摘要
银扇草(Lunaria annua L.)属十字花科银扇草属,是一种含神经酸的二年生草本植物,其种子富含油脂,具有较高的生物与医药价值。为探明银扇草果实发育过程中脂肪酸的种类和含量变化特征,以及超长链脂肪酸特别是神经酸的合成特点,本研究使用气相色谱-质谱联用技术比较分析了含神经酸的银扇草、琉璃苣和蒜头果果实的脂肪酸组分及含量。结果表明,银扇草果实发育过程中共有10种脂肪酸参与了油脂代谢,种子中有7种,果皮中有8种,多为长链及超长链不饱和脂肪酸。银扇草种子内的脂肪酸主要由软脂酸、硬脂酸、油酸、亚油酸、亚麻酸、芥酸和神经酸组成;软脂酸、硬脂酸、亚油酸和亚麻酸的含量均随种子发育逐渐减少;油酸、芥酸和神经酸随种子发育逐渐增加,并在花后25~35 d大量累积;果皮中不含芥酸和神经酸,但有山嵛酸、木质素酸和蜡酸。银扇草、琉璃苣和蒜头果种子中均含芥酸和神经酸,木本植物蒜头中果含量最高,银扇草次之,琉璃苣含量最低,三者种子中神经酸的含量与芥酸含量有明显的正相关关系。本研究结果阐明了银扇草果实发育过程中脂肪酸代谢变化特点及神经酸积累特性,为充分利用银扇草种质资源和拓展神经酸的获取途径提供了新思路。
银扇草(Lunaria annua L.)是十字花科银扇草属的二年生草本植物,常作为园艺观赏植
神经酸能预防脑神经衰弱、促进大脑的发
供试材料银扇草(Lunaria annua L.)、拟南芥[Arabidopsis thaliana (L.) Heynh.]、琉璃苣(Borago officinalis L.)和蒜头果(Malania oleifera Chun & S. K. Lee)种子来自于作物表观遗传调控与发育湖南省重点实验室。
试验地点位于湖南长沙,为典型的亚热带季风气候。2021年7月,种子播种于营养钵中,每种材料各种30株,室外条件种植,定期浇水施肥。2022年4月自然授粉后取样,6月收获。分别取花后5 d、15 d的银扇草果实200 mg,剥开后取种子,设置3个生物学重复,用于分析银扇草果实发育过程中种子脂肪酸组分。分别取花后25 d、35 d的果实,剥开后取果皮与种子各200 mg,设置3个生物学重复,用于分析银扇草果实发育过程中果皮与种子脂肪酸组分及含量的变化。分别取200 mg自然干燥的银扇草、蒜头果和琉璃苣种子,以拟南芥种子为对照,各设置3个生物学重复,用于调查神经酸和芥酸在该4种植物的分布规律。脂肪酸甲酯化具体方法如下:取200 mg样品于10 mL具塞试管中,加入1 mL 1 mol/L的KOH-甲醇溶液,置于40 ℃水浴锅震摇30 min,再静置15 min,随后将试管塞移除后置于70 ℃水浴锅将液体蒸干,加入2 mL 5% H2SO4-甲醇后,70 ℃水浴60 min,加入2 mL正己烷静置10 min,等待液体分层,即获得果实脂肪酸甲酯化样品,采用Agilent 7890B型气相色谱仪(安捷伦,山东)分析果实脂肪酸甲脂,Excel统计与计算数据。
气相色谱仪分析条件:HB-88毛细管柱(100.0 m× 0.32 mm×0.25 μm);载气为He(纯度99.9999%);进样口温度:250 ℃;柱温:初始温度120℃保持1 min,10 ℃/min升温至175 ℃保持10 min,5 ℃/min升温至210 ℃保持5 min,5 ℃/min升温至230 ℃保持15 min;柱流速:1. 04 mL/min,分流比:20∶1;离子源温度:200 ℃;接口温度:220 ℃;质核比扫描范围:50~700 m/z;进样量:1 μL。
果实按结构可分为果皮和种子。将分离的果皮和种子分别进行脂肪酸提取和甲酯化,通过气相色谱仪及质谱仪进行分析,并筛选物质相似度评分大于80分的脂肪酸。从花后4个发育时期的银扇草种子中共检测出7种脂肪酸,包括5种长链脂肪酸(软脂酸、硬脂酸、油酸、亚油酸、亚麻酸)和2种超长链脂肪酸(芥酸、神经酸)(
发育时期(d) Developmental stage | 脂肪酸 种类数 Number of fatty acid | 软脂酸含量(%) Palmitic acid content | 硬脂酸含量(%) Stearic acid content | 油酸含量 (%) Oleic acid content | 亚油酸含量(%) Linoleic acid content | 亚麻酸含量(%) Linolnic acid content | 芥酸含量 (%) Erucic acid content | 神经酸含量(%) Nervonic acid content |
---|---|---|---|---|---|---|---|---|
5 | 5 | 28.65 | 4.49 | 4.09 | 31.29 | 31.48 | 0 | 0 |
15 | 6 | 20.73 | 0 | 10.92 | 26.29 | 29.92 | 7.03 | 5.11 |
25 | 6 | 3.60 | 0 | 24.80 | 10.66 | 3.81 | 33.84 | 23.29 |
35 | 6 | 1.48 | 0 | 24.94 | 5.81 | 1.05 | 37.92 | 28.80 |
从不同发育时期(花后25 d和花后35 d)的银扇草果皮中共检测出8种脂肪酸,包括5种长链脂肪酸(软脂酸、硬脂酸、油酸、亚油酸、亚麻酸)和3种超长链脂肪酸(山嵛酸、木质素酸和蜡酸)(
