摘要
地方种是小麦育种的重要种质资源,为了解矮秆基因在地方种中的分布,本研究检测了甘肃省地方种矮秆基因等位变异类型及其在不同麦区的分布频率。结果表明:(1)地方种Rht-B1b和Rht-D1b的频率极低;41.4%的地方种携带Rht8,且春麦区高于冬麦区;46.7%的地方种含Rht24b,春麦区低于冬麦区。Ppd-D1a的频率仅17.8%,且春麦区低于冬麦区。另外,仅检测到Rht-D1b/Rht8、Rht-D1b/Rht24b和Rht8/Rht24b 3种组合,频率分别为0.2%、0.5%和12.8%。(2)地方种携带的矮秆基因及其组合分布频率低于育成种,且差异较大。不同来源育成品种携带的优势矮秆等位变异和频率不同,清水试验站的品种以Rht-D1b、Rht8和Rht24b为主,黄羊试验站的品种以Rht-B1b、Rht-D1b、Rht8和Rht24b为主,甘谷试验站的品种以Rht8和Rht24b为主。清水和黄羊试验站的品种秆矮、丰产性好,可在河西、沿黄灌区、陇南、陇东的小麦育种中应用;甘谷试验站的品种茎秆高,抗病性突出,可应用于定西、天水、陇南和陇东等旱地小麦的抗病改良。(3)基于分子标记检测结果,筛选出15份地方种和31份育成种,以上材料均携带2个及以上降秆基因(包括矮秆基因或Ppd-D1a),可为甘肃不同麦区小麦矮秆育种提供亲本材料。
小麦株高与抗倒和产量潜力关系密切,降低株高是小麦育种的重要目标。20世纪60年代以来,矮秆基因Rht1和Rht2的广泛应用在全球范围内极大提升小麦产量。迄今,国内外已定位25个矮秆基因,并鉴定30多个矮秆等位变异。其中,Rht-B1b(Rht1)、Rht-D1b(Rht2)、Rht-B1c(Rht3)、Rht-D1c(Rht10)、Rht-B1e(Rht11)、Rht-B1p(Rht17)为赤霉素不敏感型(GA-insensitive,gibberellic acid insensitive),而Rht8、Rht-B13b(Rht13)、Rht24、Rht25及其他矮秆基因均为赤霉素敏感型(GA-sensitive,gibberellic acid sensitive
种质资源是小麦新品种选育的物质基础,现代小麦品种遗传基础狭窄,优异基因匮乏。从小麦近缘种、地方种中鉴定优异等位基因势在必行。小麦地方种具有抗逆性强、耐瘠薄,不易落粒的优点。但由于植株高大、秆软且易倒伏等原因,限制了其在育种和生产中的广泛应用。利用分子标记检测小麦地方种矮秆基因的分布状况,有利于筛选携带目标矮秆基因的种质,可拓宽小麦育种亲本的选择范围。本研究以甘肃省小麦地方种为研究材料,利用分子标记对其矮秆基因进行检测,并以甘肃省农业科学院不同试验站的育成品种做比较,分析甘肃省不同麦区地方种矮秆基因的分布状况及来源,筛选优异地方种和育成品种,为小麦矮秆育种提供参考。
本研究采用甘肃省农作物种质资源库地方种445份(详见https://doi.org/10.13430/j.cnki.jpgr. 20230804001,
基因 Gene | 标记 Marker | 引物序列(5'-3') Primer sequence (5'-3') | 等位变异 Allelic variation | 参考文献 Reference |
---|---|---|---|---|
Rht-B1 | Rht-B1_SNP-A | GAAGGTGACCAAGTTCATGCTCCCATGGCCATCTCCAGCTG | FAM/G, Rht-B1a |
[ |
Rht-B1_SNP-B | GAAGGTCGGAGTCAACGGATTCCCATGGCCATCTCCAGCTA | HEX/A, Rht-B1b | ||
Rht-B1_SNP-C | TCGGGTACAAGGTGCGGGCG | |||
Rht-D1 | Rht-D1_SNP-A | GAAGGTGACCAAGTTCATGCTCATGGCCATCTCGAGCTGCTC | FAM/C, Rht-D1a |
[ |
Rht-D1_SNP-B | GAAGGTCGGAGTCAACGGATTCATGGCCATCTCGAGCTGCTA | HEX/A, Rht-D1b | ||
Rht-D1_SNP-C | CGGGTACAAGGTGCGCGCC | |||
Rht8 | DG273-Fw | CTTGACGAGCTTGGAAATGG | 391 bp rht8,421 bp Rht8 |
[ |
DG273-Rv | GCAACAAGTGCTTCTGTCGT | |||
Rht24 | S1066954-A | GAAGGTGACCAAGTTCATGCTAGTGTCGGCATGACTGATTCTCC | FAM/C, Rht24a |
[ |
S1066954-B | GAAGGTCGGAGTCAACGGATTAGTGTCGGCATGACTGATTCTCA | HEX/A, Rht24b | ||
S1066954-common | CCAATCATCAAGGTGACTGTCATCA | |||
S983322-A | GAAGGTGACCAAGTTCATGCTCCCAGCGCAGTCTGTCCTG | FAM/G, Rht24b |
[ | |
S983322-B | GAAGGTCGGAGTCAACGGATTAGCCCAGCGCAGTCTGTCCTA | HEX/A, Rht24a | ||
S983322-common | ACGCCATGGAAATTCTCGAGAT | |||
Ppd-D1 | TaPpd-D1-F1 | ACGCCTCCCACTACACTG | 288 bp Ppd-D1a |
[ |
TaPpd-D1-R1 | TGTTGGTTCAAACAGAGAGC | 414 bp Ppd-D1b |
[ | |
TaPpd-D1-R2 | CACTGGTGGTAGCTGAGATT |
Rht-B
KASP标记包括3条引物A、B和C,其中C为共用引物,标记Rht-B1、Rht-D1及S1066954的A引物带FAM荧光基团,激发蓝光,检测野生型,B带HEX荧光基团,激发红光,检测突变类型。而S983322标记A引物带FAM荧光基团,激发蓝光,检测突变型,B带HEX荧光基团,激发红光,检测野生型。Rht-B1b、Rht-D1b和Rht-24b矮秆基因的检测均采用标准的KASP体系:共用引物(100 µmmol/L)40 µL,两条竞争性引物(100 µmol/L)各12 µL,反向引物(100 µmol/L)30 µL。KASP标记检测每个反应体系包含:2.5 µL 2× KASP master Mix(LGC,英国),0.06 µL KASP引物预混液,DNA模板1 µL(30~50 ng/µL),ddH2O补充到5 µL。PCR反应程序如下:先95 ℃预变性5 min,执行10个循环的touchdown程序(94 ℃变性20 s,65 ℃退火25 s,每个循环降0.8 ℃),再执行30个循环(95 ℃变性20 s,57 ℃退火60 s),4 ℃保存PCR产物。PCR完成后放在酶标仪中读取终端荧光数据,随后导入Kluster Caller软件进行基因分型。DG273标记扩增条带391 bp为高秆rht8基因类型,421 bp为矮秆Rht8类型。Ppd-D1位点3个标记采用多重PCR,288 bp片段为Ppd-D1a类型,414 bp片段为Ppd-D1b类
