摘要
生姜是一种重要的“药食同源”植物,但其种植过程中容易受到各种生物/非生物胁迫的影响,不利于生姜的安全生产。异戊烯基转移酶(IPT,isopentenyl-transferases)是催化细胞分裂素生物合成的关键酶,也是重要的限速酶,与植物的抗逆性关系密切。本研究通过系统的生物信息学分析,从生姜基因组中鉴定到10个ZoIPT,并且将其命名为ZoIPT1~ZoIPT10。其编码蛋白的氨基酸长度范围在283~491 aa之间,分子质量在31.14~54.02 kDa,等电点在4.97~9.37之间;蛋白质特征分析表明,所有ZoIPTs均具亲水性。共线性关系分析发现生姜IPT基因与15个芭蕉IPT基因存在共线性,与1个拟南芥IPT基因存在共线性。转录组数据分析结果显示,ZoIPTs有一定的组织表达特异性,并且能响应病害、低温等逆境胁迫,其中,ZoIPT3和ZoIPT5在生姜不同生长时期、不同部位、低温和病害胁迫下均有较高表达。qRT-PCR分析结果表明,ZoIPTs响应干旱、淹水、盐胁迫。在淹水和盐胁迫下,根茎中ZoIPT3表达量显著上升;在干旱胁迫下,叶和根茎中ZoIPT5的表达显著上升。综上所述,本研究通过系统的鉴定、进化分析、特征分析、启动子分析、表达模式分析,并对干旱、盐、淹水胁迫下的表达模式进行了分析,为深入研究ZoIPT在调控生姜生长发育和抗逆性中的生物学功能提供了理论基础。
生姜(Zingiber officinale Roscoe.),又名百辣云,是姜科姜属多年生草本宿根植物,起源于东南亚热带雨林地区,在世界范围内广泛种
细胞分裂素(CKs,cytokinesis)是存在于植物体内的具有腺嘌呤环结构的一种激素,具有广泛的生物学功能,在植物适应复杂环境变化的过程中发挥着重要的作
IPT作为细胞分裂素生物合成途径中的第一限速酶,在调节植物逆境响应过程中发挥着重要的作
到目前为止,IPT基因已经在许多植物中被鉴定,其中包括拟南
生姜基因组数据由长江大学香辛作物研究院提
将经过序列比对和结构域筛选后的10个生姜IPT蛋白序列与10个水稻、9个拟南芥和25个小麦IPT序列,用ClustalW2软件,通过邻接法(Neighbor-Joining,replicated-bootstraps 1000),对ZoIPT序列进行多序列比对(MSA,multiple sequence alignment
使用ExPASy ProtParam(https://web.expasy.org/protparam/)分析ZoIPT蛋白的理化性质,包括其氨基酸长度、亲水性、分子量、不稳定指数、原子总数和等电点。利用Piant-mPLoc(http://www.csbio.sjtu.edu.cn/bioinf/Plant multi)预测ZoIPT的亚细胞定
根据生姜基因组的注释信息,使用TBtools获取ZoIPT家族成员染色体的位置信息,通过Tbtools的BLAST和MCScanX功能对生姜基因组自身序列进行比对,分析生姜基因串联重复与片段重复关系,并绘制ZoIPT基因染色体定位图。通过Tbtools的MCScanX和gene position extrack功能对生姜基因组蛋白序列进行比对,得到生姜物种内的共线性关系,通过fasta stasts功能得到染色体长度文件。用共线性关系文件、染色体长度文件在TBtools的Advanced Circos功能区绘制ZoIPT物种内的同源基因图。
从生姜基因组GFF3文件中提取生姜ZoIPT基因家族成员的基因注释,利用TBtools对生姜10个IPT进行基因结构分析,在线分析生姜IPT基因家族成员的外显子和内含子的组成;使用MEME(https://meme-suite.org/meme/tools/meme)在线网站对10个ZoIPTs进行motif分析,识别参数如下:每个序列包含任意数量的非重叠基序,不同基序的最大数量为10个,基序长度为6~50个碱基不等。结果采用TBtools软件(https://github.com/CJ-Chen/TBtools)绘制。
使用Tbtools软件提取生姜ZoIPTs基因启动上游2000 bp的序列,并用PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)获得ZoIPTs起始密码子上游2000 bp区域的顺式作用元件,然后将所有的顺式元件按照功能进行分类,最终通过TBtools软件进行可视化。
从NCBI收集生姜各个生长时期、生物胁迫及非生物胁迫相关转录组数
以竹根姜(Zingiber officinale Roscoe. cv. zhu gen)为试验材料,姜种由长江大学香辛作物研究院提供。在培养箱中催芽至芽长1.5 cm左右后(25 ℃、相对湿度65%、光周期为24 h黑暗),挑选出芽一致的姜种,盆栽种植于长江大学西校区玻璃温室(栽培盆上径、底径、高分别为25、21、26 cm)。育苗基质为丹麦品氏托普泥炭土和珍珠岩(体积比1∶1),当生姜高度为50 cm左右时,选取长势一致的生姜幼苗进行实验。实验设置4个处理:(1)对照,生姜苗正常管理;(2)盐胁迫,生姜苗用20 g/L NaCl溶液灌根处理3 d;(3)淹水胁迫,生姜苗放置在水面始终高于盆中基质土3 cm的水箱(长为163 cm,宽为118 cm,高49 cm)中3 d;(4)干旱胁迫,姜苗用25% PEG-6000处理7 d。每个取样点设3个生物学重复。每个处理以及对照分别取根系、叶片、根茎的样品,液氮速冻后于-80 ℃冰箱中保存直至使用。
