摘要
为了鉴定新型水稻突变体AL
关键词
水稻(Oryza sativa L.)是世界范围内最重要的粮食作物之一,而田间杂草是全球粮食生产的一大重要威胁,影响水稻正常生长发育进而导致产量损
目前,研究人员主要通过转基因、基因编辑、突变体筛选等方法获得除草剂抗性水
乙酰乳酸合酶(ALS,acetolactate synthase)是植物合成支链氨基酸(如缬氨酸、亮氨酸和异亮氨酸)的关键酶,也是植物支链氨基酸生物合成第一步的催化
前期通过EMS诱变获得了两种抗咪唑啉酮类除草剂的水稻突变体AL
供试材料为甲基磺酸乙酯(EMS,ethyl methyl sulfone)诱变华航31(HH31,由华南农业大学提供)获得的耐咪唑啉酮类除草剂抗性水稻突变体AL
2021年春在湖南杂交水稻研究中心三亚海棠湾南繁基地以抗咪唑啉酮类除草剂水稻AL
参考水稻基因数据库(https://www.ricedata.cn/gene/)中ALS的序列数据,在第536位碱基处(C-T)设计KASP分型引物,包括两个特异性正向引物F1-FAM和F2-HEX,以及一个通用反向引物179-Reverse。序列信息详见
引物名称 Primer | KASP引物序列(5′-3′) KASP primer sequences(5′-3′) | 携带位点 Carrier site |
---|---|---|
F1-FAM | GAAGGTGACCAAGTTCATGCTCTATGGGCGTCTCCTGGAAGG | C |
F2-HEX | GAAGGTCGGAGTCAACGGATTCTATGGGCGTCTCCTGGAAGA | T |
179-Reverse | CGCATGATCGGCACCGAC |
KASP标记的PCR反应共需4个阶段,第1 阶段95 °C变性持续10 min;第2阶段 95 °C持续变性15 s,61 °C退火60 s,共10个循环(每次循环降低0.6 °C);第3阶段95 °C扩增15 s,55 °C退火60 s,共28个循环;第4阶段30 °C读板30 s。KASP反应使用Applied Biosystems QuantStudio7进行。
挑取籽粒度饱满的HH31、AL
除草剂类别 Herbicide category | 除草剂 Herbicide | 除草剂包衣/喷施浓度(1×) Herbicide coating/spraying concentration(1×) | 土壤消解半衰期(d) Half-life of soil digestion | 参考文献 Reference |
---|---|---|---|---|
磺酰脲类SU | 10%苯磺隆(可湿性粉剂) | 17.50 mg/L | 8.61~10.34 |
[ |
咪唑啉酮类IMI | 苜草净(5%咪唑乙烟酸水剂) | 0.60 mL/L | 25.66~133.29 |
[ |
嘧啶水杨酸类PTB |
双草醚(灵 | 0.50 mL/L | 1.6~4.3 |
[ |
磺酰氨羰基三唑啉酮类SCT | 氟唑磺隆(10%可分散油悬浮剂) | 0.14 mL/L | 2.5~4.4 |
[ |
三唑嘧啶磺酰胺类TP |
啶磺草胺(优 | 0.60 mL/L本(4%啶磺草胺)+0.80 mL/L助(聚醚改性的七甲基三硅氧烷) | 2~13 |
[ |
SU: Sulfonylureas; IMI: Imidazolinone; PTB: Pyrimidinylthio-benzoates; SCT: Sulfonylamino-carbonyl-triazolinones; TP: Triazolopyrimidines; The same as below
将消毒后的水稻种子浸种48 h后催芽。挑选发芽状况良好的水稻种子播种在96孔播种板中,做好标记,放置在1 L的黑色水培盒中置于宁波东南仪器有限公司生产的人工气候箱中培养,培养条件:光照条件下,温度28 ℃,时间14 h,相对湿度70%,光照强度43000 lx;黑暗条件下,温度26 ℃,时间8 h,相对湿度65%。将HH31,AL
采用整株测定法测量水稻的各项酶活性指
根据AL

图1 KASP标记鉴定F2代分离群体
Fig.1 KASP marker identification of F2 generation segregating populations
基因型 Genotypes | 表型 Phenotypes | 植株数量 Number of plants |
---|---|---|
CC | 敏感 | 131 |
CT | 抗 | 247 |
TT | 抗 | 122 |
本研究首先利用5种ALS类除草剂进行除草剂模拟包衣浸种试验,结果显示AL

图2 不同种类不同浓度ALS类除草剂包衣幼苗长势
Fig.2 Seedling development of ALS herbicide coated with different species and concentrations
96孔播种板含3种水稻;虚线最左侧为HH31,两条虚线中间为AL
The 96-well seeding plate contains 3 types of rice; The leftmost dashed line is HH31, the middle of the two dashed lines is AL
为研究不同除草剂对突变植株幼苗发育的影响,本研究测定了AL

图3 不同除草剂处理下AL
Fig.3 Analysis of plant height and root length of AL
A、E:苯磺隆;B、F:咪唑乙烟酸;C、G:双草醚;D、H:啶磺草胺;不同字母表示在P<0.05水平上差异显著,下同
A,E: Tribenuron-methyl; B,F: Imazethapyr; C,G: Bispyribac-sodium; D,H: Pyroxsulam;Different letters indicated significant difference at P < 0.05,the same as below
待培养至两叶一心期时,对3种水稻(HH31,AL

图4 3种水稻对不同ALS类除草剂的抗性鉴定
