wang X, Zhang W, Yu F, Tian J, Li D, Guo A. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes. PLoS ONE, 2011, 6(6): e20930 [百度学术]
Jing D, Chen W, Shi M, Wang D, Xia Y, He Q, Dang J, Guo Q, Liang G. Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant. Biochemical and Biophysical Research Communications, 2020, 523(1): 33-38 [百度学术]
Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346(6279): 35-39 [百度学术]
Sieburth L E, Running M P, Meyerowitz E M. Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell, 1995, 7(8): 1249-1258 [百度学术]
Sage-Ono K, Ozeki Y, Hiyama S. Induction of double flowers in Pharbitis nil using a class-C MADS-box transcription factor with Chimeric REpressor gene-Silencing Technology. Plant Biotechnology (Tokyo, Japan), 2011, 28(2): 153-165 [百度学术]
Ma N, Chen W, Fan T, Tian Y, Zhang S, Zeng D, Li Y. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biology, 2015, 15: 237 [百度学术]
田亚然,范天刚,张钢,李永红. 低温引起月季花朵过度重瓣化关键基因的表达及分析. 热带作物学报, 2016, 37(6): 1147-1154 [百度学术]
Tian Y R, Fan T G, Zhang G, Li Y H. Expression and analysis of key genes of excessive double flowers in rose caused by low temperature. Chinese Journal of Tropical Crops, 2016, 37(6): 1147-1154 [百度学术]
Tanaka Y, Oshima Y, Yamamura T, Sugiyama M, Mitsuda N, Ohtsubo N, Ohme-Takagi M, Terakawa T. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Scientific Reports, 2013, 3: 2641 [百度学术]
Bowman J L. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences, 1997, 22(4): 515-527 [百度学术]
徐雷,宋伟杰,王利琳. 豌豆 AGAMOUS 同源基因功能的初步研究. 科学通报, 2009, 54(20): 3207-3212 [百度学术]
Xu L, Song W J, Wang L L. Preliminary study on the functions of AGAMOUS homologous genes in Pisum sativum. Chinese Science Bulletin, 2009, 54(20): 3207-3212 [百度学术]
Sasaki K, Yoshioka S, Aida R, Ohtsubo N. Production of petaloid phenotype in the reproductive organs of compound flowerheads by the co-suppression of class-C genes in hexaploid Chrysanthemum morifolium. Planta, 2021, 253(5): 100 [百度学术]
Rodríguez-Cazorla E, Ortuño-Miquel S, Candela H, Bailey-Steinitz L J, Yanofsky M F, Martínez-Laborda A, Ripoll J J, Vera A. Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genetics, 2018,14(1):e1007182 [百度学术]
刘志雄,于先泥. 日本晚樱同源异型基因PrseAP3的克隆及其在单瓣与重瓣花中的表达分析. 华中农业大学学报, 2012,31(5): 578-583 [百度学术]
Liu Z X, Yu X N. Cloning and expressing analysis of a floral homeotic gene PrseAP3 from Prunus lannesiana. Journal of Huazhong Agricultural University, 2012,31(5): 578-583 [百度学术]
袁秀云,许申平,张燕,梁芳,蒋素华,牛苏燕,崔波. 蝴蝶兰花发育基因PhSTK的克隆及在突变体中的表达分析. 植物生理学报,2022,58(8): 1565-1574 [百度学术]
Yuan X Y, Xu S P, Zhang Y, Liang F, Jiang S H, Niu S Y, Cui B. Cloning of the floral organ identity gene PhSTK from Phalaenopsis and its expression analysis in floral organ mutants. Plant Physiology Journal, 2022,58(8): 1565-1574 [百度学术]
Dirks-Mulder A, Butôt R, van Schaik P, Wijnands J W, van den Berg R, Krol L, Doebar S, van Kooperen K, de Boer H, Kramer E M, Smets E F, Vos R A, Vrijdaghs A, Gravendeel B. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evolutionary Biology, 2017, 17(1):89 [百度学术]
Chen Y Y, Lee P F, Hsiao Y Y, Wu W L, Pan Z J, Lee Y I, Liu K W, Chen L J, Liu Z J, Tsai W C. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol, 2012, 53(6): 1053-1067 [百度学术]
夏胜应,刘志雄.CygoSTK基因在普通春兰与奇花品种‘天彭牡丹’中的表达比较. 广西植物, 2020,40(4):518-525 [百度学术]
Xia S Y, Liu Z X. Expression comparison of CygoSTK gene in Cymbidium goeringii and abnormal flower variety ‘Tian Peng Mu Dan’. Guihaia, 2020,40(4):518-525 [百度学术]
陶显良. 玉米ZmSTK2基因启动子花粉特异性元件分析及基因对花粉脂质代谢的影响. 沈阳: 沈阳农业大学,2023 [百度学术]
Tao X L. Analysis of pollen specific elements of maize ZmSTK2 gene promoter and its effect on lipid metabolism in late pollen development. Shenyang: Shenyang Agricultural University,2023 [百度学术]
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 2004, 14(21): 1935-1940 [百度学术]
崔荣峰,孟征. 花同源异型MADS-box基因在被子植物中的功能保守性和多样性. 植物学通报, 2007, 24(1): 31-41 [百度学术]
Cui R F, Meng Z. Functional conservation and diversity of floral homeotic MADS-box genes in angiosperms. Chinese Bulletin of Botany, 2007, 24(1): 31-41 [百度学术]
Zhao X Y, Cheng Z J, Zhang X S. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat,causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006, 223(4): 698-707 [百度学术]
Kaufmann K, Muiño J M, Jauregui R, Airoldi C A, Smaczniak C, Krajewski P, Angenent G C, Weigel D. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLOS Biology, 2009, 7(4): e1000090 [百度学术]
Wang J Y, Jiu S T, Xu Y, Ali Sabir I, Wang L, Ma C, Xu W P, Wang S P, Zhang C X. SVP-like gene PavSVP potentially suppressing flowering with PavSEP,PavAP1, and PavJONITLESS in sweet cherries ( Prunus avium L.). Plant Physiology and Biochemistry, 2021, 159: 277-284 [百度学术]
Cheng Z H, Zhuo S B, Liu X F, Che G, Wang Z Y, Gu R, Shen J J, Song W Y, Zhou Z Y, Han D G, Zhang X L. The MADS-box gene CsSHP participates in fruit maturation and floral organ development in cucumber. Frontiers in Plant Science, 2019, 10: 1781 [百度学术]
