摘要
冰草(Agropyron cristatum L.,2n = 4x = 28,PPPP)携带的多样性外源基因是小麦遗传改良重要基因源。前期研究表明冰草1P染色体上的基因可以改良小麦株叶型,但在获得易位系的基础上,外源片段导入不同背景小麦品种的叶型变化以及可能带来的不利遗传连锁累赘还不清楚。为进一步探究小麦-冰草T1PS·1AL和T1AS·1PL易位系在不同小麦背景中对主要农艺性状的遗传效应,本研究将小麦-冰草1PS、1PL易位系与藁城8901、百农607、漯麦163、百农207、西农979、中麦578、川麦104、宁麦资126等8个普通小麦品种进行杂交,对F2分离群体的农艺性状进行考察和分析。结果表明,冰草1PS染色体导入小麦后,降低了小麦的倒三叶长,株高也显著降低3~8 cm,产量性状基本不受影响。冰草1PL染色体使小麦株高降低,旗叶、倒二叶和倒三叶显著缩短,改变株型的同时,小麦的产量性状同时降低,具有连锁累赘。在冰草1P易位系中,后代的表型除与染色体本身所产生的效应有关外,也与小麦受体的遗传背景相关。在不同背景的小麦亲本杂交组合后代中,可以选出株叶型改良且产量性状不受影响的单株用于小麦的遗传改良。研究表明2个小麦-冰草1P易位系创新种质在株型改良上具有显著的遗传效应,可以为冰草1P染色体易位片段的利用提供指导。
小麦(Triticum aestivum L.,2n=6x=42,AABBDD)是世界的主要粮食作物,随着人口和经济的持续增长,未来对小麦总产量的需求将不断提高,在可耕种土地资源有限条件下,迫切需要单产水平的进一步提高。在作物的高产改良育种中,除了提高作物的穗粒数、千粒重构成因子外,株型改良也是提高产量的有效途径,并受到全世界育种家的广泛关注,成为产量提升的重要突破方向。我国黄淮冬麦区现代小麦品种比早期品种在植株形态结构上有很大的遗传改进,50年代种植的农家品种及部分改良品种,抗倒伏能力较弱,而70年代以来选育推广的品种,株高明显降低,叶片相对短宽、旗叶夹角减小、冠层透光性增强的同时大大增强了抗倒伏能力,生物学产量显著提
长期的人工选择和驯化导致小麦遗传基础逐渐狭窄。为了丰富其遗传多样性,育种家开始利用小麦野生近缘植物进行小麦改良,因其携带小麦在长期驯化过程中丧失的多样化基因。冰草(Agropyron cristatum L.,2n = 4x = 28,PPPP)是小麦重要的野生近缘植物,除具有对白粉病、多种锈病的抗病
前期利用冰草1P(1A)代换系II-3-1c进一步与济麦22杂交,基于代换系诱导的断裂-融合机制,在1PS和1PL特异分子标记检测下,通过基因组原位杂交(GISH,genomic in situ hybridization)检测证实获得9个T1PS·1AL易位系和7个T1AS·1PL易位系(未发表)。但是,对于1PS和1PL易位系在不同小麦品种中的遗传效应还不清楚。本研究以小麦-冰草T1PS·1AL和T1AS·1PL易位系作为基础材料,收集全国不同麦区的小麦亲本(藁城8901、百农607、漯麦163、百农207、西农979、中麦578、川麦104、宁麦资126)作为受体,通过构建遗传分离群体,结合GISH、竞争性等位基因特异性PCR(KASP,Kompetitive Allele-Specific PCR)基因分型技术,判定导入冰草1P染色体易位片段对不同小麦受体的影响,评价冰草1P染色体易位片段对减小叶片面积、降低株高的株型改良效应,以及对小麦产量构成因子的影响,探究两种易位片段在不同小麦背景育成品种中的预期性状和遗传效应,为未来有效利用冰草1P易位系奠定基础。
供试材料的亲本为8个背景的普通小麦品种,包括我国4个麦区的推广品种:藁城8901(黄淮北片)、百农607(黄淮北片)、漯麦163(黄淮北片)、百农207(黄淮北片)、西农979(黄淮北片)、中麦578(黄淮南片)、川麦104(西南麦区)、宁麦资126(长江中下游麦区)。小麦-冰草T1AS·1PL纯合易位系、T1PS·1AL纯合易位系是本实验室前期创制和鉴定的罗伯逊整臂易位系。将2个易位系分别与8个小麦品种杂交,对其F2分离群体进行生育期和收获后农艺性状的考察,每个背景作为一个分离群体,遗传分离群体大小从110株到400株,共获得14个F2遗传分离群体(详见https://doi.org/10.13430/j.cnki.jpgr. 20230810002,
序号 Number | 引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') | 变异位点 Variation locus | 等位类型Allele type | 位置(Mb) Location | |
---|---|---|---|---|---|---|
1 | 1PS-3850 | FAM引物 | GACTCAAGCTTGGGAAACTGTAAAAG | G | 冰草1PS | 24.7 |
HEX引物 | CGACTCAAGCTTGGGAAACTGTAAAAT | T | 小麦1AS | |||
通用引物 | CCACGGCTGGGCTTGACTTT | |||||
2 | 1PS-9180 | FAM引物 | CATCGCCGCGTTAGGGTCT | C | 冰草1PS | 59.9 |
HEX引物 | TCGCCGCGTTAGGGTCC | T | 小麦1AS | |||
通用引物 | CTTCCGGGCGATGAAGGAG | |||||
3 | 1PS-13610 | FAM引物 | GCATGAGCCCATTCCTTCG | G | 冰草1PS | 94.8 |
HEX引物 | TGCATGAGCCCATTCCTTCA | A | 小麦1AS | |||