登录号 Accession ID | 描述 Description | 数据大小(Gb) Data size | 参考文献 Reference |
---|---|---|---|
PRJNA788194 | 生姜根茎发育过程、生姜生长过程中颜色的形成机制 | 未知 |
[ |
PRJNA592215 | 竹根姜红茎内部、绿茎、幼黄根茎和红茎表面 4 个样品,3 个生物学重复 | 0.24 | — |
PRJNA380847 | 生姜根茎低/高土壤湿度(LUN 和 HUN)下用无菌水接种, 生姜根茎在低/高时(LI 和 HI)用青枯菌接种 3 d,3 个生物学重复 | 未知 |
[ |
PRJNA380972 | 高土壤湿度增加生姜中青枯菌感染率,3个生物学重复 | 31.5 |
[ |
PRJNA911443 | 低温处理生姜姜苗,3 个生物学重复 | 16.8 | — |
— 代表未发表数据
— means datas that didn′t published
使用TRizol试剂(GenStar,北京,中国)提取总RNA,使用DNaseI(TaKaRa,大连,中国)去除DNA。利用RevertAid逆转录酶(Vazyme,南京,中国)将RNA反转录合成cDNA。利用PrimerPremier5软件设计ZoIPT基因特异性引物(
基因名称 Gene name | 引物序列Primer sequence(5'-3') | |
---|---|---|
正向Forword | 反向Reverse | |
ZoIPT1 | AAGTGCGGAAGATGGAGCG | TGGCGTCGTTTAGGAAATGCT |
ZoIPT2 | TGCTGCTTCCTGTGGGTGG | GATCTCGTCGAGTGCTTCCTCC |
ZoIPT3 | CGCCAGGAGATTCGACCAGC | CGTCCACCCACAGGAAGCAG |
ZoIPT4 | GGTGCGGAAGATCGACAAACTA | CCACGTCACTCCTCCAGGGT |
ZoIPT5 | CCCTGTCGGGCTGGAACCTA | CCGAAGCGGACTCGTCTTGT |
ZoIPT6 | TGACATTGGTCTTCGTCCCG | TGGCTGGCTGATGCTGGGT |
ZoIPT7 | GTGGACCGCATGGTGGCTAG | TGCAAGAAATCGGCAACAAAGT |
ZoIPT8 | GCTAACGTGCTGTCAGCTTCAGA | GCAACGGGCTCATTAGTCAACG |
ZoIPT9 | GTGGAGCAGGTGCGGAAGA | CAAGGTGCAGACGGGAGGTT |
ZoIPT10 | AATCGCACAGACGAAGGT | AGGAATGGGCTCACAAGA |
ZoRBP | CCTATGAAGCGTAGAAACACAAG | GGAAGGACAACATCCCAAATC |
为鉴定ZoIPTs基因,对生姜基因组的蛋白序列进行本地BLAST搜索,去除重复、冗余、注释不完整和不包含IPT结构域的序列后,从生姜基因组数据库中共鉴定出10个编码包含IPT结构域(PF01715)的ZoIPT成员。根据系统发育树所示的进化关系,将它们分别命名为ZoIPT1~ZoIPT10。根据序列的相似性和拓扑结构将ZoIPT基因家族归类为6个亚群(I、II、III、IV、V、VI)(
ZoIPT蛋白质理化性质的基本信息如
ZoIPTs基因家族成员的二级结构完整,其中α螺旋的占比最大,达到了47.40%~61.17%,其次是无规则卷曲,达到了22.98%~37.92%,β转角的占比最少,仅占整体结构的4.29%~8.31%(
名称 Name | α螺旋 α-Helix | 延伸链 Extended chain | β转角 β-Corner | 无规则卷曲 Random curl |
---|---|---|---|---|
ZoIPT1 | 50.42 | 12.11 | 6.48 | 30.99 |
ZoIPT2 | 48.95 | 12.01 | 7.81 | 31.23 |
ZoIPT3 | 47.40 | 10.38 | 4.29 | 37.92 |
ZoIPT4 | 52.44 | 14.04 | 8.31 | 25.21 |
ZoIPT5 | 49.68 | 11.13 | 5.57 | 33.62 |
ZoIPT6 | 48.92 | 13.00 | 8.05 | 30.03 |
ZoIPT7 | 53.00 | 8.48 | 8.13 | 30.39 |
ZoIPT8 | 54.55 | 12.34 | 6.49 | 26.62 |
ZoIPT9 | 61.17 | 10.03 | 5.83 | 22.98 |
ZoIPT10 | 51.32 | 11.81 | 5.30 | 31.57 |

图2 ZoIPT三级蛋白结构预测
Fig.2 Prediction of protein tertiary structure of ZoIPT
如
利用TBtools的MCScanX功能分析ZoIPT家族成员的共线性关系,结果如
为更进一步分析生姜ZoIPT家族的基因进化关系,利用拟南芥、芭蕉IPT基因家族进行物种间共线性分析(
根据基因组中GFF3结构注释信息,使用Tbtools绘制ZoIPTs的外显子/内含子结构图。所有的ZoIPTs基因家族成员均包含内含子,但只有ZoIPT5包含2个UTR非编码区域(