所有检测材料(地方种和育成品种)中仅7份(1.4%)携带矮秆等位变异Rht-B1b,全部为育成品种(系);地方种除5份材料未成功分型及1份材料为杂合类型外,其余439份全部携带高秆等位变异Rht-B1a。针对Rht-D1位点,30份(5.8%)材料携带矮秆等位变异Rht-D1b,地方种仅4份(0.9%)材料携带该基因,即无芒大白麦(省库编号0599),紫粒小麦(0894),三根芒(0917),台子39(0876),其余均为高秆等位变异Rht-D1a。用DG273扩增所有材料,220份(42.6%)携带矮秆等位变异Rht8,其中184份(41.4%)地方种有Rht8。用Rht24的KASP标记S1066954和S983322分别检测所有材料,239份携带矮秆等位变异Rht24b,其中地方种208份(46.7%)携带该等位变异;用TaPpd-D1-F1、TaPpd-D1-R1和TaPpd-D1-R2的多重PCR检测所有参试材料,147份携带光周期非敏感性等位变异Ppd-D1a,其中79份地方种(17.8%)有此等位变异。携带Rht8/Rht24、Rht-D1b/Rht8、Rht-D1b/Rht24b组合的地方种分别为57份(12.8%)、1份(0.2%)和2份(0.5%)。育成品种中携带Rht-B1b、Rht-D1b、Rht8、Rht24b、Rht8/Rht24、Rht-B1b/Rht8、Rht-B1b/Rht24b、Rht-D1b/Rht8、Rht-D1b/Rht24b、Rht-D1b/Rht24b/Rht8和Ppd-D1a分布频率分别为9.9%、36.6%、50.7%、43.7%、19.7%、1.4%、5.6%、5.6%、1.4%、5.6%和95.8%。综上所述,对Rht-B1b和Rht8而言,育成品种两基因分布频率较地方种净增加9.9%和9.3%,Rht24b在两类品种(系)中的分布频率较接近,而Rht8/Rht24组合在育成品种中的分布频率较地方种净增加近7%,Rht-B1b、Rht-D1b及组合(Rht-B1b/Rht8、Rht-B1b/Rht24b、Rht-D1b/Rht24b、Rht-D1b/Rht24b/Rht8)和Ppd-D1a在育成品种(系)中分布频率明显高于地方品种,Rht-B1b与Rht8等两个基因在育成品种中的净增加频率接近(
基因型 Combination | 检测总材料 Total varieties | 地方种 Landrace | 育成品种(系) Cultivar(line) | |||||
---|---|---|---|---|---|---|---|---|
份数 Number | 频率 (%) Frequency | 份数 Number | 频率 (%) Frequency | 份数 Number | 频率(%) Frequency | |||
Rht-B1b | 7 | 1.4 | 0 | 0 | 7 | 9.9 | ||
Rht-D1b | 30 | 5.8 | 4 | 0.9 | 26 | 36.6 | ||
Rht8 | 220 | 42.6 | 184 | 41.4 | 36 | 50.7 | ||
Rht24b | 239 | 46.3 | 208 | 46.7 | 31 | 43.7 | ||
Rht8/Rht24b | 71 | 13.8 | 57 | 12.8 | 14 | 19.7 | ||
Rht-B1b/Rht8 | 1 | 0.2 | 0 | 0 | 1 | 1.4 | ||
Rht-B1b/Rht24b | 4 | 0.8 | 0 | 0 | 4 | 5.6 | ||
Rht-D1b/Rht8 | 5 | 1.0 | 1 | 0.2 | 4 | 5.6 | ||
Rht-D1b/Rht24b | 3 | 0.6 | 2 | 0.5 | 1 | 1.4 | ||
Ppd-D1a | 147 | 28.5 | 79 | 17.8 | 68 | 95.8 | ||
Rht-D1b/Rht24b/Rht8 | 4 | 0.8 | 0 | 0 | 4 | 5.6 |
频率为检测到材料占不同来源(总品种、地方品种和育成品种)品种数的比例
The frequenc
甘肃省地形复杂,东西长,南北窄,依据生态可分为春麦区(包括河西灌溉春麦区、洮岷高寒春麦区、中部旱地春麦区)和冬麦区(包括嘉陵江上游冬麦区、渭河上游冬麦区、陇东旱塬冬麦区)。Rht-B1b和Rht-D1b在地方种中分布极低,分别为0和4份(0.9%)(
基因型 Combination | 总份数 Total varieties | 总频率 (%) Total frequency | 份数/频率(%) Number/ Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|---|
河西灌区 春麦区HEXISW | 洮岷高寒 春麦区TMGHSW | 中部旱地 春麦区 ZHBUSW | 嘉陵江上 游冬麦区JLJSYWW | 渭河上游 冬麦区WHSYWW | 陇东旱塬 冬麦区LDHYWW | 未标注种 植区域 UM | ||||
Rht-D1b | 4 | 0.90 | 0/0 | 0/0 | 1/2.3 | 0/0 | 0/0 | 0/0 | 3/2.3 | |
Rht8 | 184 | 41.40 | 59/50.4 | 19/48.7 | 19/40.4 | 17/34.0 | 11/23.9 | 7/15.6 | 52/51.5 | |
Rht-24b | 208 | 46.70 | 49/41.9 | 14/35.9 | 7/14.9 | 39/78.0 | 34/73.9 | 36/80.0 | 29/28.7 | |
Ppd-D1a | 79 | 17.80 | 11/9.4 | 2/5.1 | 6/12.8 | 16/32.0 | 10/21.7 | 16/35.6 | 18/17.8 | |
Rht-D1b/Rht-24b | 2 | 0.50 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 2/19.8 | |
Rht8/Rht-24b | 57 | 12.80 | 17/14.5 | 6/15.4 | 1/2.1 | 12/24.0 | 5/10.9 | 4/8.9 | 12/11.9 | |
Rht-D1b/Ppd-D1a | 2 | 0.50 | 0/0 | 0/0 | 1/2.1 | 0/0 | 0/0 | 0/0 | 1/1.0 | |
