摘要
铁是植物细胞生命过程中必不可少的微量元素之一,参与呼吸作用、叶绿素生物合成、光合作用等生命过程。土壤中含有大量的铁元素,但是有效铁的利用受到限制,导致植物缺铁,而植株缺铁直接关系到其生长发育和花粉活力及品质形成,进而造成产量损失。解决该问题的重要举措在于提高大豆对铁元素的吸收转运和高效利用。因此,掌握大豆铁吸收转运和利用规律并明确其分子遗传机制是实现大豆铁营养高效的重要前提。铁营养高效性属于数量性状,受多基因控制,基于其相关功能基因研究培育“高铁大豆”是未来热点之一;此外,通过轮回选择和定向选择也可以有效改良大豆的缺铁失绿症。基于此,本文重点阐述了铁元素在大豆体内的作用、吸收、分配和转运及其过剩产生的毒害现象以及铁元素参与大豆固氮作用,缺铁和高铁对大豆生长发育的影响等内容,并综述了国内外大豆铁元素吸收、转运机制和分子调控机理方面的进展及重要科学问题,旨在为大豆铁营养高效利用提供理论信息。
大豆起源于我国,已有5000多年驯化历史,能够提供蛋白质、油脂、异黄酮和卵磷脂等重要营养资
大豆高产优质与各营养元素之间密不可分。必需营养元素分为两类,一类是常量营养元素,包括氮(N)、磷(P)和钾(K),另一类是微量营养元素,包括钙(Ca)、镁(Mg)、铁(Fe)、硼(B)、锌(Zn)、锰(Mn)、铜(Cu)和钼(Mo),其中微量元素所占比例较低,但在植物生长发育中起着重要作用,缺乏微量元素影响其生长发育,过剩则会产生毒害作
铁是地壳中含量第四丰富的元素,是植物生长发育的第三限制性元素。与许多生物一样,植物需要铁元素来催化氧化还原反应和其他重要生理过程,才能满足自身的生长发
大豆是典型的固氮型作物,与根瘤菌存在共生关系,大豆为根瘤菌提供合适的固氮环境及生长所必需的碳水化合物,而根瘤菌将氮气转变成含氮化合物,满足豆科植物对氮元素的需求。当共生菌侵入豆科植物根毛时,内皮层根细胞的分裂和根瘤的形成标志着共生开始
大豆根瘤分为3个主要部分(

图1 铁元素经过大豆根瘤运输至根部的整个过程
Fig.1 The whole process of iron element transport to the root through soybean nodules
SM:共生体膜
SM:Symbiotic membrane
双子叶植物已经进化出还原机制来增强对土壤中铁的吸

图2 正常土壤环境中大豆根部吸收铁元素至茎秆中以柠檬酸铁和烟草胺铁复合物的形式运输的整个过程
Fig.2 In normal soil environment, the whole process of iron absorption from soybean roots to stems in the form of iron citrate and tobacco amine iron complex is transported
相较于双子叶植物,禾本科植物如水稻、大麦和玉米等主要通过螯合机制吸收铁。螯合机制离不开植物高铁载体,植物的高铁载体涉及麦根酸(MA,mugineic acid)家族和燕麦酸家族的有机小分子(PS,plant siderophores)。PS作为强铁螯合剂,具有结合F
大豆缺铁受土壤和植物中的许多因素影响,铁的有效吸收取决于土壤的理化性质,钙质土壤覆盖了地球表面的30%,易形成难溶的F
铁中毒是一种与土壤溶液中高浓度还原铁(F
当土壤中含有过量的铁元素时,会使大豆产生铁毒害。铁毒害在大豆中研究甚少,但不可被忽略。铁毒害的严重症状已经在水稻中被发现半个多世纪,相关研究中发现还原性亚铁在水稻湿土中的溶解度更大,从而导致水稻过量吸收产生铁毒害现
缺铁失绿症(IDC,iron deficiency chlorosis)是一种因缺铁而产生的严重症状,大豆产量损失与缺铁失绿症的严重程度呈正相

图3 缺铁失绿症5种等
Fig.3 Phenotypic of 5 grade
在缺铁失绿症诱导的差异表达基因启动子区域发现了成髓细胞瘤(Myb)、螺旋-环-螺旋(bHLH)和延伸因子2(Elongation factor 2)转录因子结合位点,表明大豆响应缺铁失绿症的转录调控是复杂
铁被根表皮细胞吸收后,将会通过共质体途径向维管结构运输铁元素,然后以F
叶片中来自木质部的铁通过烟酰胺转运蛋白YSL1(Yellow stripe-like 1)和YSL3(Yellow stripe-like 3)被转运至邻近的非维管组
研究表明,两个编码铁氧化物酶基因(LPR1和LPR2)在拟南芥木质部铁转运调控中发挥关键作
FRD3是多药和毒素外排(MATE,multidrug and toxin efflux)家族的一员,包含12到14个跨膜结构域蛋白,具有高效铁螯合剂的外排转运体,能够运输小的有机化合物,对整个植物发育过程中维持铁稳态起着重要作用,有助于柠檬酸盐外排进入木质
基因 Gene | 蛋白功能注释 Protein function annotation | 已知结果 Known results | 参考文献 Reference |
---|---|---|---|
GmIRT1 (Glyma.07G223200) | 铁离子转运体 | 锌、锰、钴和镉转运蛋白 |
[ |
GmNRAMP2a (Glyma.05G101700) | 铁离子转运体 | 天然抗性相关巨噬细胞转运蛋白 | [70,51] |
GmNRAMP2b(Glyma.17G165200) | 铁离子转运体 | 天然抗性相关巨噬细胞转运蛋白 |
[ |
GmNRAMP7 (Glyma.06G115800) | 铁离子转运体 | 天然抗性相关巨噬细胞转运蛋白 |
[ |
GmFRD3a (Glyma.15G274600) | 铁离子转运体 | 影响木质部汁液中柠檬酸盐水平 |
[ |
GmFRD3b (Glyma.09G102800) | 铁离子转运体 | 影响木质部汁液中柠檬酸盐水平 |
[ |
GmbHLH300 (Glyma.03G130600) | 铁稳态转录因子 | 参与大豆铁稳态的重要转录因子 |
[ |
GmbHLH57 (Glyma.12G178500) | 铁稳态转录因子 | 参与大豆铁稳态的重要转录因子 |
[ |
GmYSL7 (Glyma.11G203400) | 铁转运蛋白 |
运输螯合的F |
[ |
植物中不同金属元素间普遍存在相互作用。铁转运蛋白IRT1在植物中除了转运铁,同时还是锌、锰、钴和镉的转运蛋
综上所述,植物生长、发育和繁殖需要多种不同金属元素,这些元素必须从土壤基质中迁移,并作为金属离子被根部吸收。一旦被根部吸收,金属离子就会被维管组织分配到植物的不同部