发育时期(d) Developmental stage | 脂肪酸 种类数 Number of fatty acid | 软脂酸含量(%) Palmitic acid content | 硬脂酸含量(%) Stearic acid content | 油酸含量(%) Oleic acid content | 亚油酸含量(%) Linoleic acid content | 亚麻酸含量(%) Linolnic acid content | 山嵛酸含量(%) Behenic acid content | 木质素酸含量(%) Lignoceric acid content | 蜡酸含量(%) Cerotic acid content |
---|---|---|---|---|---|---|---|---|---|
25 | 4 | 22.98 | 0 | 8.62 | 21.70 | 46.70 | 0 | 0 | 0 |
35 | 8 | 28.34 | 3.96 | 5.96 | 23.60 | 27.88 | 3.09 | 4.12 | 3.05 |
银扇草果实中含丰富的超长链脂肪酸,即主链碳原子数大于18的脂肪酸。在银扇草果实发育的早期(花后5 d),脂肪酸主要以C16(软脂酸,主链碳原子数为16)和C18(硬脂酸、油酸、亚油酸和亚麻酸,主链碳原子数为18)的形式存在。随着种子发育,果实快速膨大(花后15~25 d),C16与乙酰CoA聚合形成C18,18∶0-ACP被去饱和酶催化生成油酸酰基-酰基载体蛋白(18∶1-ACP,Oleoyl- acyl carrier protein),C18总含量上升。随着果实/种子逐渐成熟(花后25 d),C18以丙二酰-CoA为碳源经过多次相继的缩合反应合成C20、C22(芥酸,主链碳原子数为22)和C24(神经酸,主链碳原子数为24)等超长链脂肪酸。在银扇草各阶段的种子中均未检测到C20的存在,随着C22和C24的不断合成,C16及C18的含量逐渐下降。至果实完全成熟后,银扇草种子内脂肪酸主要以超长链脂肪酸的形式存在,其中,芥酸(C22∶1)占比为37.92%,神经酸(C24∶1)占比为28.81%(

图1 种子发育过程中超长链脂肪酸及前体物质的含量变化
Fig.1 Changes in the content of very-long-chain fatty acids and precursor substances during seed development of Lunaria
C16~C18:长链脂肪酸;C20~C24:超长链脂肪酸
C16-C18: Long-chain fatty acids; C20-C24: Very-long-chain fatty acids
神经酸是一种超长链脂肪酸,具有重要的经济价值。根据植物亲缘关系及种子中神经酸的有无,以拟南芥为对照,比较分析银扇草、琉璃苣及蒜头果种子的脂肪酸组分及含量,发现神经酸含量的高低与芥酸含量明显相关(

图2 银扇草、蒜头果、琉璃苣及拟南芥种子中超长链脂肪酸的含量分析
Fig.2 Analyzing the content of very-long-chain fatty acids in seeds of Lunaria,Arabidopsis,Borago and Malania
Log scale为脂肪酸含量的对数值,方框内数值为脂肪酸含量的实际值
Log scale is the logarithmic value of the content of fatty acids, and the values in the box are the actual values of content of fatty acids
物种 Species | 软脂酸 含量 Palmitic acid content | 硬脂酸 含量 Stearic acid content | 油酸含量 Oleic acid content | 亚油酸 含量 Linoleic acid content | 花生烯酸 含量 Arachidonicacid content | 山嵛酸 含量 Behenic acid content | 芥酸含量 Erucic acid content | 神经酸 含量 Nervonic acid content | 其他脂肪酸含量 Other fatty acid content |
---|---|---|---|---|---|---|---|---|---|
拟南芥 Arabidopsis thaliana | 8.31 | 2.77 | 13.23 | 30.27 | 34.33 | 0 | 2.09 | 0 | 9.00 |
银扇草 Lunaria annua | 1.43 | 0.21 | 0.83 | 3.99 | 0 | 0 | 38.49 | 34.99 | 20.06 |
琉璃苣 Borago officinalis | 10.34 | 5.19 | 20.08 | 37.37 | 0.12 | 0.21 | 2.67 | 1.43 | 22.59 |
蒜头果 Malania oleifera | 1.25 | 0.39 | 32.16 | 0.86 | 2.80 | 1.01 | 12.17 | 44.87 | 4.49 |
本研究通过测定不同发育时期的银扇草果实的脂肪酸组分及含量,共发现10种脂肪酸,含量具有差异性,分布具有特异性。本研究首次发现银扇草果皮中含山嵛酸、木质素酸和蜡酸,其中山嵛酸可用于制备介电常数且耐腐蚀的低频吸波