Rht-D1b/Rht8 | 1 | 0.30 | 0/0 | 0/0 | 1/2.1 | 0/0 | 0/0 | 0/0 | 0/0 | |
Rht8/Ppd-D1a | 21 | 4.70 | 3/2.6 | 0/0 | 2/4.3 | 5/10.0 | 3/6.5 | 1/2.2 | 7/6.9 | |
Rht-24b/Ppd-D1a | 69 | 15.50 | 7/6.0 | 2/5.1 | 4/8.5 | 15/30.0 | 10/21.7 | 16/35.6 | 15/14.9 | |
Rht-D1b/Rht-24b/Ppd-D1a | 2 | 0.50 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 2/19.8 | |
Rht8/Rht-24b/Ppd-D1a | 14 | 3.20 | 1/0.9 | 0/0 | 0/0 | 4/8.0 | 3/6.5 | 1/2.2 | 5/5.0 |
HEXISW:Hexi irrigation spring wheat region;TMGHSW:High and cold Taomin spring wheat region;ZHBUSW:Central dry spring wheat region;JLJSYWW:Upper Jialing River winter wheat region;WHSYWW: Wei River winter wheat region;LDHYWW:Longdong winter drought tableland wheat area;UM:Unmarked
不同矮秆基因等位变异与Ppd-D1a的基因型组合(Rht-D1b/Ppd-D1a、Rht8/Ppd-D1a、Rht-24b/Ppd-D1a、Rht-D1b/Rht-24b/Ppd-D1a和Rht8/Rht-24b/Ppd-D1a)的频率相差较大。2份材料携带Rht-D1b/Ppd-D1a,其中1份来自中部旱地春麦区;含Rht8/Ppd-D1a组合的材料21份(4.7%),其中,河西灌溉春麦区、洮岷高寒春麦区和中部旱地春麦区分别有3份(2.6%)、0份和2份(4.3%),嘉陵江上游冬麦区、渭河上游冬麦区和陇东旱塬冬麦区分别有5份(10.0%)、3份(6.5%)和1份(2.2%)。携带Rht-24b/Ppd-D1a组合的材料69份(15.5%),其中,河西灌溉春麦区、洮岷高寒春麦区和中部旱地春麦区分别有7份(6.0%)、2份(5.1%)和4份(8.5%);嘉陵江上游冬麦区、渭河上游冬麦区和陇东旱塬冬麦区分别有15份(30.0%)、10份(21.7%)和16份(35.6%)。携带Rht8/Rht-24b/Ppd-D1a的材料14份(3.2%)。其中,河西灌溉春麦区、洮岷高寒春麦区和中部旱地春麦区分别有1份(0.9%)、0份和0份;嘉陵江上游冬麦区、渭河上游冬麦区和陇东旱塬冬麦区分别有4份(8.0%)、3份(6.5%)和1份(2.2%)(
被检测的不同来源的育成品种携带的矮秆基因及其组合不同,且等位变异类型及其分布频率差异较大(
来源 Origin | 总份数 Total varieties | 份数/频率(%) Number/ Frequency | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rht-B1b | Rht-D1b | Rht8 | Rht24b | Ppd-D1a | Rht-B1b/ Rht24b | Rht-D1b/ Rht24b | Rht-D1b/ Rht8 | Rht24b/ Rht-D1b/Rht8 | Rht8/ Rht24b | ||
清水试验站 Qingshui test station | 30 | 1/3.3 | 20/66.7 | 8/26.7 | 9/30.0 | 29/96.7 | 1/3.3 | 1/3.3 | 3/10.0 | 2/6.7 | 0/0 |
甘谷试验站 Gangu test station | 29 | 1/3.5 | 0/0 | 25/86.2 | 17/58.6 | 28/96.6 | 1/3.5 | 0/0 | 0/0 | 0/0 | 14/48.3 |
黄羊试验站 Huangyang test station | 12 | 5/41.7 | 6/50.0 | 3/25.0 | 5/41.7 | 11/91.7 | 2/16.7 | 0/0 | 1/8.3 | 2/16.7 | 0/0 |
445份地方种株高范围在57.0~171.5 cm,其中90.7%的材料超过90 cm。绿色革命矮秆基因Rht-B1b和Rht-D1b的分布频率分别为0和0.9%,Rht8和Rht-24b的分布频率分别为41.4%和46.7%;育成品种以上等位变异分布频率分别为9.9%、36.6%、50.7%和43.7%,表明育成品种Rht-B1b和Rht-D1b分布频率远高于地方种,但Rht8和Rht-24b的分布频率接近(
序号 Code | 名称 Name | 系谱 Pedigree | 株高(cm) Plant height | Rht-24b | Rht-B1b | Rht-D1b | Rht8 | Ppd-D1a | 来源 Origin |
---|---|---|---|---|---|---|---|---|---|
1 | 兰天33 | 兰天23//周92031 | 77.6 | - | - | + | - | + | 清水试验站 |
2 | 兰天34 | SXAF4-7/87-121//周9203 | 74.0 | - | - | + | + | + | 清水试验站 |
3 | 兰天35 | 兰天25号/周麦11 | 86.0 | + | + | - | - | + | 清水试验站 |
4 | 兰天36 | 周麦17//SXAF4-7/87-121 | 70.2 | - | - | + | - | + | 清水试验站 |
5 | 兰天37 | 00-301//兰天26 | 90.0 | - | - | + | - | + | 清水试验站 |
6 | 兰天39 | SXAF4-7/87-121//周92031///济麦22 | 70.3 | - | - | + | - | + | 清水试验站 |
7 | 兰天42 | SXAF4-7/87-121//周92031///矮抗58 | 80.0 | - | - | + | + | + | 清水试验站 |
8 | 兰天43 | 兰天23号/周麦18 | 77.0 | - | - | + | - | + | 清水试验站 |
9 | 兰天45 | 8927V/周麦16 | 77.0 | + | - | + | - | + | 清水试验站 |
10 | 兰天47 | 天94-3///中4/S394//咸农4号洛05-095//周麦17/兰天23 | 75.0 | - | - | + | + | + | 清水试验站 |
