摘要
课题组前期通过全基因组关联分析获得1个苦荞耐盐相关基因FtGST2(FtPinG0707941400.01)。通过同源比对和保守序列分析发现,该基因属于谷胱甘肽-S-转移酶(glutathione-S-transferases)中的四氯代氢醌脱卤素酶亚族(TCHQD)。从中苦3号中克隆出FtGST2基因,对该基因上游2000 bp的启动子序列进行分析发现,34个元件中含有2个脱落酸响应元件与6个茉莉酸甲酯响应元件,而脱落酸与茉莉酸正是植物调控盐胁迫途径的重要激素。为进一步验证FtGST2的功能,对FtGST2在苦荞不同器官中的表达量和不同浓度NaCl处理下的表达量差异进行检测。结果显示,FtGST2在根中的表达量最高,并且FtGST2在100 mmol/L NaCl处理下的表达量最高。同时构建了FtGST2的过表达拟南芥与过表达毛状根,并检测过表达植株的种子发芽率、主根长、鲜重及其生理指标。结果显示,盐处理下FtGST2的过表达拟南芥发芽率和根长均高于野生型,盐处理下FtGST2的过表达毛状根鲜重显著高于对照组A4毛状根。此外,对毛状根的超氧化物歧化酶、过氧化物酶、过氧化氢酶及丙二醛 4个生理指标进行检测后发现过表达FtGST2基因的确能有效提高苦荞毛状根过表达株系的耐盐性。以上试验对FtGST2基因的抗盐功能进行了初步验证,为后续苦荞耐盐品种的选育奠定了一定基础。
关键词
苦荞(Fagopyrum tataricum(L.)Gaertn.)是蓼科(Polygonaceae)荞麦属(Fagopyrum Mill)的一年生双子叶植
盐胁迫是自然界中的一种非生物胁迫。盐胁迫会导致植物代谢紊乱,会破坏植物的氧化还原系统,植物在代谢过程中所产生的活性氧等物质在体内积累会使植物的生长受到抑
谷胱甘肽转移酶基因(GST,glutathione-S-transferases)家族广泛存在于动物、植物、微生物等多种生物组织中。当生物体遇到高盐、干旱、除草剂、有机污染物等逆境胁迫时,GST能催化谷胱甘肽与羟基自由基、膜脂的氧化产物和其他代谢产物结合,从而减少有害物质对植物的伤害。在拟南芥中过量表达GST基因能降低盐胁迫造成的氧化损伤对拟南芥的影
本研究选择克隆FtGST2基因的苦荞品种为中苦3号,该品种由川荞1号诱变而来,具有适应范围广、产量高及抗逆性强的特点。选取饱满的中苦3号种子浸泡于水中30 min,剥掉外壳,在超净工作台内用1%次氯酸钠溶液浸泡15 min,无菌水洗7~8次,将种子风干水分,置于MS培养瓶中,于光周期16 h/8 h,温度25 ℃,湿度75%的组培间内培养。
本研究所使用的大肠杆菌菌株DH5α、农杆菌菌株GV3101和A4、植物过表达载体pCAMBIA1302(以下简称:1302)均由荞麦基因资源创新研究课题组提供。
通过前期的全基因组关联分析获得1个耐盐基因FtGST2(苦荞数据登录号:FtPinG0707941400.01)。利用CE Design软件根据FtGST2基因CDS序列与过表达载体pCAMBIA1302图谱设计特异性引物(
引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') | 用途 Function |
---|---|---|
FtGST2-qPCR-F | GCGGATGTTGTGCTGAT | qRT-PCR |
FtGST2-qPCR-R | CCTTCTTACTACTTGGCCTCT | |
FtH3-qPCR-F | GAAATTCGCAAGTACCAGAAGAG | 内参基因 |
FtH3-qPCR-R | CCAACAAGGTATGCCTCAGC | |
1302-FtGST2-F | ACGGGGGACTCTTGACCATGGTAATGCAACTTTATCATCATCCAATATCA | 过表达载体 |
1302-FtGST2-R | AAGTTCTTCTCCTTTACTAGTTCAGTATCGCCTAAGCAAACTCC | |
1302-F | CAGGAAACAGCTATGAC | 通用引物 |
1302-R | TGTAAAACGACGGCCAGT |
在UniProt Knowledgebase网站(https://www.uniprot.org/)上搜索GST家族,通过同源比对筛选出苦荞、水稻和拟南芥的GST家族基因ID,使用Tbtools软件制作出进化树文件,利用iTOL网站(https://itol.embl.de/)进行进化树美化。