缺铁失绿症以及铁过多产生的毒害严重威胁到作物的生长发育以及产量和品质,大豆作为我国重要的经济作物,能够为人类和动物提供丰富的油脂和蛋白等营养物质。关于大豆铁吸收及如何从地下部向地上部转运和再分配的相关研究已经较为清晰,但目前有关F
近年来,中央一号文件多次提及“大豆玉米带状复合种植技术”,在该系统共生过程中,大豆会受到玉米遮光胁迫,冠层内的红光与远红光比率降
几个世纪以来,缺铁性贫血(IDA,iron deficiency anemia)是一个全球日益严重的健康问题,影响着世界四分之一的人口,并严重威胁全世界人类健康,主要集中在学龄前儿童和妇女身上,已成为全球公共卫生问
尽管育种家们很早就认识到选育耐低铁(铁有效)品种可以在根本上解决大豆缺铁失绿症,进而增加大豆产量,但直到20世纪70年代,国际上才开始重视这项研
参考文献
汪明华, 李佳佳, 陆少奇, 邵文韬, 程安东, 王晓波, 邱丽娟. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定. 植物遗传资源学报, 2019, 20(4): 891-902 [百度学术]
Wang M H, Li J J, Lu S Q, Shao W T, Cheng A D, Wang X B, Qiu L J. Construction of evaluation standard for tolerance to high-temperature and screening of heat-tolerant germplasm resources in Soybean. Journal of Plant Genetic Resources, 2019, 20(4): 891-902 [百度学术]
金武, 万明月, 李俊, 吕锟, 朱尚尚, 龙群, 陈林英, 苗龙, 高慧慧, 李佳佳, 邱丽娟, 王晓波. 大豆耐密植品种评价方法的建立及耐密种质的筛选. 植物遗传资源学报, 2022, 23(4): 1004-1015 [百度学术]
Jin W, Wan M Y, Li J, Lv K, Zhu S S, Long Q, Chen L Y, Miao L, Gao H H, Li J J, Qiu L J, Wang X B. Establishing an evaluation method for condensed planting and identification of elite germplasm resources in Soybean. Journal of Plant Genetic Resources, 2022, 23(4): 1004-1015 [百度学术]
Templeton D M, Ariese F, Cornelis R, Danielsson L G, Muntau H, Leeuwen H P, Lobinski R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions,structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure and Applied Chemistry, 2000, 72(8): 1453-1470 [百度学术]
Rogers E E, Wu X L, Stacey G, Nguyen H T. Two MATE proteins play a role in iron efficiency in soybean. Journal of Plant Physiology, 2009, 166: 1453-1459 [百度学术]
Li L, Gao W W, Peng Q, Zhou B, Kong Q H, Ying Y H, Shou H X. Two soybean bHLH factors regulate response to iron deficiency. Journal of Integrative Plant Biology, 2018, 60: 608-622 [百度学术]
Raza M A, Feng L Y, Werf W, Iqbal N, Khan I, Khan A, Din A M U, Naeem M, Meraj T A, Hassan M J, Khan A, Lu F Z, Liu X, Ahmed M, Yang F, Yang W Y. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food and Energy Security, 2020, 9(2): 199 [百度学术]
Song H, Geng Q L, Wu X, Hu M, Ye M, Yu X, Chen Y L, Xu J N, Jiang L, Cao S Q. The transcription factor MYC1 interacts with FIT to negatively regulate iron homeostasis in Arabidopsis thaliana. The Plant Journal, 2023, 114(1): 193-208 [百度学术]
Bertamini M, Nedunchezhian N, Borghi B. Effect of iron deficiency induced changes on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. pinot noir) leaves. Photosynthetica, 2001, 39: 59-69 [百度学术]
Wang Y W, Xu C, Li K, Cai X J, Wu M, Chen G X. Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids. Environmental Science and Pollution Research, 2017, 24: 1380-1388 [百度学术]
Jiang C D, Gao H Y, Zou Q, Shi L. Effects of iron deficiency on photosynthesis and photosystem II function in soybean leaf. Journal of Plant Physiology and Molecular Biology, 2007, 33: 53-60 [百度学术]
