摘要
玉米穗长通过影响穗粒数,进而影响产量,是育种改良的重要目标性状之一。发掘与穗长性状相关QTL和基因对穗长性状的遗传改良具有重要意义。本研究以一对穗长具有显著差异的高世代姊妹系为亲本,构建F2群体并自交得到F2:3,利用Maize6H-60K基因芯片分别对亲本及F2群体进行基因型分析,并通过ICIM、GCIM和dQTGseq 3种方法对F2和F2:3群体的穗长进行QTL定位。结果表明,3种方法共定位到7个与穗长相关QTL位点和43个QTNs,解释了2.04%~10.24%的表型变异。交叉分析不同方法得出的定位结果,在6号染色体上发现一个调控穗长的稳定QTL qEL6.01。根据定位区间内基因注释的结果,并结合参考基因的表达谱数据,共筛选出5个在雌穗中表达的候选基因:Zm00001d035514、Zm00001d035526、Zm00001d035537、Zm00001d035553和Zm00001d035535。本研究结果为玉米穗长基因的克隆及育种改良奠定了基础。
玉米(Zea mays L.)是重要的粮饲兼用作物,同时也是重要的工业原料,是世界上主要种植的作物之一,提高玉米产量一直是育种和生产研究的主导方向。在中国,玉米已经成为第一大粮食作
利用不同遗传背景的试验材料对玉米穗长性状进行遗传研究,结果表明,玉米穗长性状是一个受多基因控制的复杂数量性状。前人利用连锁和关联分析对穗长进行初步解析,谢慧玲
随着分子生物学的不断发展,许多调控穗长性状的基因相继被报道。Ning
L1和L2是由沈阳农业大学特种玉米研究所提供,以先玉335和郑58为亲本,通过杂交并多代自交F4的一个单株株系中分离得到,又经多代自交纯化,育成的一对穗长具有差异的姊妹系,课题组前期利用994对SSR标记对该姊妹系进行检测,仅有46个标记存在差异位点,其背景相似度高达95.4%。定位群体是以L1和L2为亲本杂交并自交后得到的F2及F2:3群体。
190个F2单株于2021年种植于沈阳农业大学北试验田基地(F2),F2:3群体以穗行的方式于2021年冬种植于沈阳农业大学南繁育种基地(HNF2:3),于2022年春种植于沈阳农业大学北试验田基地(SYF2:3),行长4 m,行距为0.6 m,每行种植16株,田间管理同大田常规管理。
待玉米成熟收获风干后在室内对穗长进行测量,利用直尺测量果穗根部到尖部的距离,包括秃尖长。使用SPSS Statistics 24.0软件分别计算不同群体穗长的统计参数。
利用CTAB法提取群体叶片的DNA, 并利用Maize6H-60K基因芯
亲本L1的平均穗长在13.77~14.11 cm之间,亲本L2的穗长在9.11~9.88 cm之间,且双亲穗长存在极显著差异。以L1和L2为亲本构建的F2、HNF2:3和SYF2:3的3个群体的极值、均值、标准差、变异系数、偏度和峰度如
年份 Year | 地点 Location | 群体 Population | L1×L2的杂交后代 Crossing offspring of L1×L2 | ||||||
---|---|---|---|---|---|---|---|---|---|
均值 Mean | 标准差 SD | 极小值 Min. | 极大值 Max. | 变异系数 CV | 偏度 Skewness | 峰度 Kurtosis | |||
2021 | 沈阳 | F2 | 12.23 | 1.25 | 8.40 | 16.20 | 10.19 | 0.03 | 0.20 |
2021 | 海南 | HNF2:3 | 11.04 | 0.84 | 7.90 | 13.20 | 7.65 | -0.13 | 0.17 |
2022 | 沈阳 | SYF2:3 | 11.75 | 0.99 | 8.40 | 14.90 | 8.46 | -0.03 | 0.65 |
本研究利用Maize6H-60K基因芯片对L1、L2和F2群体中的190个F2单株进行基因分型,通过质控剔除无多态性和子代缺失率较高的SNP标记,共筛选到1496个SNP标记,分布在10条染色体上,其中6号染色体上SNP标记最多,为281个,4号染色体上SNP标记最少,为31个,遗传图谱的总长度为2095.02 cM,两标记之间的平均距离为1.40 cM(
染色体 Chromosome | SNP数量 Number of SNPs | 连锁图谱距离(cM) Linkage distance | 标记间平均距离(cM) Average distance between markers |
---|---|---|---|
1 | 251 | 348.72 | 1.39 |
2 | 110 | 171.88 | 1.56 |
3 | 233 | 374.11 | 1.60 |
4 | 31 | 37.22 | 1.20 |
5 | 247 | 410.78 | 1.66 |
6 | 281 | 340.48 | 1.21 |
7 | 124 | 182.79 | 1.47 |
8 | 87 | 103.97 | 1.19 |
9 | 58 | 46.73 | 0.81 |
10 | 74 | 78.34 | 1.05 |
合计 Total | 1496 | 2095.02 | |
平均 Average | 1.40 |
将F2、HNF2:3和SYF2:3的表型数据与遗传连锁图谱结合,利用ICIM和GCIM法对玉米穗长进行定位,共得到7个与穗长相关的QTL,分布在2、3、5、6、7、10号染色体上,解释了2.04%~10.24%的表型变异,LOD值在3.53~5.86之间,除去qEL-2-2和qEL-3-1加性效应为0外,所有QTL位点的加性效应均为正值,其效应值在0.30~0.60之间,由L1的等位基因贡献(
