摘要
非生物胁迫制约了植物的生长和发育,降低作物的产量,严重时导致植物死亡。为了应对非生物胁迫,植物在进化过程中形成了一系列胁迫响应机制,包括肌醇(MI, myo-inositol)代谢途径。肌醇为一类化学性质稳定的极性小分子,植物可通过积累其糖苷类衍生物参与渗透调节途径,从而响应非生物胁迫。肌醇-1-磷酸合酶(MIPS, myo-inositol-1-phosphate synthase)、肌醇单磷酸酶(IMP, inositol monophosphtease)和肌醇加氧酶(MIOX, myo-inositol oxygenase)在肌醇的生物合成或分解过程中发挥作用,它们通过调控植物中肌醇的含量,以及后续一系列复杂的转化途径,参与L-抗坏血酸(L-AsA, L-ascorbic acid)和部分细胞壁多糖的合成,响应盐、干旱、碱和低温等非生物胁迫。本文综述了肌醇的结构、生物学作用、肌醇代谢途径相关酶和肌醇衍生物在植物响应非生物胁迫中的研究进展,并对未来的研究方向进行了展望,旨在为利用肌醇代谢增强植物对非生物胁迫的抗性,培育抗逆植物品种提供理论基础。
植物在生长发育过程中经常受到各种非生物胁迫的损伤,如盐、干旱、碱和低温等,长期非生物胁迫可以引起植物形态结构变化,影响植物体内渗透调节物质(如N
肌醇,即1, 2, 3, 4, 5, 6-六羟基环己烷,分子式C6H12O6,分子量180.16 g/mol,是葡萄糖的同分异构体。1850年,Schere
在植物中,肌醇及其衍生物广泛分布,包括磷脂酰肌醇(PtdIns, phosphatidyl inositol)、肌醇半乳糖苷(Inositol galactoside)、肌醇磷酸盐(InsPs, inositol phosphates)等,植物利用胞质中肌醇及其衍生物的信号转导能力、调节渗透压和保护膜脂等特性作为响应环境胁迫生理机制的因
肌醇的生物合成由Loewus

图1 肌醇的代谢途径
Fig. 1 Metabolic pathway of inositol
A:肌醇的合成分解途径;B:肌醇参与细胞壁合成途径;C:肌醇参与L-抗坏血酸合成途径。→代表物质单向合成,⇔代表物质间可相互转化
A: Inositol synthesis and decomposition pathway; B: Inositol is involved in cell wall synthesis pathway; C: Inositol is involved in L-ascorbic acid synthesis pathway. → represents the unidirectional synthesis of substances, ⇔ indicates that substances can be converted into each other
肌醇通过肌醇加氧酶(MIOX, myo-inositol oxygenase)氧合裂解转化为游离的D-葡萄糖醛酸(D-GlcA, D-glucuronic acid),随后生成不同的代谢物参与植物细胞壁合成和L-抗坏血酸合成。D-葡萄糖醛酸通过葡萄糖醛酸激酶(GlcAK, glucuronokinase)被激活为UDP-葡萄糖醛酸(UDP-GlcA, UDP-glucuronic acid)。UDP-葡萄糖醛酸在复杂的核苷酸糖相互转化途径中,能够生成UDP-D-半乳糖(UDP-D-GalA, UDP-D-galacturonate)或UDP-D-芹菜糖(UDP-D-Api, UDP-D-apiose),二者均为果胶的重要前体聚合
L-抗坏血酸又叫维生素C(Vc, vitamin C),是自然界中一种常见的抗氧化剂。L-抗坏血酸通过调节植物中谷胱甘肽(GSH, glutathione)的氧化还原状态和环境诱导的氧化胁迫,减少植物的氧化应
植物细胞壁是由纤维素、半纤维素、果胶和少量结构蛋白等构成的网状结构,与植物生长发育密切相关,维持细胞的基本形态,为植株提供机械支撑,是植物细胞区别于动物细胞的基本特征之
目前,植物肌醇代谢相关基因在多种非生物胁迫中的作用已经取得了一定的研究进展,如盐、碱、干旱和极端温度等(
基因名称 Gene name | 胁迫类型 Stress type | 表达模式 Expression pattern | 转入植物 Transferred plant | 参考文献 Reference |
---|---|---|---|---|
PeMIPS | 盐 | 上调 | 杨树 |
[ |
SjMIPS | 盐 | 上调 | — |
[ |
MdMIPS1 | 盐、干旱 | 上调 | 拟南芥、苹果 |
[ |
AdMIPS | 盐、干旱 | 上调 | — |
[ |
MfMIPS1 | 盐、干旱、低温 | 上调 | 烟草 |
[ |
CaMIPS2 | 盐、高温 | 上调 | 鹰嘴豆 |
[ |
TaMIPS-D | 低温、高温 | 上调 | 水稻 |
[ |
GhMIOX09 | 盐 | 上调 | — |
[ |
MhMIOX2 | 盐 | 上调 | 杨树、拟南芥 |
[ |
AtMIOX4 | 盐、干旱、低温、高温 | 上调 | 拟南芥 |
[ |
MsMIOX | 盐、盐碱、干旱、寒冷 | 上调 | 紫花苜蓿 |
[ |
GsMIOX1a | 碱 | 上调 | 棉花 |
[ |
GhMIOX04 | 干旱 | 上调 | — |
[ |
OsMIOX | 干旱 | 上调 | 水稻 |
[ |
TaMIOX | 干旱、低温、高温 | 上调 | 拟南芥 |
[ |
GhMIOX03 | 低温 | 上调 | — |
[ |
SlMIOX | 氧化胁迫、失水 | 上调 | 番茄 |
[ |
OsIMP | 低温 | 上调 | 烟草 |
[ |
—表示该基因未进行转基因实验
— indicates that the gene has not been genetically modified
盐胁迫会阻碍种子萌发、生长发育、开花和结果,对植物产生不利影
植物在生长发育的过程中,干旱胁迫会造成渗透胁迫,影响植物吸收水分和矿质营养,导致细胞脱水,改变植物的生理生化平
碱胁迫是制约植物生长发育、影响作物生产力的非生物胁迫之
低温胁迫会抑制植物的生长和发育,破坏细胞膜,甚至导致细胞死
