摘要
北部冬麦区是我国重要的小麦主产区之一,对该麦区历年国审小麦品种进行回溯分析有助于小麦品种资源的合理利用。本研究基于产量与熟期、穗数、穗粒数、千粒重、容重、品质指数、抗病指数和抗寒指数等性状的组合,采用品种-产量×性状组合(GYT, genotype by yield×trait)双标图方法对2003-2023年期间北部冬麦区47个国审小麦品种进行了综合分析和分类评价。结果表明,47个国审小麦品种可划分为4个特征显著的品种类型。其中,Ⅰ型品种综合表现优秀,在产量与早熟性、抗病性、抗寒性、千粒重和容重等性状组合上表现突出,在产量与穗数、穗粒数和品质指数组合上表现优良,在生产上推广应用价值最高,主要包括京麦179、京农16和津麦3118等8个品种。Ⅱ型品种综合表现优良,在产量与品质指数、穗数组合上表现突出,在产量与抗病指数、抗寒指数组合上表现稍差,在生产上推广应用价值较高,但应注意生产安全,主要包括京麦202、京农19和轮选158等13个品种。Ⅲ型品种的产量与抗病和抗寒指数组合最好,但在其余性状组合上表现差,综合生产应用价值有限,可作为抗性亲本。Ⅳ型品种综合表现较差,可选择单性状表现优良的品种作为育种亲本应用。根据各品种在GYT双标图ATA轴上的投影位置,筛选出综合表现优良的京麦179、京农16、津麦3118、京麦189、京麦202、京花12号、京农19、轮选158和中麦623等品种。本研究采用GYT双标图分析方法基于“产量-性状”组合水平对北部冬麦区小麦品种进行综合评价和分类研究,为其他作物和地区的类似研究提供了参考。
北部冬麦区是我国最北边的冬小麦种植区域,涉及辽宁、河北、天津、北京、山西、陕西和甘肃省等7个省、直辖市的冬麦区,是我国小麦主产区之一,在全国小麦生产中占有重要地
我国北部冬麦区国家级小麦品种审定工作最早可回溯到1984年首批审(认)定的丰抗2号、丰抗8号、东方红3号、农大139和红良5号等小麦新品种,以及1992年和1993年分别审定的北京841和中麦2号,这些品种都在生产上大面积推广应
代码 Code | 品种 Variety | 审定 年份 AY | 产量 (kg/h Y | 生育期 (d) GP | 穗数 (×1 ES | 千粒重 (g) TKW | 容重 (g/L) TW | 穗粒数KPS | 抗病 指数 DRI | 抗寒 指数 CRI | 品质 指数 QI | 理想 指数 SI | 品种 类型 Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G01 | 轮选987 | 2003 | 6836 | 260 | 697.5 | 40.2 | 792 | 30.0 | 3.00 | 12.50 | 0.76 | -0.53 | Ⅲ |
G02 | 晋农207 | 2003 | 6274 | 259 | 633.0 | 41.2 | 778 | 29.4 | 2.33 | 17.50 | 0.83 | -1.06 | Ⅲ |
G03 | 津农4号 | 2003 | 6518 | 260 | 645.0 | 35.0 | 780 | 36.0 | 3.50 | 17.50 | 0.82 | -1.14 | Ⅳ |
G04 | 北农9549 | 2003 | 6095 | 260 | 605.3 | 45.1 | 775 | 28.0 | 3.33 | 17.50 | 0.82 | -1.54 | Ⅳ |
G05 | 京冬12 | 2004 | 6158 | 258 | 666.0 | 41.6 | 772 | 29.5 | 3.50 | 12.50 | 0.99 | -1.13 | Ⅲ |
G06 | 邯4564 | 2006 | 6676 | 256 | 636.0 | 36.0 | 768 | 34.1 | 3.33 | 12.80 | 0.83 | -0.79 | Ⅲ |
G07 | 长4738 | 2006 | 7130 | 262 | 571.5 | 45.0 | 775 | 32.4 | 3.67 | 19.60 | 0.80 | -0.74 | Ⅳ |
G08 | 京冬17 | 2007 | 6824 | 251 | 594.0 | 41.3 | 789 | 34.1 | 2.67 | 11.90 | 0.93 | -0.26 | Ⅲ |
G09 | 轮选518 | 2007 | 6553 | 253 | 598.5 | 37.4 | 774 | 34.6 | 2.33 | 15.30 | 0.86 | -0.68 | Ⅲ |
G10 | 京冬22 | 2007 | 6505 | 251 | 612.0 | 40.2 | 794 | 31.4 | 3.17 | 9.90 | 0.97 | -0.57 | Ⅲ |
G11 | 京花9号 | 2007 | 6273 | 250 | 596.1 | 42.6 | 803 | 29.6 | 3.00 | 10.60 | 1.18 | -0.65 | Ⅲ |
G12 | 中麦175 | 2008 | 7375 | 251 | 682.5 | 41.0 | 804 | 31.6 | 2.83 | 14.35 | 0.80 | 0.04 | Ⅲ |
G13 | 河农825 | 2009 | 7071 | 248 | 612.0 | 38.2 | 804 | 37.0 | 4.00 | 16.20 | 0.81 | -0.60 | Ⅳ |