QTL名称 QTL Name | 染色体 Chromosome | 标记区间 Marker interval | 物理位置(bp) Mapping interval | 阈值 LOD | 表型贡献率(%) PVE | 加性效应 Additive | 群体 Generation | 方法 Method |
---|---|---|---|---|---|---|---|---|
qEL-2-1 | 2 | AX-108097808~AX-90739563 | 35308939~35420447 | 3.53 | 4.34 | 0.32 | SYF2:3 | GCIM |
qEL-2-2 | 2 | AX-107939086~AX-108093213 | 230222387~230365609 | 4.03 | 2.04 | 0 | F2 | GCIM |
qEL-3-1 | 3 | AX-108101904~AX-108019151 | 190656822~191133897 | 3.56 | 2.19 | 0 | SYF2:3 | GCIM |
qEL-5-1 | 5 | AX-107960145~AX-107967959 | 18757665~18911482 | 5.86 | 9.66 | 0.60 | F2 | ICIM |
qEL-6-1 | 6 | AX-107996468~AX-108015384 | 29933230~30690219 | 4.10 | 10.24 | 0.49 | SYF2:3 | GCIM |
6 | AX-107996468~AX-108015384 | 29933230~30690219 | 4.48 | 7.29 | 0.51 | F2 | ICIM | |
6 | AX-108019967~AX-107996468 | 29933230~30476196 | 3.92 | 3.39 | 0.32 | F2 | GCIM | |
6 | AX-107957789~AX-247242292 | 30238241~32785746 | 4.86 | 8.54 | 0.30 | SYF2:3 | ICIM | |
qEL-7-1 | 7 | AX-107987357~AX-107946121 | 173268502~173364739 | 3.93 | 6.32 | 0.44 | F2 | ICIM |
qEL-10-1 | 10 | AX-86277957~AX-107938325 | 102860189~103079716 | 3.96 | 7.15 | 0.40 | SYF2:3 | ICIM |
群体 Population | 标记 Marker | 染色体 Chr | 位置(bp) Position | 统计量值 Gw | 平滑统计 量值 Smooth_Gw | 群体 Population | 标记 Marker | 染色体 Chr | 位置(bp) Position | 统计量值 Gw | 平滑统计 量值 Smooth_Gw |
---|---|---|---|---|---|---|---|---|---|---|---|
F2 | AX-108075784 | 1 | 30541733 | 9.24 | 10.95 | HNF2:3 | AX-247236770 | 4 | 824775 | 12.39 | 11.08 |
F2 | AX-91846788 | 2 | 220528063 | 9.25 | 10.14 | HNF2:3 | AX-247241945 | 5 | 218713908 | 10.88 | 10.89 |
F2 | AX-107991875 | 2 | 230779894 | 12.01 | 12.80 | HNF2:3 | AX-90601962 | 5 | 220580680 | 15.08 | 12.99 |
F2 | AX-107953842 | 3 | 187650449 | 7.14 | 7.65 | HNF2:3 | AX-108040898 | 5 | 223267834 | 7.27 | 8.33 |
F2 | AX-247259223 | 6 | 20153062 | 7.77 | 7.79 | HNF2:3 | AX-108084852 | 6 | 165627966 | 9.69 | 9.35 |
F2 | AX-247242292 | 6 | 32785746 | 7.86 | 9.08 | HNF2:3 | AX-107962422 | 7 | 123305175 | 9.31 | 8.67 |
F2 | AX-108029447 | 6 | 47616495 | 6.24 | 7.80 | HNF2:3 | AX-86277957 | 10 | 102860189 | 10.81 | 10.51 |
F2 | AX-91014937 | 6 | 148257247 | 8.17 | 9.10 | HNF2:3 | AX-86256609 | 10 | 108821777 | 8.15 | 8.16 |
F2 | AX-108041924 | 6 | 159355691 | 9.50 | 9.78 | HNF2:3 | AX-107963687 | 10 | 113185987 | 14.52 | 13.11 |