从10个ZoIPTs基因上游的启动子区域共鉴定到54类顺式作用元件,这些顺式作用元件分为3组:7类顺式作用元件与生长发育相关,17类与植物激素相关,30类与生物/非生物胁迫相关。其中关于激素响应元件,包括茉莉酸甲酯(CGTCA.motif、TGACG.motif)、脱落酸(ABRE)、生长素(TGA.element、AuxRR.core)、水杨酸(TCA.element)、赤霉素(TATC.box)。关于逆境胁迫和环境应激响应元件,包括厌氧诱导(ARE、GC.motif)、低温(LTR)、干旱(MBS)、参与防御和压力反应(TC.rich. repeats)等。10个ZoIPTs均含有顺式元件,其中TATA.box数量最多,共有669个,存在于每一个ZoIPTs家族成员中。此外,激素响应元件中,茉莉酸甲酯响应元件(CGTCA.motif和TCACG.motif)数量最多,为41个。逆境响应元件中,低温(LTR)响应元件最多,为8个(

图3 ZoIPT基因家族染色体分布
Fig.3 Chromosomal localization of ZoIPT gene family from ginger

图4 ZoIPT物种内的共线性分析
Fig.4 Syntenic relationships analysis of ZoIPT gene family from ginger
红线为片段复制的基因对,灰线为生姜基因组中的所有共线性块,染色体内侧对应色块为基因密度的两种不同显示方式
The red lines are the gene pairs copied in large fragments,and the gray lines are all the collinear blocks in the ginger genome.Two different display modes of gene density corresponding to the color block on the inner side of chromosome

图5 生姜与拟南芥、芭蕉物种间IPT基因的共线性分析
Fig.5 Collinearity analysis of IPT gene among ginger, Arabidopsis and Musa basjoo species
红线为片段复制的基因对,灰线为生姜基因组中的所有共线性块
The red lines are the gene pairs copied in large fragments, the gray lines are all the collinear blocks in the ginger genome

图6 ZoIPT基因家族进化树(A)、基因结构(B)和保守元件分析(C)
Fig.6 Analysis of evolutionary tree (A),gene structure (B) and conserved motif elements (C) of ZoIPT gene family
如

图7 ZoIPT基因启动子上游2 kb顺式作用元件的数量分析
Fig.7 Putative cis-acting existed in the 2 kb upstream region of ZoIPT gene family
为了进一步研究ZoIPTs在不同胁迫下的表达特征,对10个ZoIPTs在对照处理,干旱处理、淹水处理和盐胁迫处理的叶、根茎以及根系的表达情况进行了RT-qPCR分析。
如
根茎中,同对照相比,ZoIPT1在干旱胁迫下下调表达;同对照相比,ZoIPT2在3种胁迫中表达量均为上调;同对照相比,ZoIPT3在淹水和盐胁迫下的表达显著上升,分别为对照的28.34倍和45.28倍;同对照相比,ZoIPT4在淹水和干旱胁迫下表达量显著上调,分别上调到23.66倍和2.24倍,但在盐胁迫下表达显著下调,下调到33%;同对照相比,ZoIPT5在干旱胁迫下表达显著升高,是对照的34.6倍,盐胁迫下表达较高,为对照的3.47倍;同对照相比,ZoIPT6在淹水胁迫下表达显著上调到23.69倍,盐胁迫和干旱胁迫下的表达量也分别显著上调到1.79倍和1.49倍;同对照相比,ZoIPT7在淹水胁迫中显著上调到3.44倍;同对照相比,ZoIPT8在干旱和淹水胁迫下表达量分别上调到12.18倍和3.46倍,盐胁迫下表达量下调到89%;同对照相比,ZoIPT10在干旱胁迫下表达水平是对照的1.24倍,在盐胁迫下表达水平较高,是对照的8.29倍。根茎中大部分基因在不同处理下表现出上调,表明了基因在不同组织间的差异。
在根系中,同对照相比,ZoIPT1在干旱和淹水胁迫下表达量均下调;同对照相比,ZoIPT2在3种胁迫中表达量均上调;同对照相比,ZoIPT3在干旱胁迫下表达水平较低,为对照的41.9%;ZoIPT5在干旱和盐胁迫下表达与对照相比较高,分别是对照的1.68倍和1.52倍;同对照相比,ZoIPT10在干旱和盐胁迫下表达水平分别是对照的1.74倍和2.09倍。

图9 ZoIPT基因的相对表达量
Fig.9 Expression of ZoIPT gene members under different stresses
图柱上的不同字母代表相同组织不同处理间差异显著(P<0.05)
The different letters on the graph bar represent significant differences between different treatments of the same organization(P<0.05)