通用引物 | GCTGCTGATGTCTTGGCAGGT | |||||
4 | 1PS-16290 | FAM引物 | GATCCAAATGGACTTCCATGATTAAC | C | 冰草1PS | 121.8 |
HEX引物 | GATCCAAATGGACTTCCATGATTAAT | T | 小麦1AS | |||
通用引物 | GAAACTGGGGATCGAGTCTCAGT | |||||
5 | 1PS-18740 | FAM引物 | CCCCAACACCATCTGATTCATTC | C | 冰草1PS | 151.4 |
HEX引物 | ACCCCAACACCATCTGATTCATTT | T | 小麦1AS | |||
通用引物 | GCCAATCCTGTGAATGGAGGAA | |||||
6 | 1PS-19960 | FAM引物 | TGGCGACATCGTCGAAGTCG | G | 冰草1PS | 181.5 |
HEX引物 | TGGCGACATCGTCGAAGTCC | C | 小麦1AS | |||
通用引物 | CCGGATTCCCCTGCCCA | |||||
7 | 1PS-20850 | FAM引物 | AGGCACAACCCAACACAGAACT | T | 冰草1PS | 201.9 |
HEX引物 | GGCACAACCCAACACAGAACC | C | 小麦1AS | |||
通用引物 | GTGATACTGGTAGTCACCTTCCTCG | |||||
8 | 1PS-21510 | FAM引物 | CGGAGATCTTGGATATAGGTGAGCA | A | 冰草1PS | 221.8 |
HEX引物 | GGAGATCTTGGATATAGGTGAGCG | G | 小麦1AS | |||
通用引物 | TCCGGAGAGGAACTCAACTCTCA | |||||
9 | 1PL-31030 | FAM引物 | CGTCCATGGTGTGCCTCCTG | G | 冰草1PL | 363.4 |
HEX引物 | CGTCCATGGTGTGCCTCCTC | C | 小麦1AL | |||
通用引物 | GGACATCTCGAAGGACTTGGCG | |||||
10 | 1PL-33650 | FAM引物 | CCGGCGAGAAGGACAAGTCC | C | 冰草1PL | 395.0 |
HEX引物 | CCGGCGAGAAGGACAAGTCG | G | 小麦1AL | |||
通用引物 | CGTCACGCCGATGAAGTACTCGT | |||||
11 | 1PL-43010 | FAM引物 | CGGCCAGCAGGACCGGT | T | 冰草1PL | 482.6 |
HEX引物 | GGCCAGCAGGACCGGG | G | 小麦1AL | |||
通用引物 | GAAAGACCTCGCGGACCCA | |||||
12 | 1PL-51360 | FAM引物 | GCCAAGATCTACGTCGCGTTC | C | 冰草1PL | 541.6 |
HEX引物 | GCCAAGATCTACGTCGCGTTT | T | 小麦1AL | |||
通用引物 | TGGGAGAGGCGGTAGGAGAAC | |||||
13 | 1PL-60840 | FAM引物 | GCGGCCCATCCGGAAG | G | 冰草1PL | 605.1 |
HEX引物 | GCGGCCCATCCGGAAC | C | 小麦1AL | |||
通用引物 | TACCCGGAGGCGGAGTTCT |
根尖染色体制片参照Jiang
参照Dellapor
根据四倍体冰草全基因组序列(未发表),利用冰草1P染色体的注释基因序列与中国春小麦ABD参考基因组进行比对,筛选在冰草1P染色体和小麦1A染色体间的SNP(

图1 KASP引物设计
Fig.1 Design principle of KASP primer
KASP引物是由上海生物工程公司合成,使用时需在序列前添加荧光接头FAM(GAAGGTGACC AAGTTCATGCT)、HEX(GAAGGTCGGAGTC AACGGATT)。引物合成后将三种引物干粉分别稀释至100 µmol/µL,工作液(Primer Mix)的体积比例按照12(FAM)∶12(HEX)∶30(通用引物COMMEN)∶46(ddH2O)混合。KASP反应体系如下:总体积为5 µL,含1 µL模板DNA稀释液(50 ng/µL),0.07 µL Primer Mix,2.5 µL KASP Master Mix(HiGeno 2x Probe Mix B,北京嘉程生物科技有限公司),1.43 µL ddH2O。采用384孔板完成PCR扩增,程序如下:95 ℃预变性10 min;95 ℃变性20 s,61 ℃延伸40 s,10个循环;95 ℃变性20 s,55 ℃复性40 s,34个循环。
为鉴定外源染色体片段的易位类型,分别对T1PS·1AL和T1AS·1PL易位系进行GISH试验。

图2 小麦-冰草1P/1A纯合易位系GISH鉴定
Fig.2 The identification of 1P/1A homozygous translocation lines by GISH
A:T1PS·1AL易位系的GISH鉴定;B:T1AS·1PL易位系的GISH鉴定;C:T1PS·1AL易位系的着丝粒鉴定;D:T1AS·1PL易位系的着丝粒鉴定;蓝色区域为DAPI(4′,6-二脒基-2-苯基吲哚)染色的小麦染色体,gDNA-Z559代表外源冰草染色体,Oligo-CCS1为小麦着丝粒探针,pAcCR1为外源冰草着丝粒探针