Naeve S L. Iron deficiency chlorosis in soybean: Soybean seeding rate and companion crop effects. Agronomy Journal, 2006, 98: 1575-1581 [百度学术]
Kaiser B N, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day D A. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. The Plant Journal, 2003, 35: 295-304 [百度学术]
Brear E M, Bedon F, Gavrin A, Kryvoruchko I S, Torres-Jerez I, Udvardi M K, Day D A,Smith P M C. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytologist, 2020, 228: 667-681 [百度学术]
Brear E M, Day D A, Smith P M C. Iron: An essential micronutrient for the legume-rhizobium symbiosis. Frontiers in Plant Science, 2013, 4: 359 [百度学术]
Rodriguez-Haas B, Finney L, Vogt S, Gonzalez-Melendi P, Imperial J, Gonzalez-Guerrero M. Iron distribution through the developmental stages of Medicago truncatula nodules. Metallomics, 2013, 5: 1247-1253 [百度学术]
Jiang S Y, Jardinaud M F, Gao J P, Pecrix Y, Wen J Q, Mysore K, Xu P, Sanchez-Canizares C, Ruan Y T, Li Q J, Zhu M J, Li F Y, Wang E T, Poole P S, Gamas P, Murray J D. NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 2021, 374: 625-628 [百度学术]
Kobayashi T, Nishizawa N K.Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 2012, 63: 131-152 [百度学术]
Aksoy E, Maqbool A, Tindas İ, Caliskan S. Soybean: A new frontier in understanding the iron deficiency tolerance mechanisms in plants. Plant and Soil, 2017, 418: 37-44 [百度学术]
Fourcroy P, Siso-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F, Abadía A, Abadia J, Álvarez-Fernández J, Briat J F. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytologist, 2014, 201: 155-167 [百度学术]
Jeong J, Merkovich A, Clyne M, Connolly E L. Directing iron transport in dicots: Regulation of iron acquisition and translocation. Current Opinion in Plant Biology, 2017, 39: 106-113 [百度学术]
Martìn-Barranco A, Spielmann J, Dubeaux G, Vert G, Zelazny E. Dynamic control of the high-affinity iron uptake complex in root epidermal cells. Plant Physiology, 2020, 184: 1236-1250 [百度学术]
Palmer C M, Guerinot M L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 2009, 5: 333-340 [百度学术]
Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot M L, Briat J F, Curie C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 2002, 14: 1223-1233 [百度学术]
Santi S, Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist, 2009, 183: 1072-1084 [百度学术]
Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. The Plant Journal, 2003, 36: 366-381 [百度学术]
Dubeaux G, Neveu J, Zelazny E, Vert G. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Molecular Cell, 2018, 69: 953-964 [百度学术]
Chen Q Q, Wu W W, Zhao T, Tan W Q, Tian J, Liang C Y. Complex gene regulation underlying mineral nutrient homeostasis in soybean root response to acidity stress. Genes, 2019, 10: 402 [百度学术]
Zhou L J, Zhang C L, Zhang R F, Wang G L, Li Y Y, Hao Y J. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane
Morrissey J, Guerinot M L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chemical Reviews, 2009, 109: 4553-4567 [百度学术]
Kratena N, Draskovits M, Biedermann N, Oburger E, Stanetty C. Total synthesis of
Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa N K. OsYSL16 plays a role in the allocation of iron. Plant Molecular Biology, 2012, 79: 583-594 [百度学术]
Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry, 2011, 286: 5446-5454 [百度学术]
Liang G, Zhang H M, Li Y, Pu M N, Yang Y J, Li C Y, Lu C K, Xu P, Yu D Q. Oryza sativa fer-like fedeficiency-induced transcription factor (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis. Journal of Integrative Plant Biology, 2020, 62: 668-689 [百度学术]
张伟,赵丽梅,韩喜国,徐长宏,赵婧,邱强,闫晓艳,张鸣浩. 石灰性土壤大豆缺铁矫正. 大豆科学, 2011, 30(3): 463-467 [百度学术]
Zhang W, Zhao X M, Han X G,Xu C H, Zhao J, Qiu Q, Yan X Y, Zhang M H. Iron deficiency correction of soybean in calcareous soil. Soybean Science, 2011, 30(3): 463-467 [百度学术]
Dixon S J, Stockwell B R. The role of iron and reactive oxygen species in cell death. Nature Chemical Biology Volume, 2014, 10: 9-17 [百度学术]
Li B H, Sun L, Huang J Y, Göschl C, Shi W M, Chory J, Busch W. GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nature Communications, 2019, 10: 3896 [百度学术]
Turhadi T, Hamim H, Ghulamahdi M, Miftahudin M. Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties. Plant Signaling & Behavior, 2019, 14: 12 [百度学术]
李俊成,于慧,杨素欣,冯献忠. 植物对铁元素吸收的分子调控机制研究进展. 植物生理学报, 2016, 52(6): 835-842 [百度学术]
Li J C, Yu H, Yang S X, Feng X Z. Research progress on molecular regulation mechanism of iron absorption in plants. Plant Physiology Journal, 2016, 52(6): 835-842 [百度学术]
Ponnamperuma F N, Bradfield R, Peech M. Physiological disease of rice attributable to iron toxicity. Nature, 1955, 175: 265 [百度学术]
Becker M, Asch F. Iron toxicity in rice-conditions and management concepts. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 558-573 [百度学术]
O'Rourke J A, Charlson D V, Gonzalez D C, Vodkin L O, Graham M A, Cianzio S R, Grusak M A, Shoemaker R C. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics, 2007, 8: 476 [百度学术]
Nsiri K, Krouma A. The key physiological and biochemical traits underlying common bean (Phaseolus vulgaris L.) response to iron deficiency, and related interrelationships. Agronomy, 2023, 13: 2148 [百度学术]
Bai G, Jenkins S, Yuan W A, Graef G L, Ge Y F. Field-based scoring of soybean iron deficiency chlorosis using RGB imaging and statistical learning. Frontiers in Plant Science, 2008, 9: 1002 [百度学术]
Merry R, Dobbels A A, Sadok W, Naeve S, Stupar R M, Lorenz A J. Iron deficiency in soybean. Crop Science, 2022, 62: 36-52 [百度学术]