Fig.4 Identification of resistance of three rice varieties to different ALS herbicides
96孔播种板含3种水稻;每个播种板虚线最左侧为HH31,两条虚线中间为AL
The 96-well seeding plate contains 3 types of rice; In each seeding plate,the leftmost dashed line is HH31, the middle of the two dashed lines is AL
经过不同浓度除草剂处理24 h后,随着4种除草剂处理浓度的增加,野生型HH31和AL

图5 4种ALS类除草剂在不同处理浓度下对水稻ALS、POD、CAT、SOD酶活性的影响
Fig.5 Effects of four ALS herbicides on the activities of ALS, POD, CAT and SOD enzymes in rice under different treatment concentrations
但总体来看经过苯磺隆处理后AL
多项研究表明ALS基因上一个或多个位点的突变会导致ALS结构的改变,从而引起ALS与除草剂的结合能力变弱,降低植株对除草剂的敏感
模拟除草剂包衣浸种试验发现,AL
利用除草剂控制田间杂草,提高了劳动效率,但其引发的环境残留危害不容忽视。在我国南方,稻田通常一年种植2~3次水稻等作物,包括玉米、油菜、瓜果等。本研究发现,Ala179Val突变赋予对ALS类除草剂广谱抗性。这其中包含有比IMI类残留周期时间短、除草效率高的除草剂,例如SU类、PTB类、TP类等。若利用这些类型除草剂与具有Ala179Val突变的ALS类除草剂抗性水稻结合使用,可在一定程度上缓解除草剂残留问题,提高后茬作物种植的安全性。并且,在实际生产过程中,由于除草剂的重复喷洒或机械喷施的问题,很容易造成局部施用超过推荐剂量的情况,导致作物受损影响产量。本研究发现,Ala179Val赋予的对SU和PTB类除草剂抗性是田间推荐剂量的几倍甚至几十倍。因此,Ala179Val在某种程度上也可提高田间实际生产应用的安全性。此外,本研究所采用的模拟除草剂包衣试验对杂交种子除杂保纯的同时减少土壤中除草剂的药害残留也提供了参考。
ALS是植物体内支链氨基酸生物合成途径的关键酶,也是植物体内ALS类除草剂的唯一作用位
植物体内存在一个多种抗氧化酶相互协调作用的防御体系,可以抑制活性氧对细胞产生的伤
综上,本研究发现了乙酰乳酸合酶Ala179Val突变可以赋予水稻对ALS类除草剂的广谱抗性,为后续ALS类除草剂广谱抗性水稻品系的培育提供了遗传种质资源。

(图5)
参考文献
Heap I, Duke S O. Overview of glyphosate‐resistant weeds worldwide. Pest Management Science, 2018, 74(5): 1040-1049 [百度学术]
Gould F, Brown Z S, Kuzma J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance. Science, 2018, 360(6390): 728-732 [百度学术]
陈雷, 金曼, 张维乐, 王承旭, 吴勇斌, 王治忠, 唐晓艳. 杂草稻的特性及其危害与防治研究进展.作物学报, 2020, 46(7): 969-977 [百度学术]
Chen L, Jin M, Zhang W L, Wang C X, Wu Y B, Wang Z Z, Tang X Y. Research advances on characteristics, damage and control measures of weedy rice. Acta Agronomica Sinica, 2020, 46(7): 969-977 [百度学术]
黄开红, 李永丰, 李宜慰, 郑红, 朱普平. 轻型栽培稻田杂草发生及其危害性研究. 江西农业大学学报, 1999, 23(1): 47-49 [百度学术]
Huang K H, Li Y F, Li Y W, Zheng H, Zhu P P. Emergence and damage of weeds in paddy field of four lightculture methods. Acta Agriculturae Universitatis Jiangxiensis, 1999, 23(1): 47-49 [百度学术]
Green J M. Current state of herbicides in herbicide-resistant crops. Pest Management Science, 2014, 70(9): 1351-1357 [百度学术]
Piao Z Z, Wang W, Wei Y N, Zonta F, Wan C Z, Bai J J, Wu S J, Wang X Q, Fang J. Characterization of an acetohydroxy acid synthase mutant conferring tolerance to imidazolinone herbicides in rice (Oryza sativa). Planta, 2018, 247(3): 693-703 [百度学术]
牟同敏. 中国两系法杂交水稻研究进展和展望.科学通报, 2016, 61(35): 3761-3769 [百度学术]
Mou T M. The research progress and prospects of two-line hybrid rice in China. Chinese Science Bulletin, 2016, 61(35): 3761-3769 [百度学术]
肖国樱. 作物对除草剂的抗性及其在杂种优势利用中应用策略的探讨. 杂交水稻, 1997, 12(5): 1-3 [百度学术]
Xiao G Y. The view of crop herbicide resistance for heterosis utilization. Hybrid Rice, 1997, 12(5): 1-3 [百度学术]