A: The identification of translocation line T1PS·1AL by GISH;B: The identification of translocation line T1AS·1PL by GISH;C: The centromere identification of translocation line T1PS·1AL;D: The centromere identification of translocation line T1AS·1PL;The wheat chromosomes are in blue stained by 4′,6-diamidino-2-phenylindole (DAPI). gDNA-Z559 represents A. cristatum chromosome;Oligo-CCS1 is the specfic centromere probe of wheat, pAcCR1 is the specfic centromere probe of A. cristatum
为了检测小麦和冰草染色体,提高分离群体的外源染色体跟踪检测效率,设计出KASP共显性标记,区分发生易位和替换的目标染色体,从而将后代划分为纯合易位系、杂合易位系和不含易位片段3种基因型。为了覆盖冰草1P染色体的不同区间,在冰草1P长、短臂上共设计了33组特异性KASP分子标记,平均每30 Mb物理距离保留一组。经过至少96个测试样本的验证后,筛选出多态性好、分型理想的KASP标记13组,包括1P短臂8组,1P长臂5组,覆盖冰草1P染色体基因组共605.1 Mb的物理距离(

图3 冰草1P和小麦1A染色体共显性KASP引物开发及验证结果
Fig.3 Development and verification results of codominant KASP primers for A. cristatum chromosome 1P and wheat chromosome 1A
A:冰草1P染色体KASP引物,左边数字为冰草1P染色体的物理图谱,右边为标记分布,中间圆形环代表冰草1P染色体的着丝粒;B:冰草1P短臂引物1PS-16290验证1PS易位群体的部分结果;C:冰草1P长臂引物1PL-31030验证1PL易位群体的部分结果;FAM信号(蓝色)代表冰草P基因型,HEX信号(红色)代表小麦A基因型,绿色信号为小麦/冰草杂合信号(W∶P)
A: KASP primers distribute on A. cristatum chromosome 1P;The number on the left is the physical map of A. cristatum chromosome 1P, the right is the markers distribution, and the circular ring in the middle represents the centromere of A. cristatum chromosome 1P; B: Partial results from the 1PS translocation population verified by the 1P short-arm primer 1PS-16290; C: Partial results from the 1PL translocation population verified by the 1P long-arm primer 1PL-31030;FAM signal (blue) represents the P genotype of A. cristatum, HEX signal (red) represents the A genotype of wheat, and green signal is a hybrid signal of wheat/ A. cristatum (W∶P)
如图
在1P染色体长臂、短臂导入包括百农207、西农979等7个背景的小麦品种后,利用开发的KASP分子标记对F2分离群体植株进行基因分型。通过生育期和产量性状的考察,发现1P长臂和短臂不同易位类型在小麦不同背景下表现出不同的差异,并且即使在同一种易位类型中,不同背景的小麦性状所受到的影响也不完全一致。
对短臂易位类型的纯合阳性(P∶P)和阴性(W∶W)F2植株各性状进行分析后发现,在倒三叶长性状上,川麦104、漯麦163、百农207、西农979群体的纯合阳性植株较纯合阴性植株降低且差异显著,藁城8901、宁麦资126群体也有降低,降低范围在0.6~1.4 cm,说明导入1PS短臂后在这6个小麦背景下可适当降低倒三叶长,改良叶型(
序号 Number | 品种 Variety | 类型 Type | 旗叶长(cm) Length of flag leaf | 旗叶宽(cm) Width of flag leaf | 倒二叶长(cm) Length of top second leaf | 倒二叶宽(cm) Width of top second leaf | 倒三叶长(cm) Length of top third leaf | 倒三叶宽(cm) Width of top third leaf |
---|---|---|---|---|---|---|---|---|