11 | 兰天48 | 06-413/周麦23 | 67.0 | + | - | + | + | + | 清水试验站 |
12 | 兰天52 | / | / | + | - | - | + | + | 清水试验站 |
13 | 兰天53 | / | / | - | - | + | - | + | 清水试验站 |
14 | 兰天54 | 06-209/周麦36 | 66.0 | + | - | + | + | + | 清水试验站 |
15 | 兰天55 | / | / | - | - | + | + | + | 清水试验站 |
16 | 兰天56 | 兰天33//GS冀麦38/92R137 | 89.0 | - | - | - | - | + | 清水试验站 |
17 | 兰天59 | 兰天33号//豫麦47/PH82-2-2 | 61.0 | - | - | + | - | + | 清水试验站 |
18 | 兰天60 | 周麦17//SXAF4-7/87-121///中麦60 | 65.0 | - | - | + | - | + | 清水试验站 |
19 | 兰天61 | 兰天34/06-129 | 78.0 | - | - | + | - | + | 清水试验站 |
20 | 兰天11-224 | 06-03-10/周麦16 | 96.0 | + | - | - | - | + | 清水试验站 |
21 | 兰天13-10 | 周麦17//SXAF4-7/87-121///06-209 | 84.0 | / | - | + | - | + | 清水试验站 |
22 | 兰天12-24 | 兰天30/Yr15 | 98.0 | + | - | - | - | + | 清水试验站 |
23 | 兰天14-157 | SXAF4-7/87-121//周92031///FVNDRL-EA900 | 88.0 | - | - | + | - | + | 清水试验站 |
24 | 兰天14-66 | SXAF4-7/87-121//周9203///06-129 | 86.0 | - | - | + | - | + | 清水试验站 |
25 | 阿夫 | 意大利 | 107.0 | - | - | - | + | - | 清水试验站 |
26 | 辉县红选系 | / | 65.0 | - | - | + | - | + | 清水试验站 |
27 | 兰天25 | 92-72/Mo(s)311 | 90.0 | + | - | - | - | + | 清水试验站 |
28 | 兰天26 | Flansers/兰天10 | 100.0 | - | - | - | - | + | 清水试验站 |
29 | 兰航选122 | 兰天10诱变 | 96.0 | / | - | - | - | + | 清水试验站 |
30 | 晋麦47 | 12057//旱522/K37-20 | 100.0 | + | - | - | - | + | 清水试验站 |
31 | 武春8号 | 石1269///叶考拉/榆293//卡捷姆/榆293 | 85.0 | - | + | - | - | + | 黄羊试验站 |
32 | 武春10号 | 兰杂7086/E64-242 | 84.0 | - | + | - | - | + | 黄羊试验站 |
33 | 陇春30 | / | 85.0 | + | - | + | + | + | 黄羊试验站 |
34 | 陇春39 | 永765/蒙优1 | 87.0 | - | + | - | - | + | 黄羊试验站 |
35 | 陇春41 | / | 86.0 | + | - | + | + | + | 黄羊试验站 |
36 | 陇春42 | 永2312//作871/永3263 | 85.0 | - | - | + | - | + | 黄羊试验站 |
37 | 陇春44 | 99W77-6-1-2/龙96-4839//m248 | 86.0 | + | + | - | - | + | 黄羊试验站 |
38 | WAU23 | / | 75.0 | - | - | + | - | - | 黄羊试验站 |
39 | 永1265 | / | 83.0 | - | - | + | - | + | 黄羊试验站 |
40 | 益鉴13号 | / | 86.0 | + | - | - | - | + | 黄羊试验站 |
41 | 京吉611 | / | 94.0 | + | + | - | - | + | 黄羊试验站 |
42 | 宁春51 | 永3002/宁春4 | 84.0 | - | - | + | + | + | 黄羊试验站 |
43 | 陇鉴9825 | 8924-6/兰天13//Pascal | 88.0 | + | + | - | + | + | 甘谷试验站 |
44 | 陇鉴9826 | 贵农19/兰天 13 | 96.0 | + | - | - | + | + | 甘谷试验站 |
45 | 陇鉴9827 | 定鉴1/洮157MD | 110.0 | + | - | - | + | + | 甘谷试验站 |
46 | 陇鉴9828 | 8654-1/兰天15 | 110.0 | + | - | - | + | + | 甘谷试验站 |
47 | 陇鉴9832 | 贵农19/兰天13 | 115.0 | + | - | - | + | + | 甘谷试验站 |
48 | 陇鉴9833 | 贵农19/兰天18 | 108.0 | + | - | - | + | + | 甘谷试验站 |
49 | 陇鉴9834 | 周98165/兰天6 | 85.0 | + | - | - | + | + | 甘谷试验站 |
50 | ZL17BDNA | / | 114.0 | + | - | - | + | + | 甘谷试验站 |
51 | ZL17BDNA-70 | / | 109.0 | - | - | - | + | + | 甘谷试验站 |
52 | ZL17BDNA-33 | / | 112.0 | + | - | - | + | + | 甘谷试验站 |
53 | ZL17BDNA-147 | / | 109.0 | + | - | - | + | + | 甘谷试验站 |
54 | ZL17BDNA-32 | / | 107.0 | + | - | - | + | + | 甘谷试验站 |
55 | ZL25HY | / | 115.0 | - | - | - | + | + | 甘谷试验站 |
56 | ZL25HY-3 | / | 117.0 | - | - | - | + | + | 甘谷试验站 |
57 | ZL25HY-9 | / | 118.0 | - | - | - | + | + | 甘谷试验站 |
58 | ZL25HY-4 | / | 114.0 | - | - | - | - | - | 甘谷试验站 |