近年来,关于植物肌醇代谢相关基因响应盐、碱、干旱及低温等非生物胁迫的作用已取得一定的进展。关于肌醇-1-磷酸合酶和肌醇加氧酶这两个酶的相关研究报道较多,然而肌醇单磷酸酶作为肌醇合成途径的酶,肌醇单磷酸酶基因在响应非生物胁迫方面功能还没有被深入研究。另外,肌醇代谢相关基因的研究大多是在拟南芥、水稻、烟草等模式植物中开展的,尽管在苹果、杨树、小麦等植物中也取得了一定的进展,包括本课题组发现紫花苜蓿的10个MsMIOX基因在盐、干旱、盐碱和低温胁迫条件均有不同程度的响应,MsMIOX2蛋白可提高酵母细胞和苜蓿毛状根的非生物胁迫耐受性,但是其他重要作物如大豆、玉米等的肌醇-1-磷酸合酶基因、肌醇加氧酶基因以及肌醇单磷酸酶基因等肌醇代谢相关基因在响应非生物胁迫中的功能还有待进一步研究。
肌醇途径是植物L-抗坏血酸合成途径之一,肌醇途径能够有效提高植物体内L-抗坏血酸的合成效率。但部分研究者持有不同态度,认为植物中积累的D-葡萄糖醛酸作为肌醇代谢产物对L-抗坏血酸的合成只起到微弱的作用,植物或许通过其他途径进行主要的L-抗坏血酸合
在各种非生物胁迫下,肌醇通过渗透调节途径调控植物的生理响应研究较多,但其中的具体调控机制仍不完善。肌醇代谢相关基因的应激响应依赖于上游信号的调控,今后可重点从肌醇-1-磷酸合酶基因、肌醇单磷酸酶基因和肌醇加氧酶基因由哪些上游基因调控,并且如何启动信号传导发挥作用,是否与其他蛋白互作以及如何通过植物各种多糖参与渗透调节等方面进一步深入探究和完善。全面解析肌醇分子调控机制,明确肌醇代谢相关基因响应非生物胁迫的机理,可为后续解析植物抗逆的生物学功能提供理论基础,为作物遗传改良提供新的思路。
参考文献
Zhou X, Xiang Y, Li C, Yu G. Modulatory role of reactive oxygen species in root development in model plant of Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11(9): 485932 [百度学术]
赵晶晶, 周浓, 曹鸣宇. 非生物胁迫下植物体内丙酮醛代谢的研究进展. 中国农业科学, 2021, 54(8): 1627-1637 [百度学术]
Zhao J J, Zhou N, Cao M Y. Research progress of pyruvaldehyde metabolism in plants under abiotic stress. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637 [百度学术]
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269 [百度学术]
Zheng S, Wei P, Huang L, Cai J, Xu Z. Efficient expression of myo-inositol oxygenase in Escherichia coli and application for conversion of myo-inositol to glucuronic acid. Food Science and Biotechnology, 2014, 23(2): 445-450 [百度学术]
Vilchez J I, Yang Y, He D, Zi H, Peng L, Lv S, Kaushal R, Wang W, Huang W, Liu R, Lang Z, Miki D, Tang K, Pare P W, Song C P, Zhu J K, Zhang H. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nature Plants, 2020, 6(8): 983-995 [百度学术]
Scherer. Ueber eine neue, aus dem Muskelfleische gewonnene Zuckerart. Justus Liebigs Annalen der Chemie, 1850, 73(3): 322-328 [百度学术]
Thomas M P, Mills S J, Potter B V. The “other” inositols and their phosphates: Synthesis, biology, and medicine (with recent advances in myo-inositol chemistry). Angewandte Chemie International Edition, 2016, 55(5): 1614-1650 [百度学术]
Loewus F A, Kelly S. Conversion of glucose to inositol in parsley leaves. Biochemical and Biophysical Research Communications, 1962, 7(3):204-208 [百度学术]
Michell R H. Inositol derivatives: Evolution and functions. Nature Reviews Molecular Cell Biology, 2008, 9(2): 151-161 [百度学术]
陈红, 胡曼东, 陈芳艳, 赵静雅, 李定辰, 韩黎. 磷脂酰肌醇磷酸酶Sac1功能研究进展. 中国细胞生物学学报, 2022, 44(6): 1195-1201 [百度学术]
Chen H, Hu M D, Chen F Y, Zhao J Y, Li D C, Han L. Research progress on the function of phosphatidyl inositol phosphatase Sac1. Chinese Journal of Cell Biology, 2022, 44(6): 1195-1201 [百度学术]
徐功勋, 聂佩显, 周佳, 吕德国, 秦嗣军. 苹果肌醇半乳糖苷合酶基因家族鉴定与表达分析. 植物生理学报, 2022, 58(12): 2321-2332 [百度学术]
Xu G X, Nie P X, Zhou J, Lv D G, Qin S J. Identification and expression analysis of apple inositol galactoside synthase gene family. Chinese Plant Physiology Journal, 2022, 58(12): 2321-2332 [百度学术]