1 | 川麦104 | P∶P | 18.46±3.08 | 1.96±0.18* | 23.58±2.62 | 1.72±0.16* | 21.45±2.57* | 1.46±0.14 |
W∶W | 18.27±2.81 | 1.87±0.18 | 23.64±2.91 | 1.65±0.15 | 22.77±2.57 | 1.42±0.16 | ||
2 | 藁城8901 | P∶P | 15.12±2.44 | 1.71±0.26 | 21.74±2.55 | 1.53±0.18 | 20.90±1.36 | 1.33±0.12 |
W∶W | 14.63±2.39 | 1.66±0.21 | 21.20±2.34 | 1.51±0.13 | 21.65±2.29 | 1.34±0.12 | ||
3 | 漯麦163 | P∶P | 15.34±2.96 | 1.87±0.28 | 21.27±2.60 | 1.72±0.13 | 19.43±1.92* | 1.44±0.14 |
W∶W | 15.77±2.78 | 1.83±0.23 | 22.14±2.34 | 1.66±0.20 | 20.83±2.38 | 1.43±0.19 | ||
4 | 宁麦资126 | P∶P | 15.61±2.47 | 1.88±0.20 | 22.63±2.24 | 1.72±0.14 | 21.78±2.41 | 1.47±0.14 |
W∶W | 16.01±3.11 | 1.89±0.20 | 22.36±2.26 | 1.70±0.18 | 22.35±2.45 | 1.50±0.16 | ||
5 | 百农207 | P∶P | 15.35±2.45 | 2.09±0.16 | 20.83±2.25 | 1.83±0.14* | 18.13±2.01** | 1.66±0.13* |
W∶W | 16.01±2.53 | 2.02±0.22 | 21.29±2.28 | 1.76±0.14 | 19.35±1.80 | 1.60±0.12 | ||
6 | 西农979 | P∶P | 15.91±2.86 | 1.96±0.20** | 21.48±2.50 | 1.73±0.14** | 18.92±2.02* | 1.55±0.14** |
W∶W | 15.80±3.01 | 1.85±0.18 | 21.58±2.79 | 1.65±0.14 | 19.61±2.28 | 1.49±0.14 | ||
7 | 中麦578 | P∶P | 16.86±2.80 | 1.80±0.24 | 21.91±2.45 | 1.56±0.14 | 20.37±1.96 | 1.35±0.17 |
W∶W | 16.43±2.47 | 1.76±0.23 | 21.39±1.96 | 1.56±0.18 | 20.09±2.02 | 1.35±0.16 |
表中数据为平均值±标准差;*代表在P<0.05水平上差异显著;**代表在P<0.01水平上差异显著;下同
The data in the table are the mean ± SD;* indicates a significant difference at the P<0.05 level;** indicates a significant difference at the P<0.01 level;The same as below
对株型分析发现,藁城8901、漯麦163、宁麦资126、百农207及中麦578群体中阳性植株的株高较阴性植株显著降低,其余两个背景也有下降,整体降低水平在3~8 cm(

图4 1PS易位系的遗传效应分析
Fig.4 Genetic effect analysis of 1PS translocation line
W∶W表示纯合阳性植株;P∶P表示纯合阴性植株;黄色圆点代表群体内单株;下同
W∶W indicates homozygous positive plants; P∶P indicates homozygous positive plants; The yellow dots are the individual plants of different populations; The same as below
冰草1PL导入小麦后,7个小麦背景均表现出在旗叶宽、倒二叶宽、倒三叶宽等叶型上纯合阳性较阴性植株有显著下降的趋势。对于旗叶长,百农607、漯麦163、西农979、百农207群体纯合阳性植株显著降低,藁城8901、宁麦资126群体有降低但未达显著。另外,漯麦163、西农979及百农207群体倒二叶长也显著缩短,分别降低了1.37 cm、1.9 cm和0.85 cm(
序号 Number | 品种 Variety | 类型 Type | 旗叶长(cm) Length of flag leaf | 旗叶宽(cm) Width of flag leaf | 倒二叶长(cm) Length of top second leaf | 倒二叶宽(cm) Width of top second leaf | 倒三叶长(cm) Length of top third leaf | 倒三叶宽(cm) Width of top third leaf |
---|---|---|---|---|---|---|---|---|
1 | 百农607 | P∶P | 14.91±2.00* | 1.81±0.16** | 19.32±1.88 | 1.62±0.13** | 19.59±1.82 | 1.46±0.14** |
W∶W | 16.06±2.03 | 2.05±0.15 | 20.02±1.56 | 1.78±0.11 | 19.74±1.77 | 1.53±0.12 | ||