Singh S, Singh A L, Pal K K, Reddy K K, Gangadhara K, Dey R, Mahatma M K, Verma A, Kumar N, Patel C B, Thawait L K, Ahmed S, Navapara R, Rani K, Kona P. Accumulation of resveratrol, ferulic acid and iron in seeds confer iron deficiency chlorosis tolerance to a novel genetic stock of peanut (Arachis hypogaea L.) grown in calcareous soils. Physiology and Molecular Biology of Plants, 2023, 29: 725-737 [百度学术]
Merry R, Butenhoff K, Campbell B W, Michno J M, Wang D C, Orf J H, Lorenz A J, Stupar R M. Identification and fine‐mapping of a soybean quantitative trait locus on chromosome 5 conferring tolerance to iron deficiency chlorosis. The Plant Genome, 2019, 12: 190007 [百度学术]
Kaiser D E, Lamb J A, Bloom P R, Hernandez J A. Comparison of field management strategies for preventing iron deficiency chlorosis in soybean. Agronomy Journal, 2014, 106: 1963-1974 [百度学术]
Lin S, Cianzio S, Shoemaker R. Mapping genetic loci for iron deficiency chlorosis in soybean. Molecular Breeding, 1997, 3: 219-229 [百度学术]
Peiffer G A, King K E, Severin A J, May G D, Cianzio S R, Lin S F, Lauter N C, Shoemaker R C. Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean. Plant Physiology, 2012, 158: 1745-1754 [百度学术]
Assefa T, Zhang J P, Chowda-Reddy R V, Lauter A N M, Singh A, O'Rourke J A, Graham M A, Singh A K. Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches. BMC Plant Biology, 2020, 20(1): 42 [百度学术]
Rahman M A, Bagchi R, El-Shehawi A M, Elseehy M M, Anee S A, Lee K W, Kabir A H. Physiological and molecular characterization of strategy-I responses and expression of Fe-transporters in Fe-deficient soybean. South African Journal of Botany, 2022 (1): 942-950 [百度学术]
King K E, Peiffer G A, Reddy M, Lauter M, Lauter N, Lin S F, Cianzo S, Shoemaker R C. Mapping of iron and zinc quantitative trait loci in soybean for association to iron deficiency chlorosis resistance. Journal of Plant Nutrition, 2013, 36: 2132-2153 [百度学术]
王金生, 闫晓艳, 吴俊江, 蒲国锋, 刘庆莉. 大豆营养高效利用型品种筛选. 大豆科学, 2020, 39(5): 696-702 [百度学术]
Wang J S, Yan X Y, Wu J J, Pu G F, Liu Q L. Screening of soybean varieties with high nutrient utilization efficiency. Soybean Science, 2020, 39(5): 696-702 [百度学术]
Robe K, Barberon M. Nutrient carriers at the heart of plant nutrition and sensing. Current Opinion in Plant Biology, 2023, 74: 102376 [百度学术]
Hoehenwarter W, Mönchgesang S, Neumann S, Majovsky P, Abel S, Müller J. Comparative expression profiling reveals a role of the root apoplast in local phosphate response. BMC Plant Biology, 2016, 16: 106 [百度学术]
Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R. Inventory of metal complexes circulating in plant fluids: A reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytologist, 2016, 211: 1129-1141 [百度学术]
Zheng Z, Wang Z, Wang X Y, Liu D. Blue light-triggered chemical reactions underlie phosphate deficiency-induced inhibition of root elongation of Arabidopsis seedlings grown in petri dishes. Molecular Plant, 2019, 12: 1515-1523 [百度学术]