银扇草种子的脂肪酸与拟南芥、琉璃苣、蒜头果的种子相比,油酸、花生烯酸、芥酸和神经酸等脂肪酸的含量和比例有明显的差别。银扇草含芥酸最多,蒜头果含油酸和神经酸最多,拟南芥中含花生烯酸最多。在油酸-花生烯酸-芥酸-神经酸的脂肪酸延长通路上,神经酸作为芥酸的合成产物,其含量与芥酸含量呈明显的正相关关系。油酸、花生烯酸、芥酸和神经酸的合成均受β-酮脂酰-CoA合酶(KCS,β-ketoacyl-CoA synthase)、β-酮脂酰-CoA还原酶(KCR,β-ketoacyl-CoA reductase)、β-羟脂酰-CoA脱水酶(HCD,β-hydroxacyl-CoA dehydratase)和反式烯脂酰-CoA还原酶(ECR,trans-2,3-enoyl-CoA reductase)4种酶的调控,而KCS作为关键限速酶决定了超长链脂肪酸的合成速率和碳链长度,后3种酶具有广泛的底物特异
神经酸对人脑发育具有重要作用,它能促进脂肪酸的代谢,降低心脑血管疾病的发生,对预防肥胖、降低急性缺血性脑卒有重要作
参考文献
Cromack H T H. The effect of sowing date on the growth and production of Lunaria annua in Southern England. Industrial Crops and Products, 1998, 7(2-3):217-221 [百度学术]
Walker R L, Walker K C, Booth E J. Adaptation potential of the novel oilseed crop, Honesty (Lunaria annua L.), to the Scottish climate. Industrial Crops & Products, 2003, 18(1):7-15 [百度学术]
Dodos G S, Karonis D, Zannikos F, Lois E. Renewable fuels and lubricants from Lunaria annua L.. Industrial Crops & Products, 2015, 11(75):43-50 [百度学术]
赖福兵. 蒜头果油中高纯神经酸的制备研究. 南宁: 广西大学, 2018 [百度学术]
Lai F B. Study on the preparation of high purity Nervonic acid in Malania oleifera oil. Nanning: Guangxi University, 2018 [百度学术]
马柏林, 梁淑芳, 赵德义, 徐爱遐, 张康健. 含神经酸植物的研究. 西北植物学报, 2004(12): 2362-2365 [百度学术]
Ma B L, Liang S F, Zhao D Y, Xu A X, Zhang K J. Study on plants containing nervonic acid. Acta Botanica Boreali-Occidentalia Sinica, 2004(12): 2362-2365 [百度学术]
曾浩, 李佩芳, 郭至辉, 刘春林, 阮颖. 银扇草再生体系的建立.植物学报, 2024, 59(3):433-440 [百度学术]
Zeng H, Li P F, Guo Z H, Liu C L, Ruan Y. Establishment of a regeneration system for Lunaria annua. Chinese Bulletin of Botany, 2024, 59(3):433-440 [百度学术]
郭至辉, 李佩芳, 彭礼, 曾浩, 梁玲娇, 阮颖. 银扇草果实假隔膜的形态发育特征. 湖南农业大学学报:自然科学版, 2023, 49(3):298-303 [百度学术]
Guo Z H, Li P F, Peng L, Zeng H, Liang L J, Ruan Y. Morphological characteristics of the development of false dissepiment in Lunaria annua. Journal of Hunan Agricultural University : Natural Sciences, 2023, 49(3): 298-303 [百度学术]
Mosti T, Friedman C R, Piccolin F, Falco P D, Papini A. The unusual tegumental tissues of the Lunaria annua (Brassicaceae) seed: A developmental study using light and electron microscopy. Flora, 2012, 11(207):828-837 [百度学术]
Blaevi I, Ulovi A, Uli V I, Popovi M, Rollin P. Microwave-assisted versus conventional isolation of glucosinolate degradation products from Lunaria annua L. and their cytotoxic activity. Biomolecules, 2020, 10(2):215 [百度学术]
成新琪, 吴诗颖, 李欣悦, 刘文超, 刘宏涛, 胡孝明, 朱华国. 油茶种仁脂肪酸代谢关键基因的挖掘与分析. 植物遗传资源学报, 2024, DOI:10.13430/j.cnki.jpgr.20240619003 [百度学术]