温莉娴, 周菲, 邹玉兰. 抗除草剂转基因水稻的研究进展.植物保护学报, 2018, 45(5): 954-960 [百度学术]
Wen L X, Zhou F, Zou Y L. The research progress on herbicide resistant transgenic rice development. Journal of Plant Protection, 2018, 45(5): 954-960 [百度学术]
周延彪, 秦鹏, 赵新辉, 杨远柱. 抗除草剂水稻种质资源研究进展. 杂交水稻, 2019, 34(1): 1-5 [百度学术]
Zhou Y B, Qin P, Zhao X H, Yang Y Z. Research progress of herbicide-resistant rice genetic resource. Hybrid Rice, 2019, 34(1): 1-5 [百度学术]
Zhang R, Chen S, Meng X B, Chai Z Z, Wang D L, Yuan Y G, Chen K L, Jiang L J, Li J Y, Gao C X. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Science China Life Sciences, 2021, 64(10): 1624-1633 [百度学术]
Vermij P. Liberty link rice raises specter of tightened regulations. Nature Biotechnology, 2006, 24(11): 1301-1302 [百度学术]
Li J, Meng X B, Zong Y, Chen K L, Zhang H W, Liu J X, Li J Y, Gao C X. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature Plants, 2016, 2(10): 16139 [百度学术]
Liu X, Deng X J, Li C Y, Xiao Y K, Zhao K, Guo J, Yang X R, Zhang H S, Chen C P, Luo Y T, Tang Y L, Yang B, Sun C H, Wang P R. Mutation of protoporphyrinogen IX oxidase gene causes spotted and rolled leaf and its overexpression generates herbicide resistance in rice. International Journal of Molecular Sciences, 2022, 23(10): 5781 [百度学术]
Tan S, Evans R R, Dahmer M L, Singh B K, Shaner D L. Imidazolinone-tolerant crops: History, current status and future. Pest Management Science: Formerly Pesticide Science, 2005, 61(3): 246-257 [百度学术]
Dauer J, Hulting A, Carlson D, Mankin L, Harden J, Mallory-Smith C. Gene flow from single and stacked herbicide‐resistant rice (Oryza sativa): Modeling occurrence of multiple herbicide-resistant weedy rice. Pest Management Science, 2018, 74(2): 348-355 [百度学术]
Jin M, Chen L, Deng X W, Tang X Y. Development of herbicide resistance genes and their application in rice. The Crop Journal, 2022, 10(1): 26-35 [百度学术]
刘定富, 尹合兴, 应继锋. 中国水稻百年育种的一些关键基因. 中国稻米, 2022, 28(2): 1-11 [百度学术]
Liu D F, Yin H X, Ying J F. Key genes in century rice breeding in China. China Rice, 2022, 28(2): 1-11 [百度学术]
Maeda H, Murata K, Sakuma N, Takei S, Yamazaki A, Karim M R, Kawata M, Hirose S, Kobayashi M K, Taniguchi Y, Suzuki S, Sekino K, Ohshima M, Kato H, Yoshida H, Tozawa Y. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science, 2019, 365(6451): 393-396 [百度学术]
Yu Q, Powles S B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Management Science, 2014, 70(9): 1340-1350 [百度学术]
Garcia M D, Nouwens A, Lonhienne T G, Guddat L W. Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proceedings of the National Academy of Sciences, 2017, 114(7): E1091-E1100 [百度学术]
吴云雨, 肖宁, 余玲, 蔡跃, 潘存红, 李育红, 张小祥, 黄年生, 周长海, 季红娟, 戴正元, 李爱宏. 我国抗除草剂水稻种质创制研究进展. 植物遗传资源学报, 2021, 22(4): 890-899 [百度学术]