59 | ZL25HY-7 | / | 115.0 | - | - | - | + | + | 甘谷试验站 |
60 | ZL25HY-10 | / | 112.0 | / | - | - | + | + | 甘谷试验站 |
61 | ZL25HY-8 | / | 114.0 | - | - | - | + | + | 甘谷试验站 |
62 | 16-6-8 | 贵协1/兰天20 | 95.0 | + | - | - | + | + | 甘谷试验站 |
63 | 16-9-32 | 陇鉴9343//Cappelle Desprez/兰天10 | 102.0 | - | - | - | + | + | 甘谷试验站 |
64 | 16-9-1 | 陇鉴9343//Cappelle Desprez)/兰天10 | 99.0 | + | - | - | + | + | 甘谷试验站 |
65 | 16-6-10 | 贵协1/ Cappelle Desprez/兰天10 | 95.0 | - | - | - | + | + | 甘谷试验站 |
66 | 16-9-2 | 陇鉴9343/Cappelle Desprez/兰天10 | 105.0 | + | - | - | + | + | 甘谷试验站 |
67 | 16-1-2 | 贵协011-2-6/天98294 | 116.0 | - | - | - | + | + | 甘谷试验站 |
68 | 16-9-3-2 | 陇鉴9343/ Cappelle Desprez/兰天10 | 105.0 | - | - | - | + | + | 甘谷试验站 |
69 | 12-10-1 | 陇鉴9821/黑2-7-1 | 95.0 | + | - | - | + | + | 甘谷试验站 |
70 | 12-9-7-4 | 贵农19/兰天13 | 97.0 | + | - | - | + | + | 甘谷试验站 |
71 | LY935BDNA-17 | / | 113.0 | + | - | - | + | + | 甘谷试验站 |
/表示无数据;+表示有该等位变异;-表示无该等位变异;下同
/ represents no data;+ represents the presence of this allele variation; - represents the absence of this allele variation;The same as below
植株高度与抗倒性、产量密切相关,株高主要由矮秆基因决定。携带Rht-B1b和Rht-D1b的材料在水肥条件下可增强抗倒性,并大幅提升产量,但在干旱少雨条件下不利于提升植株生长活力及产量。Rht-24b和Rht8在干旱条件下不会影响产量潜力的发挥,且在不同降雨量年份株高变化不大,携带这两种基因的材料抗倒性好。鉴于此,从被检测的445份地方种和71份育成品种(系)中筛选携带2个及以上矮秆基因的材料共计46份,其中地方种15份,主要携带Rht-24b、Rht8和Ppd-D1a;这些材料植株高,但抗寒性、抗旱性较强,耐瘠薄,可在甘肃定西安定区、兰州新区、永登、皋兰等高寒旱区小麦育种中充分应用。含有两个矮秆基因,且其中一个为Rht-D1b的地方种仅4份,可在甘肃河西、河东等灌区育种中发挥作用。本研究共筛选到含有两个以上矮秆基因的育成品种(系)共计31份,其中,清水试验站含9份(全部为水地材料),主要携带Rht-24b、Rht-D1b、Rht8和Ppd-D1a;黄羊试验站5份,主要携带Rht-B1b、Rht-D1b、Rht8、Rht-24b和Ppd-D1a;甘谷试验站17份,主要携带Rht8和Rht-24b(
地方种是小麦育种的重要种质资源,为了解矮秆基因在地方种中的分布,本研究检测了4种矮秆等位变异(Rht-B1b、Rht-D1b、Rht8、Rht24b)和一种光周期基因非敏感等位变异(Ppd-D1a)类型及其在不同麦区的分布。在地方种和育成品种中Rht8、Rht24b及Rht8/Rht24分布频率较接近,而育成品种Rht-B1b、Rht-D1b、Ppd-D1a及其组合Rht-B1b/Rht8、Rht-B1b/Rht24b、Rht-D1b/Rht8、Rht-D1b/Rht24b、Rht-D1b/Rht24b/Rht8的分布远高于地方种。4种矮秆等位变异的频率分布趋势为Rht-B1b<Rht-D1b<Rht8<Rht24b,与前人的研究结果一
Rht-B1b和Rht-D1b在不同生态区域的分布具有一定的偏好性,地方种仅4份材料携带Rht-D1b,而育成品种Rht-B1b(9.9%)和Rht-D1b(36.6%)的频率较高,且在清水试验站(66.7%)材料中Rht-D1b的分布频率最高。地方种中Rht8的分布频率春麦区较冬麦区稍高,但冬麦区Rht-24b的分布频率远高于春麦区,在春麦区组合Rht8/Rht-24b的分布频率和冬麦区差异不大;而育成品种中甘谷试验站材料中Rht8(86.2%)和Rht-24b(58.6%)分布频率最高,且Rht8/Rht-24b仅在甘谷试验站检测材料中存在,分布频率为48.3%。本研究中90.7%的地方种株高大于90.0 cm,与不具Rht-B1b和Rht-D1b等位变异有关;而检测的黄羊试验站和清水试验站的品种株高低于甘谷试验站品种(系),与前两者携带高比例Rht-B1b和Rht-D1b有关。由此可见,Rht-B1b和Rht-D1b基本分布在水肥条件较好的区域,Rht8和Rht-24b的适应性强,在所有麦区均有分
株高是影响小麦生产潜力的重要农艺性状,适当降低株高能够增强小麦的抗倒伏能力,有助于提高收获指数,促进高产稳产。Rht-B1b和Rht-D1b 基因分布广泛,世界上70.0%的育成品种中至少含有其一,但本研究育成材料中携带以上两基因的频率仅为46.5%,未发现同时携带这两种基因的材料。清水试验站材料亲本多为周麦系列(来自黄淮麦区),且携带Rht-D1b的频率高,黄羊试验站材料基本以北部冬麦区材料为遗传背景,且Rht-B1b的频率高,这与以上麦区携带对应矮秆等位变异的频率较高有
Rht-B1b和Rht-D1b 最早随日本Norin 10号传播到美国,再到墨西哥的国际玉米小麦改良中心(CIMMYT
此外,矮秆基因在降低株高,提高产量和收获指数的同时,Rht-B1b和Rht-D1b也可降低花药出粉率,提高赤霉病的侵染
序号 Code | 名称 Name | 类型 Type | Rht-24b | Rht-B1b | Rht-D1b | Rht8 | Ppd-D1a |
---|---|---|---|---|---|---|---|
1 | 瞎八斗 | 地方种 | + | - | - | + | - |
2 | 青芒子 | 地方种 | + | - | - | + | - |
3 | 老红早麦 | 地方种 | + | - | - | + | - |
4 | 火里炎 | 地方种 | + | - | - | + | - |
