摘要
采用小米培养基接种法对163份当前推广的小麦种质资源进行室内和田间茎基腐病抗性鉴定。结果表明,没有鉴定出高抗和免疫的小麦材料,但是不同材料的抗性能被明显区分,群体抗性整体上呈现正态分布趋势,室内鉴定病情指数分布在13.28~83.33之间,田间鉴定病情指数分布在10.27~73.89之间。室内和田间鉴定结果较稳定,两环境病情指数的相关系数为0.79,说明室内鉴定结果可较好反映田间抗性情况。全基因组关联分析(GWAS,genome-wide association study)显示,显著SNP广泛分布于小麦各条染色体上,其中2A上最多,集中在725~763 Mb区段内。进一步集群分离分析法(BSA,bulked segregant analysis)结果显示,显著SNP集中在2A上的730~750 Mb区段内。综合来看,小麦2A染色体上730~750 Mb区段内可能存在显著调控小麦茎基腐病的抗性基因。本研究能够为小麦茎基腐病抗性材料筛选及抗病位点挖掘提供重要的参考意义。
小麦茎基腐病(FCR,fusarium crown rot)是由多种病原菌引起的一种土传病
小麦茎基腐病已成为一种世界性病害,该病在澳大利亚、加拿大、中国和美国等多个国家连年发生,对粮食生产造成了不可估量的损
当前,小麦茎基腐病抗性位点的定位研究已有多个报道,据统计,在小麦的21条染色体上几乎都有定位到茎基腐病抗性位点。首个报道的茎基腐病QTL来源于Kukri和Janz构建的双单倍体(DH,doubled Haploid)群体,定位于4B染色体上矮秆基因Rht1附
小麦茎基腐病近年来发生严重,本研究采用小米培养基接种法对163份当前推广的小麦种质资源进行室内和田间茎基腐病抗性鉴定,进一步利用全基因组关联分析(GWAS,genome-wide association study)和集群分离分析法(BSA,bulked segregant analysis)对抗性位点进行定位,旨在筛选出一些抗性较好的种质资源,并挖掘有效的小麦茎基腐病抗性位点,为今后小麦茎基腐病抗性育种工作奠定基础。
供试材料为课题组收集的163份当前广泛种植的背景差异较大的小麦种质资源。材料的分布情况为:河南省68份、河北省24份、陕西省19份、山东省17份、江苏省7份、山西省7份、四川省7份、北京市7份、安徽省2份、甘肃省2份、贵州省1份、浙江省1份、宁夏回族自治区1份。
供试菌株为当前流行的假禾谷镰孢菌WZ-8A,该菌株致病能力强、流行范围广,由河南农业大学植物保护学院分离提供。
小米培养基制备方法。将大小均匀的小米放入开水中煮沸3 min,捞出后于通风干燥处晾至表面无水,然后装入三角瓶中,扎好瓶口,于121 ℃、0.1 Mpa条件下灭菌20 min备用。
病原菌扩繁方法。在超净工作台中,挑取新活化的假禾谷镰孢菌至灭过菌的小米培养基中培养,培养温度为25℃±2℃,培养7 d,每天摇晃两次,确保病原菌扩繁均匀。
小麦茎基腐病苗期抗性鉴定于 2022 年春季在河南农业大学龙子湖校区小麦遗传育种人工气候室内进行,利用小米培养基接种
苗期鉴定的分级采用0~9级分级法(

图1 小麦茎基腐病苗期病情分级示例图
Fig.1 Typic FCR symptoms on seedlings in greenhouse investigation
小麦茎基腐病田间抗性鉴定于2021-2022年进行,群体材料于2021年10月种植于河南农业大学郑州试验园区。种植前将试验地划分成3
在2022年5月小麦蜡熟期时,每个材料随机选取30个单茎,按照成株期分级标准进行调查并计算病情指数。成株期病情分级标准参照杨云
利用Microsoft Excel 2010软件对群体材料抗性鉴定结果进行整理排序,统计不同抗性区段小麦品种数量,绘制群体茎基腐病抗性分布柱状图;计算苗期和田间鉴定结果的平均病情指数及差异显著性,并进行相关性分析。
利用小麦90K SNP芯片对群体进行基因分型,采用PLINK 软件进行质控,通过GAPIT软件,采用混合线性模型(MLM,mixed linear model)进行全基因组关联分
通过调查可知,室内(E1)和田间(E2)鉴定的小麦资源材料均不同程度感染小麦茎基腐病,且大部分材料高感(详见https://doi.org/10.13430/j.cnki.jpgr.20230718001,
病情指数 DI | 代表材料(DI-苗期 / DI-田间) Representative accessions (DI-seedling / DI-field ) | ||||
---|---|---|---|---|---|
≤30.00 |
矮丰3号 (13.28 / 15.57) |
泛麦5号 (22.22 / 22.68) |
陕农7859 (28.89 / 26.09) |
陇麦157 (20.20 / 10.27) |
淮麦19 (29.00 / 19.33) |
30.01~40.00 |
周麦18 (32.22 / 38.26) |
冀麦32 (33.00 / 31.00) |
豫农211 (33.33 / 31.64) |
鲁麦23 (33.33 / 31.35) |
周麦23 (36.11 / 33.19) |
40.01~50.00 |
西农979 (42.22 / 40.17) |
晋麦50 (43.21 / 46.86) |
品冬34 (46.03 / 47.52) |
偃展4110 (48.89 / 48.77) |
陕合6号 (50.00 / 40.06) |