F2 | AX-107947814 | 6 | 165171910 | 11.74 | 12.21 | HNF2:3 | AX-107951813 | 10 | 118816942 | 10.19 | 9.48 |
F2 | AX-108027699 | 7 | 173952526 | 15.75 | 14.93 | HNF2:3 | AX-86323004 | 10 | 132236900 | 8.15 | 7.71 |
F2 | AX-86319029 | 7 | 178846216 | 8.98 | 8.62 | SYF2:3 | AX-108075560 | 1 | 176346275 | 7.74 | 9.60 |
F2 | AX-108035572 | 7 | 180593154 | 7.87 | 7.68 | SYF2:3 | AX-90739563 | 2 | 35420447 | 8.75 | 8.23 |
F2 | AX-91121904 | 9 | 23388074 | 10.33 | 10.04 | SYF2:3 | AX-107991875 | 2 | 230779894 | 6.82 | 9.97 |
HNF2:3 | AX-108047757 | 1 | 223297297 | 11.03 | 8.83 | SYF2:3 | AX-107973354 | 3 | 77181 | 16.51 | 12.98 |
HNF2:3 | AX-107986778 | 2 | 31800999 | 6.61 | 8.04 | SYF2:3 | AX-247236770 | 4 | 824775 | 9.90 | 8.91 |
HNF2:3 | AX-107994290 | 2 | 38268698 | 11.65 | 11.51 | SYF2:3 | AX-247242292 | 6 | 32785746 | 9.50 | 9.34 |
HNF2:3 | AX-108060386 | 2 | 219725155 | 8.30 | 7.96 | SYF2:3 | AX-108038407 | 7 | 125921578 | 10.12 | 9.29 |
HNF2:3 | AX-108023493 | 2 | 221313468 | 11.45 | 11.64 | SYF2:3 | AX-107937175 | 7 | 178787794 | 10.06 | 7.85 |
HNF2:3 | AX-107976650 | 2 | 223804204 | 13.27 | 13.26 | SYF2:3 | AX-86319249 | 8 | 28559336 | 9.13 | 8.32 |
HNF2:3 | AX-91846788 | 2 | 220528063 | 12.98 | 13.03 | SYF2:3 | AX-108033983 | 8 | 70680745 | 9.13 | 8.21 |
HNF2:3 | AX-107973354 | 3 | 77181 | 9.50 | 10.63 |
结合ICIM、GCIM和dQTG-seq 3种方法,综合F2、HNF2:3和SYF2:3的3个群体的定位结果,发现在6号染色体上存在一个在不同环境和群体中均定位到的稳定QTL位点(AX-107996468~AX-247242292),约2.85 Mb,并将其命名为qEL6.01。
根据上述定位结果,将qEL6.01定位在29933230~32785746 bp之间,其中包含30个编码蛋白质的基因。利用MaizeGDB对30个基因进行注释,其中11个基因有明确功能注释或包含已知结构域(
基因编号 Gene ID | 注释 Annotation |
---|---|
Zm00001d035510 | 三磷酸腺苷脱氢酶 |
Zm00001d035512 | AP2-EREBP转录因子 |
Zm00001d035514 | C2H2转录因子 |
Zm00001d035526 | 驱动蛋白 |
Zm00001d035528 | 非特异性丝氨酸/苏氨酸蛋白激酶/苏氨酸特异性蛋白激酶 |
Zm00001d035535 | WOX基因家族 |
Zm00001d035537 | 酰基鞘氨醇脱酰酶 |
Zm00001d035539 | 细胞分裂因子 |
Zm00001d035548 | 激酶相互作用(Kip-like)家族蛋白 |
Zm00001d035550 | 翻译起始因子 |
Zm00001d035553 | 麦芽糖转运ATP酶 |

图1 定位区间内11个候选基因的表达量热图
Fig.1 Heatmap of the expression of 11 candidate genes within the localization interval
玉米穗长是由多基因控制的复杂数量性状,受主效位点及一系列微效位点共同调控,很难将表型性状与基因型对应起来,因此研究人员构建大量的遗传群体,并创建了许多不同的方法进行定
根据MaizeGDB的注释结果,Zm00001d035535与WUS同属于WOX基因家族,在前人研究中,WOX基因家族中WUS基因是维持顶端分生组织干细胞活性的重要基因,其在顶端分生组织不同区域中浓度不同导致各个区域的功能出现差异,并通过植物中高度保守的CLV-WUS负反馈调节通路调节穗发
本研究以一对穗长具有显著差异的高世代姊妹系为亲本,分别利用ICIM、GCIM和dQTG-seq 3种方法对F2及F2:3进行定位,共得到7个QTLs和43个QTNs。其中6号染色体上存在一个在不同群体和年份下均定位到的稳定QTL位点,并将其命名为qEL6.01。根据参考基因组的注释及表达量分析,预测Zm00001d035514、Zm00001d035526、Zm00001d035537、Zm00001d035553 和Zm00001d035535是可能调控穗长的候选基因。