5 | 无芒大白麦 | 地方种 | - | - | + | - | + |
6 | 紫粒小麦 | 地方种 | + | - | + | - | + |
7 | 三根芒 | 地方种 | - | - | + | + | + |
8 | 白不麦 | 地方种 | + | - | - | + | + |
9 | 大口麦 | 地方种 | + | - | - | + | - |
10 | 固原红 | 地方种 | + | - | - | + | + |
11 | 有须小麦 | 地方种 | + | - | - | + | + |
12 | 白扎芒 | 地方种 | + | - | - | + | - |
13 | 一枝麦 | 地方种 | + | - | - | + | - |
14 | 台子39 | 地方种 | + | - | + | - | + |
15 | 有芒蚂蚱麦 | 地方种 | + | - | - | + | + |
16 | 兰天34 | 育成品种 | - | - | + | + | + |
17 | 兰天35 | 育成品种 | + | + | - | - | + |
18 | 兰天42 | 育成品种 | - | - | + | + | + |
19 | 兰天45 | 育成品种 | + | - | + | - | + |
20 | 兰天47 | 育成品种 | - | - | + | + | + |
21 | 兰天48 | 育成品种 | + | - | + | + | + |
22 | 兰天52 | 育成品种 | + | - | - | + | + |
23 | 兰天54 | 育成品种 | + | - | + | + | + |
24 | 兰天55 | 育成品种 | - | - | + | + | + |
25 | 陇春30 | 育成品种 | + | - | + | + | + |
26 | 陇春41 | 育成品种 | + | - | + | + | + |
27 | 陇春44 | 育成品种 | + | + | - | - | + |
28 | 京吉611 | 育成品种 | + | + | - | - | + |
29 | 宁春51 | 育成品种 | - | - | + | + | + |
30 | 陇鉴9825 | 育成品种 | + | + | - | + | + |
31 | 陇鉴9826 | 育成品种 | + | - | - | + | + |
32 | 陇鉴9827 | 育成品种 | + | - | - | + | + |
33 | 陇鉴9828 | 育成品种 | + | - | - | + | + |
34 | 陇鉴9832 | 育成品种 | + | - | - | + | + |
35 | 陇鉴9833 | 育成品种 | + | - | - | + | + |
36 | 陇鉴9834 | 育成品种 | + | - | - | + | + |
37 | ZL17BDNA | 育成品种 | + | - | - | + | + |
38 | ZL17BDNA-33 | 育成品种 | + | - | - | + | + |
39 | ZL17BDNA-147 | 育成品种 | + | - | - | + | + |
40 | ZL17BDNA-32 | 育成品种 | + | - | - | + | + |
41 | 16-6-8 | 育成品种 | + | - | - | + | + |
42 | 16-9-1 | 育成品种 | + | - | - | + | + |
43 | 16-9-2 | 育成品种 | + | - | - | + | + |
44 | 12-10-1 | 育成品种 | + | - | - | + | + |
45 | 12-9-7-4 | 育成品种 | + | - | - | + | + |
46 | LY935BDNA-17 | 育成品种 | + | - | - | + | + |
参考文献
Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time,and spike development. Theoretical and Applied Genetics, 2018, 131:2021-2035 [百度学术]
Guo B, Jin X, Chen J, Xu H, Zhang M, Lu X, Wu R, Zhao Y, Guo Y, An Y, Li S S. ATP-dependent DNA helicase (TaDHL), a novel reduced-height (Rht) gene in wheat. Genes, 2022, 13, 979 [百度学术]
Thomas S G. Novel Rht-1 dwarfing genes: Tools for wheat breeding and dissecting the function of DELLA proteins. Journal of Experiment Botany, 2017, 68: 354-358 [百度学术]
Tian X, Zhu Z, Xie L, Xu D, Li J, Fu C, Chen X, Wang D, Xia X, He Z, Cao S. Preliminary exploration of the source, spread, and distribution of Rht24 reducing height in bread wheat. Crop Science, 2019, 59:19-24 [百度学术]
Würschum T, Langer S M, Longin C, Friedrich H, Tucker M R, Leiser W L. A modern green revolution gene for reduced height in wheat. The Plant Journal, 2017, 92:892-903 [百度学术]
Salvi S, Porfiri O, Ceccarelli S. Nazareno Strampelli, the ‘Prophet’ of the green revolution. The Journal of Agricultural Science. 2013, 151:1-5 [百度学术]
Würschum T, Langer S M,Longin C F H. Genetic control of plant height in European winter wheat cultivars. Theoretical and Applied Genetics, 2015, 128:865-874 [百度学术]