2 | 藁城8901 | P∶P | 15.23±2.53 | 1.70±0.17** | 20.44±2.15 | 1.54±0.10** | 19.95±2.32 | 1.37±0.13* |
W∶W | 16.09±2.60 | 1.85±0.19 | 20.84±2.01 | 1.65±0.12 | 20.32±1.75 | 1.43±0.11 | ||
3 | 漯麦163 | P∶P | 14.27±2.45** | 1.54±0.14** | 20.21±2.14** | 1.48±0.11** | 20.36±2.14 | 1.36±0.11** |
W∶W | 16.04±2.89 | 1.77±0.19 | 21.58±2.57 | 1.61±0.14 | 21.00±2.23 | 1.45±0.11 | ||
4 | 宁麦资126 | P∶P | 14.95±2.80 | 1.61±0.15** | 21.71±2.68 | 1.55±0.12** | 22.52±2.55 | 1.43±0.11 |
W∶W | 16.02±2.97 | 1.80±0.19 | 22.61±2.66 | 1.65±0.13 | 22.57±2.53 | 1.48±0.14 | ||
5 | 百农207 | P∶P | 16.35±2.64** | 1.88±0.18** | 23.11±2.65* | 1.73±0.17** | 22.69±1.98 | 1.60±0.13** |
W∶W | 18.05±3.13 | 2.12±0.20 | 23.96±2.38 | 1.87±0.15 | 21.95±2.33 | 1.68±0.14 | ||
6 | 西农979 | P∶P | 13.98±2.65** | 1.59±0.17** | 18.30±2.11** | 1.50±0.12** | 18.60±1.95** | 1.41±0.12** |
W∶W | 16.15±2.46 | 1.81±0.18 | 20.20±2.23 | 1.66±0.13 | 19.98±1.99 | 1.50±0.13 | ||
7 | 中麦578 | P∶P | 15.51±2.50 | 1.68±0.15** | 20.43±2.36 | 1.53±0.10** | 20.18±1.53 | 1.38±0.08** |
W∶W | 16.08±2.13 | 1.82±0.14 | 21.19±2.21 | 1.64±0.13 | 20.88±1.68 | 1.45±0.10 |
藁城8901、西农979和中麦578群体的阳性植株株高较阴性植株显著下降,其他背景中也有降低,但未达到显著水平(

图5 1PL易位系的遗传效应分析
Fig.5 Genetic effect analysis of 1PL translocation line
本研究发现1PS易位片段具有降低株高和倒三叶长度的显著效应,1PL易位片段同时具有降低株高、减小旗叶、倒二叶叶片大小的效应。为了在F2分离群体中筛选出株型明显改变,产量性状不受影响的单株,通过筛选旗叶明显变小、株高降低,但是有效分蘖、穗粒数、千粒重保持在受体小麦品种水平之上的单株,以便选出携带外源冰草1PS和1PL易位片段、株型明显改良的优异单株,供未来育种利用。结果发现,从14个F2分离群体中选出符合目标性状的单株75个(详见https://doi.org/10.13430/j.cnki.jpgr. 20230810002,

图6 部分株型改良的纯合易位植株的筛选
Fig.6 Some excellent individual plants with plant type improvement
蓝色和紫色虚线的左上角为选择范围;粉色圆点为选出的优良单株;黑色圆点为群体内单株
The upper left corner of the blue and purple dotted lines is the selection range; The pink dots are the selected excellent individual plants; The black dots are the individual plants of different populations
Wang
作为光合作用的主要器官,旗叶、倒二叶、倒三叶的大小与产量性状密切相关。研究表明,旗叶的大小和生理特征共同决定光合效率和叶片功能期,在产量形成中起重要作
远缘杂交产生的易位系后代在育种上被广泛应用。最为成功的是小麦-黑麦T1BL·1RS易位系的利用,由于其对环境的广泛适应性和稳产性在小麦育种中做出了巨大贡
参考文献
庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003: 122-125 [百度学术]
Zhuang Q S. Chinese wheat improvement and pedigree analysis. Beijing: China Agricultural Press, 2003: 122-125 [百度学术]
傅兆麟. 小麦超高产基因型的株型结构问题. 云南农业大学学报:自然科学版, 2007, 22(1): 17-22 [百度学术]
Fu Z L. Exploring on plant-type of super-high-yield genotype in wheat. Journal of Yunnan Agriculture University: Natural Science, 2007, 22(1): 17-22 [百度学术]