参考文献
Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications, 2023, 14(1):2637 [百度学术]
Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D,Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1):988 [百度学术]
Ning Q, Jian Y N, Du Y F, Li Y F, Shen X M, Jia H T, Zhao R, Zhan J M, Yang F, Jackson D, Liu L, Zhang Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1):5832 [百度学术]
陈刚,张中东,王璞,陶洪斌.旱地不同玉米品种穗部性状与产量关系的综合分析.作物杂志,2012(5):100-104 [百度学术]
Chen G, Zhang Z D, Wang P, Tao H B. Comprehensive analysis on ear characters and yield of the different maize varieties in dryland area. Crops, 2012(5):100-104 [百度学术]
史庆玲,李可伟,董永彬,冉午玲,李玉玲.玉米四交群体穗部性状的相关及通径分析.中国农学通报, 2020,36(14):22-27 [百度学术]
Shi Q L, Li K W, Dong Y B, Ran W L, Li Y L. Ear traits of maize four-cross population correlation analysis and path analysis. Chinese Agricultural Science Bulletin, 2020,36(14):22-27 [百度学术]
吕莹莹,张萌,沈丹丹,张士东,李特,瞿培,张恩盈.玉米区域试验品种产量与穗部性状的相关与通径分析.华北农学报, 2017,32(S1):160-165 [百度学术]
Lv Y Y, Zhang M, Shen D D, Zhang S D, Li T, Qu P, Zhang E Y. Correlation and path analysis of yield and ears characters of maize regional trials. Acta Agriculturae Boreali-Sinica, 2017,32(S1):160-165 [百度学术]
谢惠玲,冯晓曦,吴欣,王松江,袁延乐,张占峰,袁立,胡彦民.玉米穗部性状的QTL分析.河南农业大学学报, 2008(2):145-149 [百度学术]
Xie H L, Feng X X, Wu X, Wang S J, Yuan Y L, Zhang Z F, Yuan L, Hu Y M. QTL analysis for ear traits in maize using molecular markers. Journal of Henan Agricultural University, 2008(2):145-149 [百度学术]
Li J Z, Zhang Z W, Li Y L, Wang Q L, Zhou Y G. QTL consistency and meta-analysis for grain yield components in three generations in maize. Theoretical and Applied Genetics, 2011, 122(4):771-782 [百度学术]
Zhang Z, Shen T, Jiang T, Hu X L, Wen M, Qiu H B. Quantitative trait loci mapping of maize (Zea mays) ear traits under low‐phosphorus stress. Plant Breeding, 2022, 142(1):12-23 [百度学术]
Wang L W, Zhou Z Q, Li R G, Weng J F, Zhang Q G, Li X H, Wang B Q, Zhang W Y, Song W, Li X H. Mapping QTL for flowering time-related traits under three plant densities in maize. The Crop Journal, 2021, 9(2):372-379 [百度学术]
涂亮,高媛,刘鹏飞,郭向阳,王安贵,何兵,刘颖,祝云芳,吴迅,陈泽辉. 玉米穗长主效QTL q21EL-GZ的精细定位. 植物遗传资源学报,2021,22(5):1394-1401 [百度学术]
Tu L, Gao Y, Liu P F, Guo X Y, Wang A G, He B, Liu Y, Zhu Y F, Wu X, Chen Z H. Fine mapping of the ear length major QTL q21EL-GZ in maize. Journal of Plant Genetic Resources, 2021,22(5):1394-1401 [百度学术]