Zhang K P, Wang J J, Qin H J, Wei Z Y, Hang L B, Zhang P W, Reynolds M, Wang D W. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. The Crop Journal, 2019, 7(6):845-856 [百度学术]
Tian X L, Wen W E, Xie L, Fu L, Xu D A, Fu C, Wang D, Chen X, Xia X, Chen Q, Cao S. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Frontiers in Plant Science, 2017, 8:1397 [百度学术]
Herter C P, Ebmeyer E, Kollers S, Korzun V, Leiser W L, Würschum T, Miedaner T. Rht24 reduces height in the winter wheat population ‘Solitär × Bussard’ without adverse effects on Fusarium head blight infection. Theoretical and Applied Genetics, 2018, 131:1263-1272 [百度学术]
Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellins response modulators. Nature, 1990, 400:256-261 [百度学术]
Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, Zhang J Z, Wang K, Li X J, Liu L X. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Molecular Plant, 2022, 15: 373-376 [百度学术]
Tian X L, Xia X C, Xu D A, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z H, Cao S H. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytologist, 2021, 233:738-750 [百度学术]
Ellis M H, Spielmeyer W, Gale K R, Rebetzke G J, Richards R A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002, 105:1038-1042 [百度学术]
Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129:1843-1860 [百度学术]
Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S. Genetic and physiological analysis of Rht8 in bread wheat: An alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. Journal of Experimental Botany, 2012, 63(2):695-709 [百度学术]
牟丽明, 田秀苓, 刘丹, 董亚超, 何中虎. 普通小麦4个主要矮秆基因的分子检测. 西北农业学报, 2022, 31(7):830-836 [百度学术]
Mu L M, Tian X L, Liu D, Dong Y C, He Z H. Molecular detection of four main dwarfing genes in common wheat. Acta Agriculturae Boreali-occidentalis Sinica. 2022, 31(7):830-836 [百度学术]
Voss H H, Holzapfel J, Hartl L, Korzun V, Rabenstein F, Ebmeyer E, Coester H, Kempf H, Miedaner T. Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breeding, 2008, 127:333-339 [百度学术]
Miedaner T, Voss H H. Effect of dwarfing Rht genes on Fusarium Head Blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Science, 2000, 48(6):2115-2122 [百度学术]
Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is mis-expressed in the photoperiod insensitive Ppd-Dla mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 115:721-733 [百度学术]
Yang F P, Zhang X K, Xia X C, Laurie D A, Yang W X, He Z H. Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Euphytica, 2008, 165:445-452 [百度学术]
王玉叶, 张海萍, 来得娥, 赵秋霞, 常成, 马传喜. 257份小麦品种资源中矮秆基因的分子检测. 安徽农业大学学报, 2013, 40(5):860-866 [百度学术]
Wang Y Y, Zhang H P, Lai D E, Zhao Q X, Chang C, Ma C X. Detection of dwarf genes in 257 wheat variety resources using molecular markers. Journal of Anhui Agricultural University, 2013, 40(5):860-866 [百度学术]
张德强, 宋晓朋, 冯洁, 马文洁, 武炳瑾, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种矮秆基因Rht-B1b、Rht-D1b和Rht8的检测及其对农艺性状的影响. 麦类作物学报, 2016, 36(8):975-981 [百度学术]