Cheng X Q, Wu S Y, Li X Y, Liu W C, Liu H T, Hu X M, Zhu H G. Exploration and analysis of key genes involved in fatty acid metabolism in Camellia oleifera seeds kernel. Journal of Plant Genetic Resources, 2024, DOI:10.13430/j.cnki.jpgr.20240619003 [百度学术]
尚昆, 付瑜华, 李秀诗, 蒙秋伊, 杨玲玲, 朱加保. 薏苡ClSAD、ClFAD2基因单倍型鉴定与相关脂肪酸关联分析. 植物遗传资源学报, 2024, 25(10):1756-1766 [百度学术]
Shang K, Fu Y H, Li X S, Meng Q Y, Yang L L, Zhu J B. Haplotype identification of ClSAD/ClFAD2 and association analysis of related fatty acids in Coix lacryma-jobi L.. Journal of Plant Genetic Resources, 2024, 25(10):1756-1766 [百度学术]
饶庆琳, 姜敏, 吕建伟, 胡廷会, 成良强, 王金花,王军. 花生种质资源品质性状分析及综合评价. 植物遗传资源学报, 2024, 25(9):1454-1467 [百度学术]
Rao Q L, Jiang M, Lv J W, Hu T H, Cheng L Q, Wang J H, Wang J. Analysis and comprehensive evaluation of quality characters of peanuts germplasm resources. Journal of Plant Genetic Resources, 2024, 25(9):1454-1467 [百度学术]
邢凯峰, 谢昊星, 张立冬, 周军, 冯立云, 张华轩, 陈尚, 赵耀, 戎俊, 张剑. 不同种源野生油茶果实表型性状多样性分析. 植物遗传资源学报, 2024, 25(7):1106-1117 [百度学术]
Xing K F, Xie H X, Zhang L D, Zhou J, Feng L Y, Zhang H X, Chen S, Zhao Y, Rong J, Zhang J. Diversity analysis on fruit phenotype of wild Camellia oleifera from different provenances. Journal of Plant Genetic Resources, 2024, 25(7):1106-1117 [百度学术]
梁煜莹, 张加羽, 姜骁, 王露欢, 张晓吉, 刘齐妹, 薛云云, 迟晓元, 白冬梅. 花生品质与气候环境的关系研究. 植物遗传资源学报, 2024, 25(2):227-244 [百度学术]
Liang Y Y, Zhang J Y, Jiang Y, Wang L H, Zhang X J, Liu Q M, Xue Y Y, Chi X Y, Bai D M. Study on the relationship between peanut quality and climatic environments. Journal of Plant Genetic Resources, 2024, 25(2):227-244 [百度学术]
马钰聪, 赵雨露, 李佳伟, 刘彬, 王春妹, 张敏, 张利苹, 蒋晓霞, 穆国俊. 花生子仁糖代谢转录组-代谢组学联合分析. 植物遗传资源学报, 2022, 23(4):1143-1154 [百度学术]
Ma J C, Zhao Y L, Li J W, Liu B, Wang C M, Zhang M, Zhang L P, Jiang X X, Mu G J. Transcriptome-metabolome combined analysis of kernel sugar metabolism in peanut(Arachis hypogaea L.). Journal of Plant Genetic Resources, 2022, 23(4):1143-1154 [百度学术]
王瑾, 李玉荣, 程增书, 陈四龙, 宋亚辉, 刘义杰, 张朋娟. 高油酸花生品种(系)ahFAD基因变异鉴定及遗传多样性分析. 植物遗传资源学报, 2020, 21(1):208-214 [百度学术]
Wang J, Li Y R, Cheng Z S, Chen S L, Song Y H, Liu Y J, Zhang P J. ahFAD genotype identification and genetic diversity analysis of high oleic acid peanut cultivars. Journal of Plant Genetic Resources, 2020, 21(1):208-214 [百度学术]
陈昊, 徐日荣, 陈湘瑜, 张玉梅, 胡润芳, 蓝新隆, 唐兆秀, 林国强. 花生种子萌发吸胀阶段冷害抗性的鉴定及耐冷种质的筛选. 植物遗传资源学报, 2020, 21(1):192-200 [百度学术]