Ibrahim S, Saleem B, Rehman N, Zafar S A, Naeem M K, Khan M R. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. Journal of Advanced Research, 2022, 37(7): 33-41 [百度学术]
Li Y, Han P, Wang J, Shi T, You C. Production of myo-inositol: Recent advance and prospective. Biotechnology and Applied Biochemistry, 2022, 69(3): 1101-1111 [百度学术]
Hazra A, Dasgupta N, Sengupta C, Das S. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics, 2019, 111(6): 1929-1945 [百度学术]
Chhetri D R, Yonzone S, Tamang S, Mukherjee A K. L-myo-InositoL-1-phosphate synthase from bryophytes: Purification and characterization of the enzyme from Lunularia cruciata (L.) Dum. Brazilian Journal of Plant Physiology, 2009, 21(3): 243-250 [百度学术]
Johnson M D, Sussex I M. 1 L-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant Physiology, 1995, 107(2): 613-619 [百度学术]
Hegeman C E, Grabau E A. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiology, 2001, 126(4): 1598-1608 [百度学术]
Basak P, Sangma S, Mukherjee A, Agarwal T, Sengupta S, Ray S, Majumder A L. Functional characterization of two myo-inositol-1-phosphate synthase (MIPS) gene promoters from the halophytic wild rice (Porteresia coarctata). Planta, 2018, 248(5): 1121-1141 [百度学术]
Ray S, Patra B, Das-Chatterjee A, Ganguli A, Majumder A L. Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene (s) in Oryza sativa: Comparison with the wild halophytic rice, Porteresia coarctata. Planta, 2010, 231(5): 1211-1227 [百度学术]
Cui M, Liang D, Ma F. Molecular cloning and characterization of a cDNA encoding kiwifruit L-myo-inositol-1-phosphate synthase, a key gene of inositol formation. Molecular Biology Reports, 2013, 40(1): 697-705 [百度学术]
Zhang J, Yang N, Li Y, Zhu S, Zhang S, Sun Y, Zhang H X, Wang L, Su H. Overexpression of PeMIPS1 confers tolerance to salt and copper stresses by scavenging reactive oxygen species in transgenic poplar. Tree Physiology, 2018, 38(10): 1566-1577 [百度学术]
Ma R, Song W, Wang F, Cao A, Xie S, Chen X, Jin X, Li H. A cotton (Gossypium hirsutum) myo-inositol-1-phosphate synthase (GhMIPS1D) gene promotes root cell elongation in Arabidopsis. International Journal of Molecular Sciences, 2019, 20(5): 1224 [百度学术]
Takimoto K, Okada M, Matsuda Y, Nakagawa H. Purification and properties of myo-inositol-1-phosphatase from rat brain. The Journal of Biochemistry, 1985, 98(2): 363-370 [百度学术]
Diehl R E, Whiting P, Potter J, Gee N, Ragan C I, Linemeyer D, Schoepfer R, Bennett C, Dixon R A. Cloning and expression of bovine brain inositol monophosphatase. Journal of Biological Chemistry, 1990, 265(11): 5946-5949 [百度学术]
McAllister G, Whiting P, Hammond E A, Knowles M R, Atack J R, Bailey F J, Maigetter R, Ragan C I. cDNA cloning of human and rat brain myo-inositol monophosphatase. Expression and characterization of the human recombinant enzyme. Biochemical Journal, 1992, 284(3): 749-754 [百度学术]