G14 | 石麦15号 | 2009 | 7051 | 252 | 651.0 | 39.2 | 765 | 32.4 | 3.33 | 15.80 | 0.80 | -0.57 | Ⅳ |
G15 | 保麦10号 | 2010 | 7142 | 250 | 598.5 | 39.6 | 795 | 35.6 | 3.67 | 15.15 | 0.79 | -0.50 | Ⅳ |
G16 | 京冬18 | 2010 | 6965 | 249 | 637.5 | 42.3 | 796 | 31.7 | 3.67 | 16.35 | 0.81 | -0.66 | Ⅳ |
G17 | 中麦415 | 2010 | 6740 | 249 | 602.3 | 37.2 | 813 | 34.8 | 3.67 | 14.93 | 0.80 | -0.87 | Ⅳ |
G18 | 石优20号 | 2011 | 6624 | 250 | 592.5 | 38.2 | 795 | 33.1 | 3.67 | 15.90 | 1.04 | -0.85 | Ⅳ |
G19 | 中麦816 | 2013 | 6987 | 256 | 660.0 | 40.3 | 793 | 32.0 | 3.33 | 18.10 | 0.86 | -0.61 | Ⅳ |
G20 | 津农6号 | 2013 | 6945 | 254 | 607.5 | 48.2 | 801 | 30.3 | 3.00 | 17.20 | 0.96 | -0.41 | Ⅳ |
G21 | 农大5181 | 2014 | 7361 | 253 | 666.0 | 43.0 | 766 | 29.4 | 3.00 | 13.40 | 0.83 | -0.04 | Ⅲ |
G22 | 轮选169 | 2014 | 6878 | 255 | 648.0 | 40.6 | 789 | 31.3 | 3.17 | 15.90 | 0.90 | -0.59 | Ⅳ |
G23 | 津农7号 | 2014 | 6326 | 256 | 594.0 | 43.4 | 780 | 29.5 | 2.50 | 18.60 | 1.35 | -0.67 | Ⅳ |
G24 | 中麦1062 | 2016 | 7085 | 253 | 712.5 | 39.0 | 772 | 30.3 | 3.17 | 15.85 | 0.95 | -0.32 | Ⅳ |
G25 | 航麦247 | 2016 | 7015 | 253 | 726.0 | 39.2 | 754 | 28.6 | 2.50 | 14.50 | 0.85 | -0.24 | Ⅲ |
G26 | 京花11号 | 2016 | 6918 | 254 | 694.5 | 44.8 | 769 | 27.3 | 2.67 | 15.70 | 0.91 | -0.35 | Ⅲ |
G27 | 京花12号 | 2018 | 8324 | 251 | 604.5 | 47.6 | 800 | 32.0 | 3.00 | 14.70 | 0.84 | 0.91 | Ⅰ |
G28 | 农大3486 | 2018 | 8300 | 252 | 633.0 | 41.9 | 809 | 32.8 | 3.00 | 15.50 | 0.80 | 0.77 | Ⅰ |
G29 | 航麦2566 | 2018 | 8308 | 253 | 519.0 | 46.9 | 789 | 37.3 | 3.00 | 16.30 | 0.83 | 0.76 | Ⅰ |
G30 | 中麦93 | 2018 | 8153 | 251 | 615.0 | 43.7 | 819 | 32.2 | 2.83 | 17.10 | 0.77 | 0.61 | Ⅰ |
G31 | 长6794 | 2018 | 7958 | 252 | 577.5 | 41.3 | 800 | 35.9 | 3.00 | 17.10 | 0.97 | 0.53 | Ⅱ |
G32 | 京麦179 | 2018 | 8864 | 253 | 585.0 | 47.0 | 810 | 38.4 | 3.00 | 14.00 | 0.89 | 1.64 | Ⅰ |
G33 | 津麦3118 | 2019 | 8610 | 253 | 670.5 | 45.6 | 810 | 30.9 | 3.00 | 12.55 | 0.76 | 1.27 | Ⅰ |
G34 | 京麦183 | 2020 | 8222 | 250 | 646.5 | 42.9 | 795 | 34.8 | 3.67 | 15.20 | 0.87 | 0.68 | Ⅱ |
G35 | 京麦186 | 2021 | 8140 | 250 | 565.5 | 48.1 | 792 | 35.9 | 3.67 | 18.60 | 0.93 | 0.52 | Ⅱ |
G36 | 京农14-62 | 2021 | 7952 | 250 | 616.5 | 45.8 | 800 | 32.5 | 3.67 | 17.10 | 0.86 | 0.30 | Ⅱ |
G37 | 中麦121 | 2021 | 7903 | 249 | 649.5 | 43.4 | 802 | 31.5 | 3.67 | 16.70 | 0.86 | 0.25 | Ⅱ |