Chen H, Xu R R, Chen X Y, Zhang Y M, Hu R F, Lan X L, Tang Z X, Lin G Q. Identification of imbibitional chilling injury resistance for peanut and screening of imbibitional chilling-tolerance germplasm. Journal of Plant Genetic Resources, 2020, 21(1):192-200 [百度学术]
Jamieson E C, Farquharson J, Logan R W, Howatson A G, Patrick W J, Weaver L T, Cockburn F. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids, 1999, 34(10):1065-1071 [百度学术]
李蓉, 曹梦, 李妍逸, 陈吉丽, 张红林, 朱耀顺, 刘娟, 刘涛, 徐笑宇. 菥蓂的资源开发利用与脂质代谢工程改良研究进展. 植物遗传资源学报, 2024, 25(8):1234-1244 [百度学术]
Li R, Cao M, Li Y Y, Chen J L, Zhang H L, Zhu Y S, Liu J, Liu T, Xu X Y. Research progress of resource development and iipid metabolism engineering improvement on pennycress. Journal of Plant Genetic Resources, 2024, 25(8):1234-1244 [百度学术]
王睿, 王峰, 徐逸凡, 官建国, 陈志宏. 低介电片状FeNi吸波剂的山嵛酸辅助制备及其织构行为. 包装工程, 2024, 45(1):262-272 [百度学术]
Wang R, Wang F, Xu Y F, Guan J G, Chen Z H. Behenic acid-assisted preparation of low permittivity flaky FeNi absorbent and its texture behavior. Packaging Engineering, 2024, 45(1):262-272 [百度学术]
侯新村, 牟洪香, 菅永忠. 能源植物黄连木油脂及其脂肪酸含量的地理变化规律. 生态环境学报, 2010, 19(12):2773-2777 [百度学术]
Hou X C, Mou H X, Jian Y Z. Geographical regularity of oil and fatty acid content of bioenergy plant Pistacia chinensis Bunge. Ecology and Environmental Sciences, 2010, 19(12):2773-2777 [百度学术]
Zhang Y, Zhang C, Xu C, Deng Y, Wen B, Xie P, Huang L. Effect of geographical location and soil fertility on main phenolic compounds and fatty acids compositions of virgin olive oil from Leccino cultivar in China. Food Research International, 2022, 157:111207 [百度学术]
Elgadi S, Ouhammou A, Taous F, Zine H, Papazoglou EG, Elghali T, Amenzou N, El Allali H, Aitlhaj A, El Antari A. Combination of stable isotopes and fatty acid composition for geographical origin discrimination of one argan oil vintage. Foods, 2021, 10:1274 [百度学术]
Al-Hwaiti M S, Alsbou E M, Abu Sheikha G, Bakchiche B, Pham T H, Thomas R H, Bardaweel S K. Evaluation of the anticancer activity and fatty acids composition of "Handal" (Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Science & Nutrition, 2020 ,9(1):282-289 [百度学术]
Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. The Plant Cell, 2005, 17(5): 1467-1481 [百度学术]