Nourbakhsh A, Collakova E, Gillaspy G E. Characterization of the inositol monophosphatase gene family in Arabidopsis. Frontiers in Plant Science, 2015, 5(1): 725-738 [百度学术]
Zhang R X, Qin L J, Zhao D G. Overexpression of the OsIMP gene increases the accumulation of inositol and confers enhanced cold tolerance in tobacco through modulation of the antioxidant enzymes′ activities. Genes, 2017, 8(7): 179-194 [百度学术]
Savino S, Borg A J E, Dennig A, Pfeiffer M, de Giorgi F, Weber H, Dubey K D, Rovira C, Mattevi A, Nidetzky B. Deciphering the enzymatic mechanism of sugar ring contraction in UDP-apiose biosynthesis. Nature Catalysis, 2019, 2(12): 1115-1123 [百度学术]
Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta, 2005, 221(2): 243-254 [百度学术]
Zhong R, Teng Q, Haghighat M, Yuan Y, Furey S T, Dasher R L, Ye Z H. Cytosol-localized UDP-xylose synthases provide the major source of UDP-xylose for the biosynthesis of xylan and xyloglucan. Plant Cell Physiol, 2017, 58(1): 156-174 [百度学术]
Radzio J A, Lorence A, Chevone B I, Nessler C L. L-gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Molecular Biology, 2003, 53(6): 837-844 [百度学术]
Thakur N, Flowerika, Chaturvedi S, Tiwari S. Wheat derived glucuronokinase as a potential target for regulating ascorbic acid and phytic acid content with increased root length under drought and ABA stresses in Arabidopsis thaliana. Plant Science, 2023, 331(3): 111671 [百度学术]
Charalampous F C, Lyras C. Biochemical studies on inositol: IV. conversion of inositol to glucuronic acid by rat kidney extracts. Journal of Biological Chemistry, 1957, 228(1): 1-13 [百度学术]
Nascimento D, Conti G, Labate M T V, Gutmanis G, Labate C A. Modulating Miox2 expression in Nicotiana tabacum and impacts on gene involved in cell wall biosynyhesis. Bioenergia em Revista: Diálogos, 2012, 2(1): 60-84 [百度学术]
Duan J, Zhang M, Zhang H, Xiong H, Liu P, Ali J, Li J, Li Z. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Science, 2012, 196(8): 143-151 [百度学术]
Chen C, Sun X, Duanmu H, Yu Y, Liu A, Xiao J, Zhu Y. Ectopic expression of a Glycine soja myo-inositol oxygenase gene (GsMIOX1a) in Arabidopsis enhances tolerance to alkaline stress. Public Library of Science One, 2015, 10(6): e0129998 [百度学术]
Munir S, Mumtaz M A, Ahiakpa J K, Liu G, Chen W, Zhou G, Zheng W, Ye Z, Zhang Y. Genome-wide analysis of myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BioMed Central Genomics, 2020, 21(1): 284-298 [百度学术]
Alok A, Kaur J, Tiwari S. Functional characterization of wheat myo-inositol oxygenase promoter under different abiotic stress conditions in Arabidopsis thaliana. Biotechnology Letters, 2020, 42(10): 2035-2047 [百度学术]