50.01~60.00 |
百农64 (56.56 / 50.08) |
豫农201 (55.56 / 50.70) |
豫麦1号 (53.09 / 57.57) |
郑麦98 (55.56 / 57.51) |
烟农15 (58.02 / 51.77) |
60.01~70.00 |
郑麦8998 (65.08 / 60.90) |
冀C527-2 (65.08 / 68.49) |
冀麦30 (66.67 / 67.58) |
西安93991矮 (66.67 / 63.86) |
扬麦4号 (68.89 / 60.76) |
>70.00 |
邢麦1号 (70.37 / 70.83) |
核生2号 (71.72 / 70.48) |
河农35 (74.60 / 72.77) |
北农大92 (80.00 / 72.98) |
中农28 (83.33 / 73.89) |

图2 材料间小麦茎基腐病的抗性分布区段
Fig.2 Number of wheat accessions at different levels for resistance to FCR
对当前广泛种植的小麦种质资源材料进行室内(E1)及田间(E2)茎基腐病抗性鉴定,群体的抗性分布范围及两环境的相关性如
环境 Environments | 最小值 Min. | 最大值 Max. | 平均数 Average | 相关系数 Correlation coefficient |
---|---|---|---|---|
室内E1 | 13.28 | 83.33 | 51.73 ** | 0.79 ** |
田间E2 | 10.27 | 73.89 | 46.49 |
**:差异极显著(P<0.01)
**: Significant difference (P<0.01)
著相关水平(P < 0.01)。此研究表明,室内和田间小麦茎基腐病抗性鉴定具有较高相关性,室内鉴定结果可较好反应田间抗性情况。
为挖掘材料中的茎基腐病抗性位点,对群体进行小麦茎基腐病抗性鉴定后,计算病情指数并评价材料抗性,利用PLINK 软件对群体基因型进行质控,利用质控后的20690个标记进行GWAS 分析(

图3 群体不同环境茎基腐病的全基因组关联分析
Fig.3 The GWAS analysis of FCR in different environments

图4 各染色体上显著SNP分布图
Fig.4 The distribution of significant SNPs on each chromosome
红色标记为室内和田间共同检测到的SNP
The SNPs marked red were identified both in greenhouse and field
根据表型调查结果,选取群体中抗、高感极端材料分别种植、接菌,构建混池后进行BSA分析。结果显示,共检测到784个差异SNP标记,这些标记广泛分布于小麦21条染色体上,其中2A上最多,有188个,占总差异标记的23.98%(

图5 群体极端材料BSA分析图
Fig.5 The BSA analysis of the extremely materials to FCR
结合上述GWAS分析和BSA分析,两种定位方法的共定位区段为2A染色体的730~750 Mb之间,该区段可能存在调控小麦茎基腐病的抗性基因。参考中国春基因组注释信息,对2A染色体上730~750 Mb区段内基因进行分析,发现该区段内共有324个注释基因(http://plants.ensembl.org/Triticum_aestivum/Tools/Blast?db=core),这些基因广泛参与植物的生长发育及抗病抗逆等各项生命活动,后续将结合其他方法对该区段内的抗性基因进行深入挖掘。
小麦茎基腐病发生范围广、危害严重,近年来呈现出不断蔓延和加重的趋势,因此,如何快速准确地筛选出稳定的抗病品种是防治茎基腐病首要解决的问题。小麦茎基腐病的接种方法和抗性分类有很多报道,目前使用较多的有棉球接种法、茎基部滴注法、幼苗浸泡法和天然谷物接种法
种植抗病品种是小麦病害防治过程中最经济、安全、有效的方法。由于当前小麦生产中缺乏有效的茎基腐病抗性品种,近年来该病的发生面积和产量损失给小麦生产带来严重威胁。本研究对163份广泛种植的小麦种质资源进行了室内及田间茎基腐病抗性鉴定,在所有鉴定材料中,没有发现高抗和免疫的小麦品种,且鉴定的大部分材料表现出高感。值得注意的是,本研究虽然没有鉴定出高抗和免疫的材料,但对不同抗性区段的品种进行分类种植同样具有重要意
小麦茎基腐病是由多个微效基因控制的一种典型数量性状病害,当前,多个报道对小麦茎基腐病进行了定位分析。据统计,小麦茎基腐病抗性位点广泛分布于小麦各条染色体上,其中在多个研究中能重复检测的位点分别位于3B、4B和5D染色体,但是这些位点往往只含有部分抗性,或者抗性不稳定,且使用范围较为狭
近年来,小麦茎基腐病在我国各大麦区甚至世界各地不断蔓延和加重,已逐渐上升为小麦主要病害。然而,抗性品种的缺失、鉴定方法和评价标准的不统一,导致病害研究进展缓慢。2022年中国科协将小麦茎基腐的暴发成因和科学防控列入我国十大产业技术问题之一,这对推动我国小麦茎基腐病研究具有重要意义。针对小麦茎基腐病的研究,统一接种鉴定及评价标准、扩大种质资源的筛选范围、挖掘有效的抗性位点及抗病基因对实现该病害绿色防控具有重要作用。本研究通过对小麦种质资源进行室内和田间茎基腐病抗性鉴定和筛选,挖掘出一批抗性较好的小麦资源,进一步利用GWAS和BSA等分析方法对抗性位点进行定位,找到一个显著的茎基腐病抗性位点区段,本研究可为我国小麦茎基腐病抗性育种提供重要参考。