Bach L, Michaelson L V, Haslam R, Bellec Y, Gissot L, Marion J, Costa M D, Boutin J P, Miquel M, Tellier F, Domergue F, Markham J E, Beaudoin F, Napier J A, Faure J D. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proceedings of the National Academy of Sciences, 2008, 105(38): 14727-14731 [百度学术]
Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier J A, Dunn T M. Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2006, 281(14): 9018-9029 [百度学术]
Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R. The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling. Plant Molecular Biology, 2008, 67: 547-566 [百度学术]
Gable K, Garton S, Napier J A, Dunn T M. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. Journal of Experimental Botany, 2004, 55(396): 543-545 [百度学术]
Tu X, Wan J, Xie Y, Wei F, Quek S, Lv X, Du L, Chen H. Lipid analysis of three special nervonic acid resources in China. Oil Crop Science, 2020, 5(4): 180-186 [百度学术]
范一铭, 吴金锋, 李洪戈, 李浩, 陈碧云, 闫贵欣, 蔡光勤, 伍晓明. 芥菜型油菜种子中神经酸、芥酸和油酸含量的遗传分析. 中国油料作物学报, 2024, 46(4):781-794 [百度学术]
Fan Y M, Wu J F, Li H G, Li H, Chen B Y, Yan G X, Cai G Q, Wu X M. Genetic analysis of the content of nervonic acid, erucic acid, and oleic acid in Brassica juncea seeds. Chinese Journal of Oil Crop Sciences, 2024, 46(4):781-794 [百度学术]
Li Z, Ma S, Song H, Yang Z, Zhao C, David T, Zhang M. A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid. Tree Physiology, 2021, 41(2): 331-342 [百度学术]
王性炎, 王姝清. 神经酸新资源——元宝枫油. 中国油脂, 2005, 30(9):62-64 [百度学术]
Wang X Y, Wang S Q. A new resource of nervonic acid: Purpleblow maple oil. China Oils and Fats, 2005, 30(9):62-64 [百度学术]
侯镜德, 陈至善. 神经酸与脑健康. 北京:中国科学技术出版社, 2006:9-23 [百度学术]
Hou J D, Chen Z S. Nervonic acids and brain health. Beijing: China Science and Technology Press, 2006:9-23 [百度学术]
蔡晓琴, 冯佩, 胡健伟, 牛晓虎, 沈恒山, 张永红, 佟伟军, 许锬. 血浆二十四碳烯酸水平与急性缺血性脑卒中的关系. 山东医药, 2014, 54(25):27-29 [百度学术]
Cai X Q, Feng P, Hu J W, Niu X H, Shen H S, Zhang Y H, Tong W J, Xu T. The relationship between plasma levels of tetracarboxylic acid and acute ischemic stroke. Shandong Medical Journal, 2014, 54(25):27-29 [百度学术]
Oda E, Hatada K, Kimura J, Aizawa Y, Thanikachalam P V, Watanabe K. Relationships between serum unsaturated fatty acids and coronary risk factors: Negative relations between nervonic acid and obe-sity-related risk factors. International Heart Journal, 2005, 46: 975-985 [百度学术]
Yang T, Yu Q, Xu W, Li D Z, Chen F, Liu A. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. BMC Plant Biology, 2018, 18(1): 1-13 [百度学术]