Xiao Y J, Liu H J, Wu L J, Warburton M, Yan J B. Genome-wide association studies in maize: Praise and stargaze. Molecular Plant, 2017, 10(3):359-374 [百度学术]
Liang Y M, Liu H J, Yan J B, Tian F. Natural variation in crops: Realized understanding, continuing promise. Annual Review of Plant Biology, 2021, 72:357-385 [百度学术]
Liu H J, Yan J B. Crop genome-wide association study: A harvest of biological relevance. Plant Journal, 2019, 97(1):8-18 [百度学术]
Flint-Garcia S A, Thornsberry J M, Buckler E S Ⅳ. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54:357-374 [百度学术]
刘文童,监立强,郭晋杰,赵永锋,黄亚群,陈景堂,祝丽英.玉米穗部性状及其一般配合力的关联分析.植物遗传资源学报, 2020,21(3):706-715 [百度学术]
Liu W T, Jian L Q, Guo J J, Zhao Y F, Huang Y Q, Chen J T, Zhu L Y. Association analysis of ear-related traits and their general combining ability in maize. Journal of Plant Genetic Resources, 2020,21(3):706-715 [百度学术]
熊雪航,段海洋,李文龙,李建新,孙莉,孙岩,秦永田,汤继华,张雪海.玉米穗长全基因组关联分析.分子植物育种, 2022,URL: https://kns.cnki.net/kcms/detail/46.1068.S.20220630.1359.004.html [百度学术]
Xiong X H, Duan H Y, Li W L, Li J X, Sun L, Sun Y, Qin Y T, Tang J H, Zhang X H. Genome-wide association study of ear length in maize. Molecular Plant Breeding,2022, URL: https://kns.cnki.net/kcms/detail/46.1068.S.20220630.1359.004.html [百度学术]
Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L, Fernie A R, Yan J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. The New Phytologist, 2022, 234(2):513-526 [百度学术]
Liu H J, Wang X Q, Xiao Y J, Luo J Y, Qiao F, Yang W Y, Zhang R Y, Meng Y J, Sun J M, Yan S J, Peng Y, Niu L Y, Jian L J, Song W, Yan J L, Li C H, Zhao Y X, Liu Y, Marilyn L W, Zhao, J R, Yan J B. CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020, 21(1):20 [百度学术]
Bommert P, Nagasawa NS, Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics, 2013, 45(3):334-337 [百度学术]
Tian H L, Yang Y, Yi H M, Xu L W, He H, Fan Y M, Wang L, Ge J, Liu Y W, Wang F, Zhao J R. New resources for genetic studies in maize (Zea mays L.): A genome-wide Maize6H-60K single nucleotide polymorphism array and its application. The Plant Journal, 2021, 105(4):1113-1122 [百度学术]
Wen Y J, Zhang Y W, Zhang J, Feng J Y, Dunwell J M, Zhang Y M. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Briefings in Bioinformatics, 2019, 20(5):1913-1924 [百度学术]