Chu H H, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt D E, Walker E L. Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiology, 2010, 154: 197-210 [百度学术]
Kumar R K, Chu H H, Abundis C, Vasques K, Rodriguez D C, Chia J C, Huang R, Vatamaniuk O K, Walker E L. Iron-nicotianamine transporters are required for proper long distance iron signaling. Plant Physiolgy, 2017, 175: 1254-1268 [百度学术]
Sági-Kazár M, Solymosi K, SoltiÁ. Iron in leaves: Chemical forms, signalling, and in-cell distribution. Journal of Experiment Botany, 2022, 73: 1717-1734 [百度学术]
Xu Z R, Cai M L, Yang Y, You T T, Ma J F, Wang P, Zhao F J. The ferroxidases LPR1 and LPR2 control iron translocation in the xylem of Arabidopsis plants. Molecular Plant, 2022, 15(12): 1962-1975 [百度学术]
Roschzttardtz H, Séguéla-Arnaud M, Briat J F, Vert G, Curie C. The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell, 2011, 23: 2725-2737 [百度学术]
Green L S, Rogers E E. FRD3 controls iron localization in Arabidopsis. Plant Physiology, 2004, 136: 2523-2531 [百度学术]
Wu H L, Ling H Q. FIT-Binding proteins and their functions in the regulation of Fe homeostasis. Frontiers in Plant Science, 2019, 10: 844 [百度学术]
Durrett T P, Gassmann W, Rogers E E. The FRD3-mediated efflflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 2007, 144(1): 197-205 [百度学术]
Rogers E E, Guerinot M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. The Plant Cell, 2002, 14(8): 1787-1799 [百度学术]
Yokosho K, Yamaji N, Ma J F. OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. Journal of Experimental Botany, 2016, 67(18): 5485-5494 [百度学术]
Qiu W, Wang N Q, Dai J, Wang T Q, Kochian L V, Liu J P, Zuo Y. AhFRDL1-mediated citrate secretion contributes to adaptation to iron deficiency and aluminum stress in peanuts. Journal of Experimental Botany, 2019, 70(10): 2873-2886 [百度学术]
Wu T Y, Gruissem W, Bhulla N K. Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Science, 2018, 270: 13-22 [百度学术]
Kabir A H, Rahman M A, Rahman M M, Brailey-Jones P, Lee K W, Bennetzen J L. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. Journal of Applied Microbiology, 2022, 133(5): 2760-2778 [百度学术]
Wu X Y, Wang Y L, Ni Q H, Li H Z, Wu X S, Yuan Z X, Xiao R H, Ren ZY, Lu J J, Yun J X, Wang Z J, Li X. GmYSL7 controls iron uptake, allocation, and cellular response of nodules in soybean. Journal of Integrative Plant Biology, 2023, 65: 167-187 [百度学术]
Spielmann J, Cointry V, Devime F, Ravanel S, Neveu J, Vert G. Differential metal sensing and metal-dependent degradation of the broad spectrum root metal transporter IRT1. The Plant Journal, 2022, 112: 1252-1265 [百度学术]
Natalia T O, Filipe A N, Sombir R, Arnon A S C, Pedro M R, Luiz R G G, Jiping L, Li L. Iron counteracts zinc-induced toxicity in soybeans. Plant Physiology and Biochemistry, 2023, 194: 335-344 [百度学术]