蔡跃,肖宁,陈梓春,吴云雨,余玲,刘建菊,时薇,潘存红,李育红,周长海,季红娟,黄年生,张小祥,李爱宏. 调控水稻分蘖角的分子机制研究进展. 植物遗传资源学报, 2023, 24(2): 332-339 [百度学术]
Cai Y, Xiao N, Chen Z C, Wu Y Y, Yu L, Liu J J, Shi W, Pan C H, Li Y H, Zhou C H, Ji H J, Huang N S, Zhang X X, Li A H. Research progress on molecular mechanisms regulating rice tiller angle. Journal of Plant Genetic Resources, 2023, 24(2): 332-339 [百度学术]
Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17(3): 385-403 [百度学术]
Cao Y, Zhong Z, Wang H, Shen R. Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnology Journal, 2022, 20: 426-436 [百度学术]
Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences USA, 2002, 99(13): 9043-9048 [百度学术]
Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green Revolution’ genes encode mutant giberellin response modulators. Nature, 1999, 400(15): 256-261 [百度学术]
茹振钢,冯素伟,李淦. 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015, 48(17): 3388-3393 [百度学术]
Ru Z G, Feng S W, Li G. High-yield potential and effective ways of wheat in Yellow & Huai River Valley Facultative Winter Wheat Region. Scientia Agricultura Sinica, 2015, 48(17): 3388-3393 [百度学术]
Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: Morphological and biochemical aspects of light capture. Journal of Experimental Botany, 2000, 51: 475-485 [百度学术]
Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Habib A, Mu Y, Tang H P, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, Kang H Y, Chen G D, Lan X J. Flag leaf size and posture of bread wheat: Genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 2020, 133(1): 297-315 [百度学术]
Liu Y X, Tao Y, Wang Z Q, Guo Q L, Wu F K, Yang X L, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Molecular Breeding, 2018, 38(1): 1-11 [百度学术]
Zhao C H, Bao Y G, Wang X Q, Yu H T, Ding A M, Guan C H, Cui J P, Wu Y Z, Sun H, Li X F, Zhai D F, Li L Z, Wang H G, Cui F. QTL for flag leaf size and their influence on yield-related traits in wheat. Euphytica, 2018, 214: 209 [百度学术]
Yan X, Wang S, Yang B, Zhang W, Jing R. QTL mapping for fag leaf-related traits and genetic effect of QFLW-6A on fag leaf width using two related introgression line populations in wheat. PLoS ONE, 2020, 15: e0229912 [百度学术]
Song L Q, Lu Y Q, Zhang J P, PAN C L, Yang X M, Li X Q, Liu W H, Li L H. Cytological and molecular analysis of wheat-Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Genome, 2016, 59(10): 840-850 [百度学术]