G38 | 轮选149 | 2021 | 7850 | 249 | 616.5 | 39.9 | 798 | 35.1 | 3.33 | 17.30 | 0.92 | 0.29 | Ⅱ |
G39 | 京麦189 | 2022 | 8724 | 257 | 564.0 | 43.9 | 804 | 38.3 | 3.33 | 14.50 | 0.91 | 1.26 | Ⅰ |
G40 | 京农16 | 2022 | 8583 | 257 | 684.0 | 45.6 | 821 | 30.0 | 3.67 | 10.40 | 0.88 | 1.37 | Ⅰ |
G41 | 京麦 202 | 2023 | 8860 | 261 | 609.0 | 46.7 | 794 | 36.8 | 3.67 | 19.10 | 0.84 | 1.08 | Ⅱ |
G42 | 京农19 | 2023 | 8512 | 261 | 664.5 | 45.4 | 815 | 30.9 | 3.67 | 17.50 | 0.91 | 0.85 | Ⅱ |
G43 | 京农72 | 2023 | 8489 | 262 | 643.5 | 42.4 | 778 | 34.4 | 3.67 | 17.80 | 0.84 | 0.67 | Ⅱ |
G44 | 轮选158 | 2023 | 8591 | 262 | 651.0 | 46.2 | 802 | 32.4 | 3.67 | 18.80 | 0.85 | 0.82 | Ⅱ |
G45 | 中麦5051 | 2023 | 8005 | 260 | 673.5 | 39.8 | 803 | 33.8 | 3.67 | 19.30 | 1.00 | 0.39 | Ⅱ |
G46 | 中麦623 | 2023 | 8564 | 261 | 691.5 | 40.3 | 807 | 33.3 | 3.67 | 19.10 | 0.87 | 0.79 | Ⅱ |
G47 | 中麦Z21 | 2023 | 7992 | 262 | 696.0 | 40.3 | 804 | 31.2 | 3.50 | 18.50 | 1.14 | 0.56 | Ⅱ |
品种类型:品种基于GYT双标图聚类的类型;下同
AY: Approval year; Y: Grain yield; GP: Growth period; ES: Effective spike number per hectare; TKW: 1000-kernels weight; TW: Test weight; KPS: Kernels per spike; DRI: Disease resistance index; CRI: Cold resistance index; QI: Quality index; SI: Variety superiority index; Type: Variety type in clustering analysis based on GYT biplot;The same as below
采用统计软件GGEbiplot (http://www.ggebiplot.com)的GT双标
我国北部冬麦区国审小麦品种的GT双标图表明(

图1 我国北部冬麦区国审小麦品种性状的GT双标图(a)和GYT双标图(b)
Fig. 1 The genotype by trait (GT) biplot (a) and genotype by yield×trait (GYT) biplot (b) of wheat varieties nationally approved for northern winter wheat region in China
红色射线为性状或产量×性状组合的向量;品种代码同表1;Y×QI表示产量与品质指数的乘积,Y×CRI(-1)表示产量除以抗寒指数的商数,其他产量×性状组合同;SI:理想指数;下同
The red rays are the vectors of traits or yield×trait combinations; The variety codes are the same as table 1; Y×QI represents the product of yield and quality index, Y×CRI(-1) represents the quotient of yield divided by cold resistance index, the same for other yield × trait combinations;SI: Variety superiority index;The same as below
我国北部冬麦区国审小麦品种的GYT双标图(
序号 Number | 产量×性状 Yield×trait | 产量× 生育期 Y×GP(-1) | 产量×穗数 Y×ES | 产量× 穗粒数 Y×KPS | 产量× 千粒重 Y×TKW | 产量×容重 Y×TW | 产量× 抗病指数 Y×DRI(-1) | 产量× 抗寒指数 Y×CRI(-1) | 产量× 品质指数 Y×QI |
---|---|---|---|---|---|---|---|---|---|
1 | 产量×生育期 | ||||||||
2 | 产量×穗数 |
0.80 | |||||||
3 | 产量×穗粒数 |
0.89 |
0.58 | ||||||
4 | 产量×千粒重 |