Pu Z Q, Ma Y Y, Lu M X, Ma Y Q, Xu Z Q. Cloning of a SEPALLATA4-like gene(IiSEP4) in Isatis indigotica Fortune and characterization of its function in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 154: 229-237 [百度学术]
Ampomah-Dwamena C, Morris B A, Sutherland P, Veit B, Yao J L. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiology, 2002, 130: 605-617 [百度学术]
Zhu W W, Yang L, Wu D, Meng Q C, Deng X, Huang G Q, Zhang J, Chen X F, Ferrándiz C, Liang W Q, Dreni L, Zhang D B. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. The New Phytologist, 2022, 233(4): 1682-1700 [百度学术]
Zhou Y Z, Xu Z D, Yong X, Ahmad S, Yang W R, Cheng T R, Wang J, Zhang Q X. SEP-class genes in Prunus mume and their likely role in floral organ development. BMC Plant Biology, 2017, 17(1):10 [百度学术]
Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G, Shan H. Prevalent exon-intron structural changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-box gene subfamilies provide new insights into their evolution. Front Plant Science, 2016, 7: 598 [百度学术]
Ma J, Deng S, Chen L, Jia Z, Sang Z, Zhu Z, Ma L, Chen F. Gene duplication led to divergence of expression patterns, protein-protein interaction patterns and floral development functions of AGL6-like genes in the basal angiosperm Magnolia wufengensis (Magnoliaceae). Tree Physiology, 2019, 39(5): 861-876 [百度学术]
Yu X, Chen G, Guo X, Lu Y, Zhang J, Hu J, Tian S, Hu Z. Silencing SlAGL6, a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal. Plant Cell Reports, 2017, 36(6): 959-969 [百度学术]
Hsu H F, Chen W H, Shen Y H, Hsu W H, Mao W T, Yang C H. Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nature Communications, 2021, 12(1): 902 [百度学术]
Rijpkema A S, Zethof J, Gerats T, Vandenbussche M. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. The Plant Journal, 2009, 60(1): 1-9 [百度学术]
Li B J, Zheng B Q, Wang J Y, Tsai W C, Lu H C, Zou L H, Wan X, Zhang D Y, Qiao H J, Liu Z J, Wang Y. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Communications Biology, 2020, 3(1): 89 [百度学术]
Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli G B, Pezzotti M, Ferrario S, Angenent G C, Gerats T. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. The Plant Cell , 2003, 15(11): 2680-2693 [百度学术]
Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92(1): 93-103 [百度学术]
Kim J J, Lee J H, Kim W, Jung H S, Huijser P, Ahn J H. The micro RNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology, 2012, 159(1): 461-478 [百度学术]
Usami T, Horiguchi G, Yano S, Tsukaya H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development, 2009, 136: 955-964 [百度学术]
Wang Y, Hu Z, Yang Y, Chen X, Chen G. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters. International Journal of Molecular Sciences, 2009, 10(1): 116-132 [百度学术]
Zhang X, Dou L, Pang C, Song M, Wei H, Fan S, Wang C, Yu S. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Molecular Genetics and Genomics, 2015, 290(1): 115-126 [百度学术]
Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. Arabidopsis SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology, 2009, 50(12): 2133-2145 [百度学术]
陈晓博. 参与番茄花柄离区发育的转录因子 SPL3 的基因功能研究. 北京:中国农业科学院, 2010 [百度学术]
Chen X B. Functional study of a transcription factor SQUAMOSA promoter binding protein like 3 in tomato flower abscission zone development. Beijing: Chinese Academy of Agricultural Sciences , 2010 [百度学术]
Chuang C F, Running M, Williams R W, Meyerowitz E M. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes & Development, 1999, 13(3): 334-344 [百度学术]
Hepworth S R, Zhang Y, McKim S, Li X, Haughn G W. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. The Plant Cell, 2005, 17(5): 1434-1448 [百度学术]
Murmu J, Bush M J, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert P R, Zachgo S, Hepworth S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology, 2010, 154(3): 1492-1504 [百度学术]
Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. The Plant Journal, 2005, 44(1): 100-113 [百度学术]
Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, Moreau H, Kreis M, Lecharny A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 2008, 8: 291 [百度学术]
Minh-Thu P T, Kim J S, Chae S, Jun K M, Lee G S, Kim D E, Cheong J J, Song S I, Nahm B H, Kim Y K. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice. Molecules and Cells, 2018, 41(8): 781-798 [百度学术]
Zhang C, Wang J, Wang X, Li C, Ye Z, Zhang J. UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato. Plant Science, 2020, 297: 110523 [百度学术]
Li Z, Liu D, Xia Y, Li Z, Jing D, Du J, Niu N, Ma S, Wang J, Song Y, Yang Z, Zhang G. Identification of the WUSCHEL-related homeobox(WOX)gene family, and interaction and functional analysis of TaWOX9 and TaWUS in wheat. International Journal of Molecular Sciences, 2020, 21(5): 1581 [百度学术]