Jiang B, Liu T G, Li H H, Han H M, Li L H, Zhang J P, Yang X M, Zhou S H, Li X Q, Liu W H. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Frontiers in Plant Science, 2018, 9: 817-829 [百度学术]
Ji X J, Liu T G, Xu S R, Wang Z Y, Han H M, Zhou S H, Guo B J, Zhang J P, Yang X M, Li X Q, Li L H, Liu W H. Comparative transcriptome analysis reveals the gene expression and regulatory characteristics of broad-spectrum immunity to leaf rust in a wheat-Agropyron cristatum 2P addition line. International Journal of Molecular Sciences, 2022, 23(1): 7370 [百度学术]
Dewey D R.The genomic system of classification as a guide to intergeneric hybridization with the Perennial Triticeae//Gustafson J P.Gene manipulation in plant improvement. New York: Plenum Press,1984:209-279 [百度学术]
李立会,赵华,杨欣明,周荣华,李秀全,董玉琛. 小麦-冰草异源附加系的创建──Ⅱ.异源染色质的检测与培育途径分析. 遗传学报, 1998, 25(6): 538-544 [百度学术]
Li L H, Zhao H, Yang X M, Zhou R H, Li X Q, Dong Y C. Establishment of wheat-Agropyron cristatum alien addition lines II. Identification of alien chromosome and analysis of development approaches. Journal of Genetics and Genomics, 1998, 25(6): 538-544 [百度学术]
Pan C L, Li Q F, Lu Y Q, Zhang J P, Yang X M, Li X Q, Li L H, Liu W H. Chromosomal localization of genes conferring desirable agronomic traits from Agropyron cristatum chromosome 1P. PLoS ONE, 2017, 12(4): e0175265 [百度学术]
Wang X, Han B H, Sun Y Y, Kang X L, Zhang M, Han H M, Zhou S H, Liu W H, Lu Y Q, Yang X M, Li X Q, Zhang J P, Liu X, Li L H. Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theoretical and Applied Genetics, 2022, 135(6): 1951-1963 [百度学术]
Fu S L, Chen L, Wang Y Y, Li M, Yang Z J, Qiu L, Yan B J, Ren Z L, Tang Z X. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Scientific Reports, 2015, 5: 10552 [百度学术]
Sun Y Y, Han H M, Wang X, Han B H, Zhou S H, Zhang M, Liu W H, Li X Q, Guo X M, Lu Y Q, Yang X M, Zhang J P, Liu X, Li L H. Development and application of universal ND-FISH probes for detecting P-genome chromosomes based on Agropyron cristatum transposable elements. Molecular Breeding, 2022, 42: 48 [百度学术]
Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1983, 1(4): 19-21 [百度学术]
Grewal S, Hubbart-Edwards S, Yang C Y, Devi U, Baker L, Heath J, Ashling S, Scholefield D, Howells C, Yarde J, Isaac P, King I P, King J. Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genotyping assays. Plant Biotechnology Journal, 2020, 18(3): 743-755 [百度学术]