生姜是一种重要的香辛蔬菜作物,其种植过程中容易受到各种生物/非生物胁迫的影响,不利于生姜产业的可持续发
基因片段复制可能是植物基因家族进化的关键因素,且基因片段的复制可能是植物基因家族扩大的主要原
研究表明,大多数IPT定位于质体,但也有些存在于线粒体
研究表明,IPT基因参与调控植物逆境胁迫的响应。拟南芥中,AtIPT8突变体和AtIPT1,3,5,7四基因突变体增强了植物的抗盐和抗旱能
为更好地解析ZoIPT基因的表达水平,借助已经发表的RNA-seq数据,对10个ZoIPT基因表达水平和表达模式进行了初步分析,发现大部分ZoIPT成员均能正常表达,但ZoIPT在不同组织和根茎的不同发育阶段中的表达量差别较大,具有组织特异性。其中ZoIPT3和ZoIPT5在生姜的不同生长时期和不同胁迫处理中均有较高的表达水平,推测这两个基因在生姜不同生长时期和响应外界胁迫中均发挥作用。ZoIPT9在各组织中表达较低,但在接种腐皮镰刀菌和接种腐皮镰刀菌+壳聚糖两种处理中有着较高的表达水平,推测该基因在未受胁迫刺激时表达量较低,但是接种腐皮镰刀菌后,该基因被诱导表达,表明其表达受到腐皮镰刀菌侵染的诱导。
盐胁迫、干旱、涝害等是农业生产常见的非生物胁迫。研究表明,盐胁迫可导致拟南芥体内细胞分裂素含量降低,进而增强植株对盐胁迫的耐受
综上所述,本研究从生姜中共鉴定到10个ZoIPTs家族基因,对ZoIPTs基因家族成员的结构、分类、进化和表达模式等进行了初步分析,推测ZoIPTs基因特别是ZoIPT3和ZoIPT5可能在生姜抵御生物与非生物胁迫方面发挥着关键的作用,为进一步提高生姜的抗逆性提供了理论基础。

图1 生姜、拟南芥、小麦和水稻IPT成员的系统发育分析
Fig.1 Phylogenetic tree of IPT gene in Zingiber officinale Roscoe., Arabidopsis thaliana., Triticum aestivum L. and Oryza sativa L.
不同颜色代表不同的亚家族;ZoIPT:生姜IPT基因; AtIPT:拟南芥IPT基因; OsIPT:水稻IPT基因;TaIPT:小麦IPT基因
Different colors represent different subfamilies;ZoIPT means IPT gene in Zingiber officinale Roscoe.; AtIPT means IPT gene in Arabidopsis thaliana.; OsIPT means IPT gene in Oryza sativa L.;TaIPT meas IPT gene in Triticum aestivum L.
名称 Name | 基因ID Gene ID | 长度(aa) Length | 分子量(kDa) Molecular weight | 等电点 Isoelectric point | 不稳定指数 Instability index | 亲水性 GRAVY | 亚细胞定位预测 Subcellular localization prediction |
---|---|---|---|---|---|---|---|
ZoIPT1 | Maker00010921 | 355 | 38.244 | 8.14 | 44.81 | -0.121 | 叶绿体 |
ZoIPT2 | Maker00034555 | 333 | 36.115 | 8.16 | 77.51 | -0.273 | 叶绿体 |
ZoIPT3 | Maker00055428 | 443 | 50.515 | 7.67 | 79.28 | -0.464 | 线粒体 |
ZoIPT4 | Maker00069802 | 349 | 37.949 | 9.08 | 86.99 | -0.104 | 叶绿体 |
ZoIPT5 | Maker00078445 | 467 | 52.656 | 6.52 | 83.85 | -0.426 | 叶绿体 |
ZoIPT6 | Maker00036588 | 323 | 35.064 | 9.37 | 87.28 | -0.214 | 叶绿体 |
ZoIPT7 | Maker00057895 | 308 | 33.618 | 5.50 | 87.40 | -0.060 | 叶绿体 |
ZoIPT8 | Maker00057589 | 283 | 31.147 | 4.97 | 89.61 | -0.161 | 细胞质 |
ZoIPT9 | Maker00015727 | 309 | 33.769 | 5.16 | 33.19 | -0.142 | 叶绿体 |
ZoIPT10 | Maker00040052 | 491 | 54.025 | 9.28 | 93.42 | -0.116 | 叶绿体 |
平均值 Average | 366 | 40.310 | 7.39 | 76.33 | 0.208 |
Length:Length of amino acid; GRAVY: Grand average of hydropathicity

图8 ZoIPT在生姜不同生育期各器官以及不同处理中的表达情况
Fig.8 ZoIPT expression in different organs and different treatments during different reproductive stages of ginger