0.91 |
0.70 |
0.76 | |||||
5 | 产量×容重 |
0.98 |
0.82 |
0.88 |
0.91 | ||||
6 | 产量×抗病指数 |
0.48 |
0.37 |
0.34 |
0.49 |
0.44 | |||
7 | 产量×抗寒指数 |
0.43 |
0.38 |
0.29 |
0.39 |
0.42 |
0.32 | ||
8 | 产量×品质指数 |
0.59 |
0.49 |
0.52 |
0.59 |
0.62 |
0.30 |
0.20 | |
9 | 品种理想指数 |
0.96 |
0.81 |
0.83 |
0.91 |
0.96 |
0.59 |
0.54 |
0.68 |
*
* and ** indicate significant correlation at the 0.05 and 0.01 probability levels, respectively,
小麦品种与产量×性状组合GYT双标图的“均值与协调性”功能图分析表明(

图2 2003-2023年我国北部冬麦区国审小麦品种GYT双标图分析的均值-稳定性
Fig. 2 The mean-stability of GYT biplot analysis of national approval wheat varieties for the northern winter wheat region in China from 2003 to 2023
单箭头的横轴为平均性状轴,指向品种理想指数大的方向;双箭头的纵轴为平均性状轴的纵轴,指向性状协调性差的方向
The single-arrowed horizontal axis is average trait axis pointing to the direction of higher variety superiority index, while the double-arrowed is the coordinate of average trait axis pointing to the direction of poor trait coordination
利用GYT双标图的“品种聚类”功能图对北部冬麦区国审小麦进行分类(

图3 2003-2023年我国北部冬麦区国审小麦品种GYT双标图分析的品种聚类
Fig. 3 The variety clustering of GYT biplot analysis of national approval wheat varieties for the northern winter wheat region in China from 2003 to 2023
各品种类型的产量×性状组合标准化数据的差异显著性分析表明(
序号 Number | 产量×性状组合 Yield×trait | Ⅰ 型品种 Variety type Ⅰ | Ⅱ 型品种 Variety type Ⅱ | Ⅲ 型品种 Variety type Ⅲ | Ⅳ 型品种 Variety type Ⅳ |
---|---|---|---|---|---|
1 | 产量×生育期 | 1.25±0.09aA | 0.85±0.08bA | -0.87±0.15cB | -0.75±0.12cB |
2 | 产量×穗数 | 0.72±0.28aA | 0.86±0.19aA | -0.54±0.23bB | -0.74±0.16bB |
3 | 产量×穗粒数 | 1.06±0.29aA | 0.79±0.14aA | -0.91±0.14bB | -0.56±0.15bB |
4 | 产量×千粒重 | 1.26±0.15aA | 0.74±0.17bA | -0.80±0.13cB | -0.72±0.13cB |
5 | 产量×容重 | 1.24±0.11aA | 0.87±0.10bA | -0.91±0.13cB | -0.74±0.10cB |
6 | 产量×抗病指数 | 1.27±0.20aA | -0.04±0.11bB | 0.22±0.30bB | -0.88±0.18cC |
7 | 产量×抗寒指数 | 1.29±0.42aA | -0.23±0.09bBC | 0.31±0.25bB | -0.79±0.12cC |
8 | 产量×品质指数 | 0.50±0.23aA | 0.91±0.17aA | -0.66±0.18bB | -0.57±0.25bB |
9 | 品种理想指数 | 1.07±0.13aA | 0.60±0.07bB | -0.52±0.11cC | -0.72±0.08cC |
同一行中标有相同小写或大写字母的数据分别在0.05和0.01水平上差异不显著。性状数据为平均值±标准误
Data marked with the same lowercase or uppercase letter in the same row are not significantly different at the 0.05 and 0.01 levels, respectively. Character data are mean ± standard error
我国北部冬麦区小麦新品种选育在提高小麦产量、改善品质、增强抗逆性、抗病性等方面发挥了重要作用,新中国成立以来实现了多次大规模小麦品种更新换
参考文献