Wu Y Y, Xiao N, Yu L, Cai Y, Pan C H, Li Y H, Zhang X X, Huang N S, Zhou C H, Ji H J, Dai Z Y, Li A H. Research progress in herbicide-resistant rice germplasm innovation in China. Journal of Plant Genetic Resources, 2021, 22(4): 890-899 [百度学术]
Li J, Li M, Gao X X, Fang F. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS‐inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Management Science, 2017, 73(12): 2538-2543 [百度学术]
Qiu J, Jia L, Wu D Y, Weng X F, Chen L J, Sun J, Chen M H, Mao L F, Jiang B W, Ye C Y, Turra G M, Guo L B, Ye G Y, Zhu Q H, Imaizumi T, Song B K, Scarabel L, Jr A M, Olsen K M, Fan L J. Diverse genetic mechanisms underlie worldwide convergent rice feralization. Genome Biology, 2020, 21 (1): 1-11 [百度学术]
Ruzmi R, Ahmad-Hamdani M S, Mazlan N. Ser-653-Asn substitution in the acetohydroxyacid synthase gene confers resistance in weedy rice to imidazolinone herbicides in Malaysia. PLoS ONE, 2020, 15(9): e0227397 [百度学术]
Sudianto E, Beng-Kah S, Ting-Xiang N, Saldain N E, Scott R C, Burgos N R. Clearfiel
杜慧平, 杜慧玲. 苯磺隆在土壤中的消解动态和残留测定. 山西农业科学, 2015, 43(1): 50-53 [百度学术]
Du H P, Du H L. Tribenuron-methly degradation dynamics and residual in soil. Journal of Shanxi Agricultural Sciences, 2015, 43(1): 50-53 [百度学术]
黄文源. 我国典型土壤农残快速检测方法及其降解模型建立. 贵阳: 贵州大学, 2020 [百度学术]
Huang W Y. Establishment of rapid detection methods and degradation models of pesticide residues in typical soils in China. Guiyang: Guizhou University, 2020 [百度学术]
孙明娜, 王梅, 余璐, 朱玉杰, 董旭, 肖青青, 刘艳萍, 孙海滨, 段劲生, 高同春. 基质分散固相-液质联用法检测稻田水和土壤中氰氟草酯和双草醚残留.环境化学, 2017, 36(3): 691-694 [百度学术]
Sun M N, Wang M, Yu L, Zhu Y J, Dong X, Xiao Q Q, Liu Y P, Sun H B, Duan J S, Gao T C. Residue and decline study of cyhalofop-butyl and bispyribac-sodium in paddy water and soil by matrix solid-phase dispersion and liquid chromatography-mass spectrometry. Environmental Chemistry, 2017, 36(3) : 691-694 [百度学术]
毛江胜, 陈子雷, 郭长英, 李慧冬, 方丽萍, 张文君, 丁蕊艳. 氟唑磺隆与炔草酯在小麦及土壤中的降解动力学研究. 山东农业科学, 2020, 52(7): 146-150 [百度学术]
Mao J S, Chen Z L, Guo C Y, Li H D, Fang L P, Zhang W J, Ding R Y. Degradation kinetics of flucarbazone and clodinafop-propargyl in wheat and soil. Shandong Agricultural Sciences, 2020, 52(7): 146-150 [百度学术]
贺文艳, 毛萌. 五氟磺草胺在稻田环境中吸附和消解研究进展. 农药学学报, 2018, 20(2): 146-152 [百度学术]
He W Y, Mao M. Research progresses on adsorption and dissipation of penoxsulam in rice paddy field. Chinese Journal of Pesticide Science, 2018, 20(2): 146-152 [百度学术]
Wang Z Y, Han Y L, Luo S, Rong X M, Song H X, Jiang N, Li C W, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. Frontiers in Plant Science, 2022, 13: 1048227 [百度学术]
Guo Y, Cheng L, Long W H, Gao J Q, Zhang J F, Chen S, Pu H M, Hu M L. Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control. Theoretical and Applied Genetics, 2020, 133: 2811-2824 [百度学术]