Yang J, Yang J, Zhao L, Gu L, Wu F, Tian W, Sun Y, Zhang S, Su H, Wang L. Ectopic expression of a Malus hupehensis Rehd. myo-inositol oxygenase gene (MhMIOX2) enhances tolerance to salt stress. Scientia Horticulturae, 2021, 281(1): 109898 [百度学术]
Li Z, Liu Z, Wei Y, Liu Y, Xing L, Liu M, Li P, Lu Q, Peng R. Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress. Public Library of Science One, 2021, 16(7): e0254111 [百度学术]
Guo W, Yu D, Zhang R, Zhao W, Zhang L, Wang D, Sun Y, Guo C. Genome-wide identification of the myo-inositol oxygenase gene family in alfalfa (Medicago sativa L.) and expression analysis under abiotic stress. Plant Physiol Biochem, 2023, 200(5): 107787 [百度学术]
Viviani A, Fambrini M, Giordani T, Pugliesi C. L-ascorbic acid in plants: From biosynthesis to its role in plant development and stress response. Agrochimica, 2021, 65(2): 151-170 [百度学术]
Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 663-679 [百度学术]
Lisko K A, Torres R, Harris R S, Belisle M, Vaughan M M, Jullian B, Chevone B I, Mendes P, Nessler C L, Lorence A. Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1, 4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cellular & Developmental Biology Plant, 2013, 49(6): 643-655 [百度学术]
Lorence A, Chevone B I, Mendes P, Nessler C L. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 2004, 134(3): 1200-1205 [百度学术]
Rui Y, Dinneny J R. A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytologist, 2020, 225(4): 1428-1439 [百度学术]
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology, 2021, 63(1): 251-272 [百度学术]
Jamet E, Dunand C. Plant cell wall proteins and development. International Journal of Molecular Sciences, 2020, 21(8): 2731-2735 [百度学术]
Loewus F A, Kelly S. Inositol metabolism in plants. I. labeling patterns in cell wall polysaccharides from detached plants given myo-inositol-2-t or-2-
周洁, 宋雪晴, 何旭东, 王保松. 柳树SjMIPS基因的克隆及其表达分析. 江苏林业科技, 2016, 43(6): 1-5 [百度学术]
Zhou J, Song X Q, He X D, Wang B S. Cloning and expression analysis of SjMIPS gene in willow. Jiangsu Forestry Science and Technology, 2016, 43(6): 1-5 [百度学术]
Hu L Y, Zhou K, Liu Y, Yang S L, Zhang J, Gong X Q, Ma F W. Overexpression of MdMIPS1 enhances salt tolerance by improving osmosis, ion balance, and antioxidant activity in transgenic apple. Plant Science, 2020, 301(9): 110654 [百度学术]
Hu L Y, Yue H, Zhang J Y, Li Y T S, Gong X Q, Zhou K,Ma F W. Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple. Journal of Integrative Agriculture, 2022, 21(7): 1968-1981 [百度学术]
Tan J, Wang C, Xiang B, Han R, Guo Z. Hydrogen peroxide and nitric oxide mediated cold and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant, Cell & Environment, 2013, 36(2): 288-299 [百度学术]
Kaur H, Shukla R K, Yadav G, Chattopadhyay D, Majee M. Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant, Cell & Environment, 2008, 31(11): 1701-1716 [百度学术]