Li P, Li G, Zhang Y W, Zuo J F, Liu J Y, Zhang Y M. A combinatorial strategy to identify various types of QTLs for quantitative traits using extreme phenotype individuals in an F2 population. Plant Communications, 2022, 3(3):100319 [百度学术]
McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Kinosita T, Blinstrue M, Morishima H M. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13 [百度学术]
Liu G, Zhao T, You X, Jiang J, Li J, Xu X. Molecular mapping of the Cf-10 gene by combining SNP/InDel-index and linkage analysis in tomato (Solanum lycopersicum). BMC Plant Biology, 2019, 19(1):15 [百度学术]
Li Z Q, Xu Y H. Bulk segregation analysis in the NGS era: A review of its teenage years. Plant Journal, 2022, 109(6):1355-1374 [百度学术]
Austin R S, Vidaurre D, Stamatiou G, Breit R, Provart N J, Bonetta D, Zhang J, Fung P, Gong Y, Wang P W, McCourt P, Guttman D S. Next-generation mapping of Arabidopsis genes. Plant Journal, 2011, 67(4):715-725 [百度学术]
Zhang H W, Wang X, Pan Q C, Li P, Liu Y J, Lu X D, Zhong W S, Li M Q, Han L Q, Li J, Wang P X, Li D D, Liu Y, Li Q, Yang F, Zhang,Y M, Wang G Y, Li L. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Molecular Plant, 2019, 12(3):426-437 [百度学术]
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant Journal, 2013, 74(1):174-183 [百度学术]
Kang M G, Gao J. Integration of multi-omics data for expression quantitative trait loci (eQTL) analysis and eQTL epistasis. Methods in Molecular Biology (Clifton, NJ), 2020, 2082:157-171 [百度学术]
Yang J W, Liu Z H, Chen Q, Qu Y Z, Tang J H, Lübberstedt T, Li H C. Mapping of QTL for grain yield components based on a DH population in maize. Scientific Reports, 2020, 10(1):7086 [百度学术]
Xiao Y, Tong H, Yang X, Xu S, Pan Q, Qiao F, Raihan MS, Luo Y, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Liu J, Zhan W, Liu N, Wang H, Chen G, Cai Y, Xu G, Wang W, Zheng D, Yan J. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3):1095-106 [百度学术]
Yi Q, Liu Y H, Hou X B, Zhang X G, Li H, Zhang J J, Liu H M, Hu Y F, Yu G W, Li Y P, Wang Y B, Huang Y B. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). BMC Plant Biology, 2019, 19(1):392 [百度学术]
Yu Y H, Yang M M, Liu X Y, Xia Y, Hu R Q, Xia Q Q, Jing D L, Guo Q G. Genome-wide analysis of the WOX gene family and the role of EjWUSa in regulating flowering in loquat (Eriobotrya japonica). Frontiers in Plant Science, 2022, 13:1024515 [百度学术]