A:生姜示意图,其中R1~R5对应生姜根茎5个发育阶段,R1: 成熟根茎,R2:母姜,R3:子姜,R4:孙姜;R5:新发育的根茎,下同;B:ZoIPT在90 d的生姜叶、根、茎和根茎中的表达情况;C: ZoIPT基因在生姜叶25 ℃、25 ℃+褪黑素、2 ℃、2 ℃+褪黑素处理下的表达情况;D:ZoIPT基因在生姜根茎中10%和40%土壤孔隙水水分含量下接种青枯菌和无菌水处理下的表达情况;E:ZoIPT在红色外表皮、红色外表皮的内部组织和根茎交界处的根茎、绿色的茎的表达情况;F:ZoIPT基因在生姜根茎中接种腐皮镰刀菌和接种腐皮镰刀菌+壳聚糖后不同时间的表达情况;G:ZoIPT基因在生姜叶片不同温度处理下的表达情况;H:ZoIPT基因在生姜根茎5个发育阶段及茎和根中的表达情况
A: Schematic diagram of the ginger, R1-R5 corresponds to 5 developmental stages of ginger rhizomes,R1: Mature rhizomes,R2: The seed of ginger,R3: Young rhizomes,R4: New rhizomes,R5: Newly developed rhizomes,the same as below;B: Expression of ZoIPT in ginger roots,stems,leaves and rhizomes under 90 d growth conditions;C: Expression of ZoIPT in ginger leaves treated with 25 ℃, 25 ℃ + melatonin,2 ℃,2 ℃ + melatonin (LT-MT);CK:Control check,MT:Melatonin, LT: Low temperature; D: Expression of ZoIPT in ginger rhizomes after inoculation with bacterial wilt and sterile water at 10% soil water filled porosity and treatment with bacterial wilt and sterile water at 40% soil water filled porosity;CK: 40% soil water filled porosity, DS:10% soil water filled porosity, BW: Inoculation with bacterial wilt, W: Inoculation with sterile water; E: Expression of ZoIPT in red outer epidermis, inner tissue of red outer epidermis, root stem and green stem at the junction of ginger stem and rhizome;RO:Red out epidermis,RI:The internal tissues of the red out epidermis,Rh:Rhizomatic,Gr:Green rhizomatic; F: Expression of ZoIPT genes in ginger rhizomes after inoculation with Fusarium oxysporum for different times and inoculation with Fusarium oxysporum + chitosan for different times;CK0:Inoculation with Fusarium oxysporum for 0 d,CK1:Inoculation with Fusarium oxysporum for 1 d,CK2:Inoculation with Fusarium oxysporum for 2 d,CS0:inoculation with Fusarium oxysporum + chitosan for 0 d,CS1:inoculation with Fusarium oxysporum + chitosan for 1 d, CS2:inoculation with Fusarium oxysporum + chitosan for 2 d; G: Expression of ZoIPT at different temperatures in ginger leaves;CK:Expression of ZoIPT at 25 ℃ in ginger leaves,C4:Expression of ZoIPT at 4 ℃ in ginger leaves;C12:Expression of ZoIPT at 12 ℃ in ginger leaves, H: Expression of ZoIPT in 5 developmental stages of ginger rhizome (R1-R5) and root and stem of ginger
参考文献