参考文献
Yang X, Pan Y, Singh P K, He X Y, Ren Y, Zhao L, Zhang N, Cheng S H, Chen F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biology, 2019, 19(1):153 [百度学术]
Pariyar S R, Erinbas-Orakci G, Dadshani S, Chijioke O B, Leon J, Dababat A A, Grundler F M W. Dissecting the genetic complexity of Fusarium crown rot resistance in wheat. Scientific Reports, 2020, 10(1):3200 [百度学术]
Kazan K, Gardiner D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: Recent progress and future prospects. Molecular Plant Pathology, 2018, 19(7): 1548 [百度学术]
Backhouse D, Abubakar A A, Burgess L W, Dennis J I, Hollaway G J, Wildermuth G B, Wallwork H, Henry F J. Survey of Fusarium species associated with crown rot of wheat and barley in eastern Australia. Australasian Plant Pathology, 2004, 33(2): 255 [百度学术]
Kettle A J, Batley J, Benfield A H, Manners J M, Kazan K, Gardiner D M. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat. Molecular Plant Pathology, 2015, 16(9): 947 [百度学术]
Smiley R W. Fusarium crown rot whitehead symptom as influenced by wheat crop management and sampling date. Plant Disease, 2019, 103(10): 2612 [百度学术]
Sohail Q, Erginbas O G, Ozdemir F, Jighl Y A, Dreisigacker S, Bektas H, Birisik N, Ozkan H, Dababat A A. Genome-wide association study of root-lesion nematodes pratylenchus species and crown rot Fusarium culmorum in bread wheat. Life, 2022, 12(3): 372 [百度学术]
Xu F, Yang G Q, Wang J M, Song Y L, Liu L L, Zhao K, Li Y H, Han Z H. Spatial distribution of root and crown rot fungi associated with winter wheat in the North China Plain and its relationship with climate variables. Frontiers in Microbiology, 2018, 9:1054 [百度学术]
Fan X F, Yan Z, Yang M X, Waalwijk C, Lee T, Diepeningen A V, Brankovics B, Chen W Q, Feng J, Zhang H. Contamination and translocation of deoxynivalenol and its derivatives associated with Fusarium crown rot of wheat in Northern China. Plant Disease, 2021, 105(11): 3397 [百度学术]
Mandala G, Geoloni C, Busato I, Favaron F, Tundo S. Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. Plant Science, 2021, 313: 111059 [百度学术]
Beccari G, Prodi A, Pisi A, Senatore M T, Balmas V, Tini F, Onofri A, Pedini L, Sulyok M, Brocca L, Covarelli L. Cultivation area affects the presence of fungal communities and secondary metabolites in Italian durum wheat grains.Toxins,2020,12 (2):97 [百度学术]