Su D D, Wen L, Xiang W, Shi Y, Lu W, Liu Y D, Xian Z Q, Li Z G. Tomato transcriptional repressor SlBES1.8 influences shoot apical meristem development by inhibiting the DNA binding ability of SlWUS. Plant Journal, 2022, 110(2):482-498 [百度学术]
Agarwal Y, Shukla B, Manivannan A, Soundararajan P. Paradigm and framework of WUS-CLV feedback loop in stem cell niche for SAM maintenance and cell identity transition. Agronomy, 2022; 12(12):3132. [百度学术]
Schlegel J, Denay G, Wink R, Pinto K G, Stahl Y, Schmid J, Blümke P, Simon R G. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. eLife, 2021, (10):1-30 [百度学术]
Chen Z, Li W, Gaines C, Buck A, Galli M, Gallavotti A. Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. Nature Communications, 2021, 12(1):2378 [百度学术]
Honda E, Yew C L, Yoshikawa T, Sato Y, Hibara K I, Itoh J I. LEAF LATERAL SYMMETRY1, a member of the WUSCHEL-RELATED HOMEOBOX3 gene family, regulates lateral organ development differentially from other paralogs, NARROW LEAF2 and NARROW LEAF3 in rice. Plant Cell Physiology, 2018, 59(2):376-391 [百度学术]
Sun W Q, Gao D W, Xiong Y, Tang X X, Xiao X F, Wang C R, Yu S B. Hairy leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice. Molecular Plant, 2017, 10(11):1417-1433 [百度学术]
郑亚莉,余林闯,安肖肖,程心乐,任丽君,苏子龙,郑小雅,兰涛.一份水稻OsWOX3B基因敲除突变体的鉴定.中国水稻科学,2021,35(2):112-120 [百度学术]
Zheng Y L, Yu L C, An X X, Cheng X L, Ren L J, Su Z L, Zheng X Y, Lan T. Identification of a knockout mutant of OsWOX3B gene in rice (Oryza sativa L.). Chinese Journal of Rice Science, 2021,35(2):112-120 [百度学术]
Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. A novel kinesin 13 protein regulating rice seed length. Plant and Cell Physiology, 2010, 51(8):1315-1329 [百度学术]
Zhou S R, Wang Y, Li W C, Zhao Z G, Ren Y L, Wang Y, Gu S H, Li Q B, Wang D, Jiang L, Su N, Zhang X, Liu L L,Chen Z J, Lei C L, Wang J L, Guo X P, Wu F Q, Hiroshi I, Wang H Y, Wan J M. Pollen Semi-Sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. The Plant Cell, 2011, 23(1):111-129 [百度学术]
Han G L, Wei X C, Dong X X, Wang C F, Sui N, Guo J R, Yuan F, Gong Z Z, Li X Z, Zhang Y, Meng Z, Chen Z, Zhao D Z, Wang B S. Arabidopsis ZINC FINGER PROTEIN1 acts downstream of GL2 to repress root hair initiation and elongation by directly suppressing bHLH genes. Plant Cell. 2020, 32(1):206-225 [百度学术]
Shi H T, Wang X, Ye T T, Chen F F, Deng J, Yang P F, Zhang Y S, Chan Z L. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant Physiology. 2014, 165(3):1367-1379 [百度学术]