Sharma N. Wheat myo-inositol phosphate synthase influences plant growth and stress responses via ethylene mediated signaling. Scientific Reports, 2020, 10(1): 10766 [百度学术]
Nepal N, Yactayo Chang J P, Medina Jiménez K, Acosta Gamboa L M, González Romero M E, Arteaga Vázquez M A, Lorence A. Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX over-expresser. Plant Direct, 2019, 3(9): e00165 [百度学术]
Shi F, Dong Y, Wang M, Qiu D. Transcriptomics analyses reveal that OsMIOX improves rice drought tolerance by regulating the expression of plant hormone and sugar related genes. Plant Biotechnology Reports, 2020, 14(3): 339-349 [百度学术]
陈林英, 李佳佳, 王博, 杜婉清, 高梦雪, 刘慧, 檀淑琴, 邱丽娟, 王晓波. WRKY 转录因子在大豆响应生物和非生物胁迫中的功能研究进展. 植物遗传资源学报, 2022, 23(2): 323-332 [百度学术]
Chen L Y, Li J J, Wang B, Du W Q, Gao M X, Liu H, Tan S Q, Qiu L J, Wang X B. Research progress on the function of WRKY transcription factor response to biotic and abiotic stresses in soybean. Journal of Plant Genetic Resources, 2022, 23(2): 323-332 [百度学术]
Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 2021, 22(9): 4609 [百度学术]
Chen Y, Hoehenwarter W. Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiology, 2015, 169(4): 3021-3033 [百度学术]
Golani Y, Kaye Y, Gilhar O, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5PTase9) controls plant salt tolerance by regulating endocytosis. Molecular Plant, 2013, 6(6): 1781-1794 [百度学术]
Ozturk M, Turkyilmaz Unal B, Garcia-Caparros P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. Physiology Plant, 2021, 172(2): 1321-1335 [百度学术]
Perera I Y, Hung C Y, Moore C D, Stevenson-Paulik J, Boss W F. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. The Plant Cell, 2008, 20(10): 2876-2893 [百度学术]
楚乐乐, 罗成科, 田蕾, 张银霞, 杨淑琴, 李培富. 植物对碱胁迫适应机制的研究进展. 植物遗传资源学报, 2019, 20(4): 836-844 [百度学术]
Chu L L, Luo C K, Tian L, Zhang Y X, Yang S Q, Li P F. Research advance in plants′ adaptation to alkali stress. Journal of Plant Genetic Resources, 2019, 20(4): 836-844 [百度学术]
Fang S, Hou X, Liang X. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science, 2021, 12: 667458 [百度学术]
Kidokoro S, Shinozaki K, Yamaguchi Shinozaki K. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science, 2022, 27(9): 922-935 [百度学术]
He F Y, Xu J F, Jian Y Q, Duan S G, Hu J, Jin L P, Li G C. Overexpression of galactinol synthase 1 from Solanum commersonii (ScGolS1) confers freezing tolerance in transgenic potato. Horticultural Plant Journal, 2023, 9(3): 541-552 [百度学术]
Endres S, Tenhaken R. Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiology, 2009, 149(2): 1042-1049 [百度学术]
Ivanov Kavkova E, Blöchl C, Tenhaken R. The Myo-inositol pathway does not contribute to ascorbic acid synthesis. Plant Biology, 2019, 21(S1): 95-102 [百度学术]