赵广才. 小麦优质高产栽培理论与技术. 北京: 中国农业科学技术出版社, 2018:18-24 [百度学术]
Zhao G C. Good quality and high yield cultivation of wheat: Theory and technology. Beijing: China Agricultural Science and Technology Press, 2018:18-24 [百度学术]
权威, 马锦绣, 华正蓉, 左静红, 王伟伟, 王俊稳, 张立平, 庞斌双, 赵昌平. 我国部分审定小麦品种的品质性状及基因型分析. 植物遗传资源学报, 2023,24(3):701-718 [百度学术]
Quan W, Ma J X, Hua Z R, Zuo J H, Wang W W, Wang J W, Zhang L P, Pang B S, Zhao C P. Quality analysis in a collection of wheat varieties approved in China. Journal of Plant Genetic Resources, 2023,24(3):701-718 [百度学术]
何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018,8(1):99-106 [百度学术]
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. Journal of Agriculture, 2018,8(1):99-106 [百度学术]
Cooper M, Woodruff D R, Eisemann R L, Brennan P S, Delacy I H. A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat: Managed-environments for selection among genotypes. Theoretical and Applied Genetics, 1995,90(3):492-502 [百度学术]
许乃银, 李健. 棉花区试中品种多性状选择的理想试验环境鉴别. 作物学报, 2014,40(11):1936-1945 [百度学术]
Xu N Y, Li J. Identification of ideal test environments for multiple traits selection in cotton regional trials. Acta Agronomica Sinica, 2014,40(11):1936-1945 [百度学术]
庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003:38-44 [百度学术]
Zhuang Q S. Chinese wheat improvement and pedigree analysis. Beijing: China Agriculture Press, 2003:38-44 [百度学术]
Yan W, Frégeau-Reid J. Genotype by yield*trait (GYT) biplot: A novel approach for genotype selection based on multiple traits. Scientific Reports, 2018,8(1):8242 [百度学术]
Yan W, Frégeau-Reid J. Breeding line selection based on multiple traits. Crop Science, 2008,48(2):417-423 [百度学术]
许乃银, 李健. 基于GGE双标图的长江流域国审棉花品种分类特征评价. 中国农业科学, 2014,47(24):4780-4789 [百度学术]
Xu N Y, Li J. Evaluation on the classification characteristics of national registered cotton varieties in the Yangtze river valley based on GGE biplot. Scientia Agricultura Sinica, 2014,47(24):4780-4789 [百度学术]
Xu N, Fok M, Li J, Yang X, Yan W. Optimization of cotton variety registration criteria aided with a genotype-by-trait biplot analysis. Scientific Reports, 2017,7:17237 [百度学术]
严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022,48(9):2137-2154 [百度学术]
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agronomica Sinica, 2022,48(9):2137-2154 [百度学术]