Varakumar S, Umesh K V, Singhal R S. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 2017, 216:27-36 [百度学术]
任清盛, 李承永. 我国生姜产业现状及发展分析. 中国蔬菜, 2021, 8:8-11 [百度学术]
Ren Q S. Li C Y. Analysis of the current situation and development of China's ginger industry. China Vegetables, 2021, 8:8-11 [百度学术]
Crowell D N, Salaz M S. Inhibition of growth of cultured tobacco cells at low concentrations of lovastatin is reversed by cytokinin. Journal of Plant Physiology, 1992, 100(4):2090-2095 [百度学术]
Argueso C T, Ferreira F J, Epple P, To J P, Hutchison C E, Schaller G E, Dangl J L, Kieber J J. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genetics, 2012(1):e1002448 [百度学术]
Chen C, Melitz D K. Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Letters, 1979, 107(1): 15-20 [百度学术]
Blackwell J R, Horgan R. Cytokinin biosynthesis by extracts of Zea mays. Phytochemistry, 1994, 35(2):339-342 [百度学术]
Barry G F, Rogers S G, Fraley R T, Brand L. Identification of a cloned cytokinin biosynthetic gene. The Proceedings of the National Academy of Sciences, 1984, 81:4776-4780 [百度学术]
Akiyoshi D E, Klee H, Amasino R M, Nester E W, Gordon M P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. The Proceedings of the National Academy of Sciences , 1984, 81:5994-5998 [百度学术]
Sakakibara H. Cytokinins activity, biosynthesis, and translocation. Annual Review of Plant Biology, 2006, 57:431-449 [百度学术]
Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 2011, 62:2431-2452 [百度学术]
Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. The Proceedings of the National Academy of Sciences, 2006, 103(44):16598-16603 [百度学术]
Gujjar R S, Supaibulwatana K. The Mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants: Basel, 2019, 8(12):542 [百度学术]
Hirose N, Takei K, Kuroha T, Kamada, Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany, 2008, 59:75-83 [百度学术]
Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Naagasaki H, Inukai Y, Sato Y, Matsuoka M. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiology, 2006, 142:54-62 [百度学术]
Satoshi M, Kaori K, Machiko F, Ichiro H, Shunsuke I. Roles and regulation of cytokinins in tomato fruit development. Journal of Experimental Botany, 2012, 63(15):5569-5579 [百度学术]
Ye C J, Wu S W, Kong F N, Zhou C J, Yang Q K, Sun Y, Wang B. Identification and characterization of an isopentenyl transferase (IPT) gene in soybean (Glycine max L.). Plant Science, 2006, 170:542-550 [百度学术]