Zhang D Q, Song X P, Feng J, Ma W J, Wu B J, Zhang C L, Cui Z X, Feng Y, Sun D J. Detection of dwarf genes Rht-B1b, Rht-D1b and Rht8 in Huang-huai winter areas and their influence on agronomic Characteristics. Journal of Triticeae Crops,2016, 36(8): 975-981 [百度学术]
张凯, 兰素缺, 金京京, 张颖君, 彭晓慧, 李杏普, 张业伦. 秋播冬麦区矮秆基因RhtB1b、RhtD1b和Rht8的分布频率及其与产量性状的关系. 麦类作物学报, 2023, 43(4):399-408 [百度学术]
Zhang K, Lan S Q, Jin J J, Zhang Y J, Peng X H, Li X P, Zhang Y L. Distribution frequency of dwarf genes RhtB1b, RhtD1b and Rht8 in autumn-sown winter wheat area and their relationship with yield traits. Journal of Triticeae Crops, 2023,43(4):399-408 [百度学术]
Flintham J E, Borner A, Worland A J, Gale M D. Optimizing wheat grain yield: Effects of Rht (gibberellin-insensitive) dwarfing genes. The Journal of Agricultural Science, 1997, 128(1): 11-25 [百度学术]
Fischer R A, Quail K J. The effect of major dwarfing genes on yield potential in spring wheats. Euphytica, 1990, 46:51-56 [百度学术]
唐娜, 姜莹, 何蓓如, 胡银岗. 赤霉素敏感性不同矮秆基因对小麦胚芽鞘长度和株高的效应. 中国农业科学, 2009, 42(11):3774-3784 [百度学术]
Tang N, Jiang Y, He B R, Hu Y G. The effects of dwarfing genes (Rht-B1b, Rht-D1b and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Scientia Agriculture Sinica, 2009, 8(9): 1028-1038 [百度学术]
徐晴,许甫超, 秦丹丹, 彭严春, 朱展望, 董静. 矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响. 麦类作物学报, 2022, 42(7):790-798 [百度学术]
Xu Q, Xu P C, Qin D D, Peng Y C, Zhu Z W, Dong J. Distribution of the wheat dwarfing genes in China and their effects on Fusarium head blight resistance. Journal of Triticeae Crops, 2022, 42(7):790-798 [百度学术]
唐娜, 李博, 闵红, 胡银岗. 分子标记检测矮秆基因Rht-B1b、Rht-D1b和Rht8在我国小麦中的分布.中国农业大学学报, 2012, 17(4):21-26 [百度学术]
Tang N, Li B, Min H, Hu Y G. Distribution of dwarfing genes Rht-B1b, Rht-D1b and Rht8 in Chinese bread wheat cultivars detected by molecular markers. Journal of China Agricultural University, 2012, 17(4):21-26 [百度学术]
Miedaner T, Lenhardt M, Grehl J, Gruner P, Koch S. Dwarfing gene Rht24 does not affect Fusarium head blight resistance in a large European winter wheat diversity panel. Euphytica, 2022, 218:73 [百度学术]
Lumpkin T A. How a gene from Japan revolutionized the world of wheat: CIMMYT’s quest for combining genes to mitigate threats to global food security. Japan: Springer, 2015:13-20: [百度学术]
Borojevic K, Borojevic K. The transfer and history of “reduced height genes” (Rht) in wheat from Japan to Europe. Journal of Heredity, 2005, 96:455-459 [百度学术]
杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布. 中国农业科学, 2006, 39(8):1680-1687 [百度学术]
Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y. Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Scientia Agricultura Sinica, 2006, 39(8):1680-1688 [百度学术]
Rebetzke G J, Richards R A. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Australian Journal of Agricultural Research, 2000, 51:235-246 [百度学术]
Rebetzke G J, Richards R A, Fettell N A, Long M, Condon A G, Forrester R I, Botwright T L. Genotypic increases in coleoptiles length improves stand establishment, vigor and grain yield of deep-sown wheat. Field Crop Research, 2007, 100:10-23 [百度学术]