李立会,李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 9-28 [百度学术]
Li L H, Li X Q. Description specification and data standard of wheat germplasm resources. Beijing: China Agricultural Press, 2006: 9-28 [百度学术]
Bayat H, Nemati H, Tehranifar A, Gazanchian A. Screening different crested wheatgrass (Agropyron cristatum (L.) Gaertner.) accessions for drought stress tolerance. Archives of Agronomy and Soil Science, 2016, 62: 769-780 [百度学术]
Limin A, Fowler D. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome, 1990, 33: 581-584 [百度学术]
孙致良,王玉叶,刘鹏起,吴敏楚. 稻麦矮化育种和最佳株型设计. 青岛农业大学学报:自然科学版, 1989,6 (3): 49-58 [百度学术]
Sun Z L, Wang Y Y, Liu P Q, Wu M C. Rice and wheat dwarfing breeding and optimal plant type design. Journal of Qingdao Agricultural University: Natural Science, 1989, 6(3): 49-58 [百度学术]
吕广德,靳雪梅,郭营,赵岩,钱兆国,吴科,李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22(3): 571-582 [百度学术]
Lv G D, Jin X M, Guo Y, Zhao Y, Qian Z G, Wu K, Li S S. Advances in molecular genetics of wheat plant height. Journal of Plant Genetic Resources, 2021, 22(3): 571-582 [百度学术]
Wang D W. Wide hybridization: Engineering the next leap in wheat yield. Journal of Genetics Genomics, 2009, 36: 509-510 [百度学术]
周阳,何中虎,张改生,夏兰琴,陈新民,高永超,井赵斌,于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30(6): 531-535 [百度学术]
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agronomica Sinica, 2004, 30(6): 531-535 [百度学术]
Zhang R Q, Zhang M Y, Wang X, Chen P D. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theoretical and Applied Genetics, 2014, 127(3): 523-533 [百度学术]
Du W L, Wang J, Pang Y H, Wu J, Zhao J X, Liu S H, Yang Q H, Chen X H. Development and application of PCR markers specific to the 1Ns chromosome of Psathyrostachys huashanica Keng with leaf rust resistance. Euphytica, 2014, 200(2): 207-220 [百度学术]
刘登才,郑有良,王志容,侯永翠,兰秀锦,魏育明. 影响小麦赤霉病抗性的Lophopyrum elongatum染色体定位. 四川农业大学学报, 2021, 19(3): 200-205 [百度学术]
Liu D C, Zheng Y L, Wang Z R, Hou Y C, Lan X J, Wei Y M. Distribution of chromosomes in diploid Lophopyrum elongatum (Host) A. Löve that influences resistance to head scab of common wheat. Journal of Sichuan Agricultural University, 2021, 19(3): 200-205 [百度学术]
郭军,卢明娇,武智民,李豪圣,宫文萍,王灿国,程敦公,刘爱峰,曹新有,刘成,翟胜男,杨足君,刘建军,孔令让,赵振东,宋健民. 1
Guo J, Lu M J, Wu Z M, Li H S, Gong W P, Wang C G, Cheng D G, Liu A F, Cao X Y, Liu C, Zhai S N, Yang Z J, Liu J J, Kong L R, Zhao Z D, Song J M. Effects of Thinopyrum elongatum chromosome 1