Lonhienne T, Garcia M D, Pierens G, Mobli M, Nouwens A, Guddat L W. Structural insights into the mechanism of inhibition of AHAS by herbicides. Proceedings of the National Academy of Sciences, 2018, 115(9): E1945-E1954 [百度学术]
Lonhienne T, Cheng Y, Garcia M D, Hu S H Low Y S, Schenk G, Williams C M, Guddat L W. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nature Communications, 2022, 13(1): 3368 [百度学术]
Huang Z F, Chen J Y, Zhang C X, Huang H J, Wei S H, Zhou X X, Chen J C, Wang X. Target-site basis for resistance to imazethapyr in redroot amaranth (Amaranthus retroflexus L.). Pesticide Biochemistry and Physiology, 2016, 128: 10-15 [百度学术]
Hu M L, Pu H M, Kong L N, Gao J Q, Long W H, Chen S, Zhang J F, Qi C K. Molecular characterization and detection of a spontaneous mutation conferring imidazolinone resistance in rapeseed and its application in hybrid rapeseed production. Molecular Breeding, 2015, 35: 46 [百度学术]
刘欢, 慕平, 赵桂琴, 周向睿. 除草剂对燕麦产量及抗氧化特性的影响. 草业学报, 2015, 24(2): 41-48 [百度学术]
Liu H, Mu P, Zhao G Q, Zhou X R. The impact of herbicides on production and antioxidant properties of oats. Acta Prataculturae Sinica, 2015, 24(2): 41-48 [百度学术]
申建芳, 东保柱, 曹丽霞, 赵桂琴, 张笑宇, 周洪友. 田普除草剂对燕麦的胁迫及燕麦除草剂胁迫下的修复. 中国农学通报, 2018, 34(7): 152-156 [百度学术]
Shen J F, Dong B Z, Cao L X, Zhao G Q, Zhang X Y, Zhou H Y. Stress of pendimethalin on oat and oat plant repair under stress. Chinese Agricultural Science Bulletin, 2018, 34(7): 152-156 [百度学术]
王鑫, 郭平毅, 原向阳, 姚满生. 2,4-D丁酯对罂粟(Papaver somniferum L.)保护酶活性及脂质过氧化作用的影响. 生态学报, 2008(3): 1098-1103 [百度学术]
Wang X, Guo P Y, Yuan X Y, Yao M S. Effect of 2,4-D on the antioxidative enzyme activities and lipid peroxidation in Opium Poppy(Papaver somniferum L.). Acata Ecologica Sinica, 2008(3): 1098-1103 [百度学术]
马春英. 不同品种谷子对单嘧磺隆和扑草净耐药性差异的生理机制. 太谷: 山西农业大学, 2021 [百度学术]
Ma C Y. Physiological resistance mechanism of foxtail millet with different herbicide-resistance to Monosulfuron and Prometryn. Taigu: Shanxi Agricultural University, 2021 [百度学术]
赵娟, 尹艺臻, 王晓璐, 马春英, 尹美强, 温银元, 宋喜娥, 董淑琦, 杨雪芳, 原向阳. 不同品种谷子愈伤组织对拿捕净胁迫的生理响应. 中国农业科学, 2020, 53(5): 917-928 [百度学术]
Zhao J, Yin Y Z, Wang X L, Ma C Y, Yin M Q, Wen Y Y, Song X E, Dong S Q, Yang X F, Yuan X Y. Physiological response of millet callus with different herbicide-resistance to sethoxydim stress. Scientia Agricultura Sinica, 2020, 53(5): 917-928 [百度学术]
何林池, 王康, 魏小云, 荣平, 王亚峰. 耐盐差异性不同棉花品种的抗氧化酶活性及SNP/InDel分析.江苏农业学报, 2014, 30(5): 980-985 [百度学术]
He L C, Wang K, Wei X Y, Rong P, Wang Y F. Antioxidant enzyme activities and SNP/InDel analysis of cotton varieties differring in salt tolerance. Jiangsu Journal of Agricultural Sciences, 2014, 30(5): 980-985 [百度学术]