Xu N, Fok M, Zhang G, Li J, Zhou Z. The application of GGE biplot analysis for evaluating test locations and mega-environment investigation of cotton regional trials. Journal of Integrative Agriculture, 2014,13(9):1921-1933 [百度学术]
Merrick L F, Glover K D, Yabwalo D, Byamukama E. Use of genotype by yield*trait (GYT) analysis to select hard red spring wheat with elevated performance for agronomic and disease resistance traits. Crop Breeding, Genetics and Genomics, 2020,2(2):e200009 [百度学术]
许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021,47(4):660-671 [百度学术]
Xu N Y, Zhao S Q, Zhang F, Fu X Q, Yang X N, Qiao Y T, Sun S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agronomica Sinica, 2021,47(4):660-671 [百度学术]
岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价. 作物学报, 2023,49(5):1231-1248 [百度学术]
Yue H W, Han X, Wei J W, Zheng S H, Xie J L, Chen S P, Peng H C, Bu J Z. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis. Acta Agronomica Sinica, 2023,49(5):1231-1248 [百度学术]
Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 2010,171(3):355-369 [百度学术]
陈万权, 刘太国, 陈巨莲, 徐世昌. NY/T 1443.1-2007 小麦抗病虫性评价技术规范 第1部分:小麦抗条锈病评价技术规范. 北京: 中国标准出版社, 2007 [百度学术]
Chen W Q, Liu T G, Chen J L, Xu S C. NY/T 1443.1-2007 rules for resistance evaluation of wheat to diseases and insect pests. Part 1: Rule for resistance evaluation of wheat to yellow rust (Puccinia striiformis West. f. tritici Eriks. et Henn.). Beijing: China Standards Press, 2007 [百度学术]
陈万权, 刘太国, 陈巨莲, 徐世昌. NY/T 1443.2-2007, 小麦抗病虫性评价技术规范 第2部分:小麦抗叶锈病评价技术规范. 北京: 中国标准出版社, 2007 [百度学术]
Chen W Q, Liu T G, Chen J L, Xu S C. NY/T 1443.2-2007 rules for resistance evaluation of wheat to diseases and insect pests. Part 2: Rule for resistance evaluation of wheat to leaf rust [Puccinia triticina (=P. recondita Roberge ex Desmaz. f. sp. tritici)]. Beijing: China Standards Press, 2007 [百度学术]
刘万才, 姜玉英, 张跃进, 杨万梅, 张国彦. NY/T 613-2002 小麦白粉病测报调查规范. 北京: 中国标准出版社, 2002 [百度学术]
Liu W C, Jiang Y Y, Zhang Y J, Yang W M, Zhang G Y. NY/T 613-2002 rules for the investigation and forecast of wheat powdery mildew [Blumeria graminis (DC.) Speer]. Beijing: China Standards Press, 2002 [百度学术]
严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010,36(11):1805-1819 [百度学术]
Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010,36(11):1805-1819 [百度学术]
Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 2007,47(2):643-655 [百度学术]