Oliveira N T, Namorato F A, Rao S, Cardoso A A S, Rezende P M, Guilherme L R G, Liu J P, Li L. Iron counteracts zinc-induced toxicity in soybeans. Plant Physiology and Biochemistry, 2023, 194: 335-344 [百度学术]
Moussa M G, Sun X C, Ismael M A, Elyamine A M, Rana M S, Syaifudin M, Hu C X. Molybdenum-induced effects on grain yield, macro-micro-nutrient uptake, and allocation in Mo-inefficient winter wheat. Journal of Plant Growth Regulation, 2022, 41: 1516-1531 [百度学术]
Amine B E, Mosseddaq F, Naciri R, Oukarroum A. Interactive effect of Fe and Mn deficiencies on physiological, biochemical, nutritional and growth status of soybean. Plant Physiology and Biochemistry, 2023, 199: 107718 [百度学术]
Guo M, Ruan W, Zhang Y, Zhang Y, Wang X, Guo Z, Wang L, Zhou T, Paz-Ares J, Yi K. A reciprocal inhibitory module for Pi and iron signaling. Molecular Plant, 2022, 15(1): 138-150 [百度学术]
Qiu W, Dai J, Wang N Q, Guo X T, Zhang X L, Zuo Y M. Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean. Plant Physiology and Biochemistry, 2017, 112: 1-8 [百度学术]
DalCorso G, Manara A, Piasentin S, Furini A. Nutrient metal elements in plants. Metallomics, 2014, 6: 1770-1788 [百度学术]
Cheng B, Wang L, Liu R J, Wang W B, Yu R W, Zhou T, Ahmad I, Raza A, Jiang S J, Xu M, Liu C Y, Yu L, Wang W Y, Jing S Z, Liu W G, Yang W Y. Shade-tolerant soybean reduces yield loss by regulating its canopy structure and stem characteristics in the maize-soybean strip intercropping system. Frontiers in Plant Science, 2022, 13: 848893 [百度学术]
Nasar J, Wang J Y, Zhou F J, Gitari H, Zhou X B, Tabl K M, Hasan M E, Ali H, Waqas M M, Ali I, Jahan M S. Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping. Frontiers in Plant Science, 2022, 13: 1014640 [百度学术]
McLean E, Cogswell M, Egli I, Wojdyla D, Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005. Public Health Nutrition, 2009, 12(4): 444-454 [百度学术]
Mohamadi S, Yazdanfar N, Ebrahiminejad B, Shokri S, Pirhadi M, Sadighara P, Zeinali T. Evaluation of iron content in bakery flour samples of tehran, iran. Heliyon, 2023, 9(1): 12937 [百度学术]
Majumder S, Datta K, Datta S K. Rice biofortification: High iron, zinc, and vitamin-a to fight against “hidden hunger”. Agronomy, 2019, 9: 803 [百度学术]
Wang Q, Chen M J, Hao Q Y, Zeng H L, He Y. Research and progress on the mechanism of iron transfer and accumulation in rice grains. Plants, 2021, 10: 2610 [百度学术]
Bänziger M, Long J. The potential for increasing the iron and zinc density of maize through plant-breeding. Food and Nutrition Bulletin, 2000, 21(4): 397-400 [百度学术]
张国平, 马国瑞. 大豆铁营养的遗传和铁高效品种的选育. 大豆科学, 1996, 15(2): 159-163 [百度学术]
Zhang G P, Ma G R. Inheritance of iron nutrition and breeding of iron efficient soybean varieties. Soybean Science, 1996, 15(2): 159-163 [百度学术]
Yan P S, Du Q G, Chen H, Guo Z F, Wang Z H, Tang J H, Li W X. Biofortification of iron content by regulating a NAC transcription factor in maize. Science, 2023, 382: 1159-1165 [百度学术]