Duan S N, Jin J J, Gao Y T, Jin C L, Mu J Y, Zhen W C, Sun Q X, Xie C J, Ma J. Integrated transcriptome and metabolite profiling highlights the role of benzoxazinoids in wheat resistance against fusarium crown rot. The Crop Journal, 2022, 10(2): 407 [百度学术]
Jin J J, Duan S N, Qi Z Y, Zhen W C, Ma J. Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis. Journal of Integrative Agriculture, 2021, 20(12): 3209 [百度学术]
崔晓敬,陈洁,岳建超. 小麦茎基腐病的发生与综合防治. 园艺与种苗, 2022, 7: 64-65 [百度学术]
Cui X J, Chen J, Yue J C. Occurrence and comprehensive control of wheat crown rot. Horticulture & Seed, 2022, 7: 64-65 [百度学术]
李怡文,李桂香,黄中乔,苗建强,刘西莉. 假禾谷镰孢引起的小麦茎基腐病发生危害与防控研究进展. 农药学学报, 2022, 24(5): 949-961 [百度学术]
Li Y W, Li G X, Huang Z Q, Miao J Q, Liu X L. Research progress on the occurrence, damage and prevention of Fusarium crown rot caused by Fusarium pseudograminearum. Chinese Journal of Pesticide Science, 2022, 24(5): 949-961 [百度学术]
赵利民,吕国强,何洋,冯贺奎,彭红. 河南省小麦茎基腐病发生现状及综合防控措施. 中国植保导刊, 2022, 42(05): 49-51 [百度学术]
Zhao L M, Lv G Q, He Y, Feng H K, Peng H. Occurrence status and integrated control measures of wheat crown rot in Henan province. China Plant Protection, 2022, 42(5): 49-51 [百度学术]
杨云,贺小伦,胡艳峰,侯莹,牛亚娟. 黄淮麦区主推小麦品种对假禾谷镰刀菌所致茎基腐病的抗性. 麦类作物学报, 2015, 35(3): 339-345 [百度学术]
Yang Y, He X L, Hu Y F, Hou Y, Niu Y J. Resistance of wheat cultivars in Huang-Huai region of China to crown rot caused by Fusarium pseudograminearum. Journal of Triticeae Crops, 2015, 35(3): 339-345 [百度学术]
Ren Y, Hou W X, Lan C X, Basnet B, Singh R P, Zhu W, Cheng X Y, Cui D Q, Chen F. QTL analysis and nested association mapping for adult plant resistance to powdery mildew in two bread wheat populations. Frontiers in Plant Science, 2017, 8: 1212 [百度学术]
Lan C X, Basnet B R, Singh R P, Huerta-Espino J, Herrera-Foessel S A, Ren Y, Randhawa M S. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. Theoretical & Applied Genetics International Journal of Breeding Research & Cell Genetics, 2017, 130(3):609 [百度学术]
Wallwork H, Butt M, Cheong J P E, Williams K J. Resistance to crown rot in wheat identified through an improved method for screening adult plants. Australassian Plant Pathology, 2004, 33: 1-7 [百度学术]
Poole G J, Smiley R W, Paulitz T C, Walker C A, Carter A H, See D R, Garland-Campbell K. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US. Theoretical and Applied Genetics, 2012, 125(1): 91-107 [百度学术]