Li H L, W L, Dong Z M, Jiang Y S, Jiang S J, Xing H T, Li Q, Liu G C, Tian S M, Wu Z Y, Wu B, Li Z X, Zhao P, Zhang Y, Tang J M, Xu J B, Huang K, Liu X, Zhang W L, Liao Q H, Ren Y, Huang X Z, Li Q Z, Li C Y, Wang Y, Baskaran Xavier-Ravi, Li H H, Liu Y, Wan T, Liu Q H, Zou Y, Jian J B, Xia Q Y ,Liu Y Q. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Horticulture Research, 2021, 8(1):242 [百度学术]
Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22):4673-4680 [百度学术]
Sharma H, Sharma A, Rajput R, Sidhu S, Dhillon H, Verma P C, Pandey A, Upadhyay S K. Molecular characterization, evolutionary analysis, and expression profiling of BOR genes in important cereals. Plants, 2022, 11(7):911 [百度学术]
Jiang Y S, Huang M J, Zhang M X, Lan J B, Wang W X, Tao X, Liu Y Q. Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest). Plant Physiology and Biochemistry, 2018, 132:547-556 [百度学术]
Huang M J, Xing H T, Li Z X, Li H L, Wu L, Jiang Y S. Identification and expression profile of the soil moisture and Ralstonia solanacearum response CYPome in ginger (Zingiber officinale). PeerJ, 2021, 9:11755 [百度学术]
Li G, Ma J W, Yin J L, Guo F L, Xi K Y, Yang P H, Cai X D, Jia Q, Li L, Liu Y Q, Zhu Y X. Identification of reference genes for reverse transcription-quantitative PCR analysis of ginger under abiotic stress and for postharvest biology studies. Frontiers in Plant Science, 2022, 13:1587 [百度学术]
Yin J L, Liu M Y, Ma D F, Wu J W, LI S L, Zhu Y X, Han B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology and Technology, 2018, 136:90-98 [百度学术]
Varakumar S, Umesh K V, Singhal R S. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 2017, 216:27-36 [百度学术]
陈小晶, 王东梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素. 玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究. 植物遗传资源学报, 2022, 23(4):1064-1075 [百度学术]
Chen X J, Wang D M, Guan H H, Guo J, Sha X X, Li Y X, Zhang D F, Liu X Y, He G H, Shi Y S. Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize. Journal Of Plant Genetic Resources, 2022, 23(4):1064-1075 [百度学术]
杜强, 韩玲玲, 高芙蓉, 周逸龙, 彭子华, 王志龙, 陈秋红. 水稻DUF761基因家族成员鉴定与表达谱分析. 植物遗传资源学报, 2022, 23(5):1487-1499 [百度学术]
Du Q, Han L L, Gao F R,Zhou Y L, Peng Z H, Wang Z L, Chen Q H. Identification and expression profile analysis of DUF761 gene family members in rice. Journal of Plant Genetic Resources, 2022, 23(5):1487-1499 [百度学术]
Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 2011, 62:2431-2452 [百度学术]
Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S. Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. The Proceedings of the National Academy of Sciences, 2005, 102(28):9972-9977 [百度学术]
王娜. 小麦异戊烯基转移酶基因家族的生物信息学分析和TaIPT8的抗旱功能鉴定. 荆州:长江大学, 2022 [百度学术]
Wang N. Bioinformatics analysis of the isopentenyl transferase gene family in wheat and functional identification of TaIPT8 in drought tolerance. Jingzhou:Yangtze University, 2022 [百度学术]
田晓芹, 褚晶, 丁洪霞.藜麦异戊烯基转移酶基因(CqIPT)家族的全基因组鉴定与分析. 烟台大学学报: 自然科学与工程版, 2023, 36(2):149-156 [百度学术]
Tian X Q, Zhu J, Ding H X. Quinoa isoprene transferase gene (CqIPT) family Genome-wide identification and analysis. Journal of Yantai University, 2023, 36(2):149-156 [百度学术]
Nishiyama R, Watanabe Y, Fujita Y, Le D T, Kojima M, Werner T, Vankova R, Yamaguchi, Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran L S. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell, 2011, 23(6):2169-2183 [百度学术]
Rivero, Rosa M, Kojima, Mikiko, Gepstein, Amira, Sakakibara, Hitoshi, Mittler, Ron, Gepstein, Shimon, Blumwald, Eduardo. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. The Proceedings of the National Academy of Sciences, 2007, 104:19631-19636 [百度学术]
Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal, 2011, 9(7):747-758 [百度学术]
李志强, 聂石辉, 王仙, 向莉, 刘恩良, 方伏荣. 大麦SRO家族的全基因组鉴定及生物信息学分析.植物生理学报, 2022, 58 (8):1496-1506 [百度学术]
Li Z Q, Nie S H, Wang X, Xiang L, Liu E L, Fang F R. Genome wide identification and bioinformatics of SOR family in barely. Plant Physiology Journal, 2022, 58 (8):1496-1506 [百度学术]
李民吉. 桃ATP/ADP PpIPT基因鉴定与表达分析. 泰安:山东农业大学, 2015 [百度学术]
Li M J. Identification and characterization of ATP/ADP PpIPT genes in peach, TaiAn:Shandong Agricultural University, 2015 [百度学术]
Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N. Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant Journal, 2021, 105(6):1507-1520 [百度学术]
高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展. 生物技术通报, 2018, 34(7):1-13 [百度学术]
Gao X H, Fu X D. Research progress for the gibberellin signaling and action on plant growth and development. Biotechnology Bulletin, 2018, 34(7):1-13 [百度学术]
Wang Y, Shen W, Chan Z, Wu Y. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis Thaliana. Frontiers in Plant Science, 2015, 19(6):1004 [百度学术]