Jin J J, Duan S N, Qi Y Z, Yan S H, Li W, Li B Y, Xie C J, Zhen W C, Ma J. Identification of a novel genomic region associated with resistance to Fusarium crown rot in wheat. Theoretical and Applied Genetics, 2020, 133 (7): 2063-2073 [百度学术]
Yang X, Zhong S B, Zhang Q J, Ren Y, Sun C W, Chen F. A loss-of-function of the dirigent gene TaDIR-B1 improves resistance to Fusarium crown rot in wheat. Plant Biotechnology Journal, 2021, 19 (5): 866-868 [百度学术]
Mitter V, Zhang M C, Liu C J, Ghosh R, Ghosh M. A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathology, 2006, 55(3): 433 [百度学术]
陆宁海,吴利民,郎剑锋,杨蕊,李营营. 小麦茎基腐病苗期抗病性鉴定. 贵州农业科学, 2015, 43(10): 119-121 [百度学术]
Lu N H, Wu L M, Lang J F, Yang R, Li Y Y. Identification and of different wheat seedlings with resistance to crown rot. Guizhou Agricultural Sciences, 2015, 43(10): 119-121 [百度学术]
Sun C W, Zhang F Y, Yan X F, Zhang X F, Dong Z D, Cui D Q, Chen F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnology Journal, 2017, 15(8): 953-969 [百度学术]
耿君佑,陈建辉,董中东,任妍,张宁,孙丛苇,陈锋,赵磊.小麦芒性基因的定位与候选基因分析.植物遗传资源学报,2021, 22 (4): 1090-1098 [百度学术]
Geng J Y, Chen J H, Dong Z D, Ren Y, Zhang N, Sun C W, Chen F, Zhao L. Mapping and candidate gene analysis of awn type in common wheat. Journal of Plant Genetic Resources, 2021, 22 (4): 1090-1098 [百度学术]
周淼平,姚金保,张鹏,余桂红,马鸿翔. 小麦抗茎腐病种质筛选及鉴定新方法的建立. 植物遗传资源学报, 2016, 17(2): 377-382 [百度学术]
Zhou M P, Yao J B, Zhang P, Yu G H, Ma H X. Screening of germplasm and establishment of new evaluation method for the resistance to wheat crown rot. Journal of Plant Genetic Resources, 2016, 17(2): 377-382 [百度学术]
张鹏,霍燕,周淼平,姚金保,马鸿翔. 小麦禾谷镰孢菌茎基腐病抗源的筛选与评价. 植物遗传资源学报, 2009, 10(3): 431-435 [百度学术]
Zhang P, Huo Y, Zhou M P, Yao J B, Ma H X. Identification and evaluation of wheat germplasm resistance to crown rot caused by Fusarium graminearum. Journal of Plant Genetic Resources, 2009, 10(3): 431-435 [百度学术]
Lv G G, Zhang Y X, Ma L, Yan X N, Yuan M J, Chen J H, Cheng Y Z, Yang X, Qiao Q, Zhang L L, Niaz M, Sun X N, Zhang Q J, Zhong S B, Chen F. A cell wall invertase modulates resistance to fusarium crown rot and sharp eyespot in common wheat. Journal of Integrative Plant Biology, 2023, 65(7):1814-1825 [百度学术]
Flint-Garcia S A. Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry, 2013, 61(35): 8267-8276 [百度学术]