将FtGST2蛋白序列上传至Expasy(http://web.expasy.org/protparam)分析其亲水性;使用TMHMM(http://www.cbs.dtu.dk/services/TMHMM)分析蛋白质的跨膜区;用SignalP(http://www.cbs.dtu.dk/services/SignalP)预测信号肽;使用PSIPRED(http://bioinf.cs.ucl.ac.uk/psipred)分析蛋白二级结构。
使用TBtools软件提取苦荞基因FtGST2的上游2000 bp序列,将其上传至Plant Care网站(http://bioinformatics.psb.ugent.be/webtools/plantcare/html)对启动子的顺式元件进行预测。对预测结果进行筛选,剔除常见的如TATA-box、GC-box、CAAT-box与未知的顺式元件后使用TBtools进行可视化分析。
将获得的过表达载体1302-FtGST2质粒转入农杆菌感受态 GV3101中,挑取单克隆并用1302载体通用引物进行菌液鉴定,鉴定为阳性的菌液加入含卡那霉素(100 mg/mL)与利福平(50 mg/mL)抗生素抗性的YEB液体培养基扩摇至吸光度OD600为0.6~0.8,对菌液离心集菌用浓度为5%的蔗糖水重悬,使用蘸花法对野生型拟南芥进行侵染,避光1 d后于温室正常培养至收种即获得过表达拟南芥1302-FtGST2的T0代种子。用带潮霉素(600 μL/L)抗性的1/2MS培养基对T0代种子进行筛选,对长出的拟南芥幼苗采用CTAB法提取DNA,使用1302-F与1302-FtGST2-R引物和诺唯赞2 × Rapid Taq Master Mix酶进行PCR扩增(
将获得的过表达载体1302-FtGST2质粒转入农杆菌感受态 A4中,将鉴定为阳性的单克隆菌液与农杆菌A4菌液进行扩摇,当菌液吸光度OD600达到0.6~0.8时离心集菌用MS液体进行重悬。采用15 d龄生长状态良好的中苦3号无菌幼苗进行侵染。无菌苗在超净工作台内剪成约2 cm的小段,放入用MS培养液重悬好的菌液中摇晃15 min,置于灭菌后的滤纸上晾干后,将外植体转移至铺两层灭菌滤纸的MS培养基上,2 d后转移至加入头孢霉素(100 mg/mL)的MS培养基上。待外植体长出毛状根后使用1302-F与1302-FtGST2-R引物和诺唯赞2 × Rapid Taq Master Mix酶进行PCR鉴定,即可获得单株阳性过表达毛状根,由农杆菌A4菌液侵染出的为对照组A4毛状根。
选择 FtH3作为qRT-PCR的内参基因,使用软件Primer5根据FtGST2的CDS序列设计qRT-PCR引物FtGST2-qPCR-F/R(
FtGST2基因在苦荞不同组织的特异性表达分析:取MS培养瓶中15 d龄中苦3号幼苗的根、茎、叶,分别提取RNA,反转录为cDNA,以叶为参照进行表达量分析。
FtGST2基因在不同浓度NaCl处理下的表达分析:将中苦3号种子水培至生根后分别移到0 、50 、100 mmol/L NaCl液体中培养大约12 d,对采用不同处理的苦荞苗分别进行取样,提取RNA,反转录为cDNA,进行qRT-PCR检测。
NaCl处理下不同时间的毛状根表达差异性分析:取毛状根过表达株系(FtOE1、FtOE2、FtOE3)与空白对照毛状根大约2 cm,放入MS液体培养基与含100 mmol/L NaCl的MS液体培养基中(3个重复),黑暗环境下于120 r/min摇床上培养,分别在0、3 、6、12 h 取样,提取RNA,反转录cDNA,进行qRT-PCR检测。
T2代FtGST2拟南芥过表达株系(AtOE1、AtOE2、AtOE3)与野生型拟南芥(WT,wide type)种子先以75%的乙醇消毒10 min后再用无水乙醇消毒10 min,在超净工作台吹干。消毒处理后的拟南芥种子分别均匀点播在含0 mmol/L NaCl 的1/2MS培养基(下文简称未处理)和含100 mmol/L NaCl的1/2MS培养基上,春化(4℃)2 d,转移至组培间培养7 d后统计发芽率。培养至根长1 cm左右后,将其转移至含100 mmol/L NaCl的1/2MS培养基上,生长7 d后测量根长(3次生物学重复)。
以中苦3号幼苗cDNA为模板,用特异性引物1302-FtGST2-F/R进行扩增,使用1%琼脂糖凝胶进行电泳检测(

图1 苦荞基因FtGST2的克隆
Fig.1 Cloning of tartary buckwheat gene FtGST2
M:DL 2000 marker;1:FtGST2基因的PCR扩增条带
1: PCR amplification bands of the FtGST2 gene
为了解FtGST2类型与结构,在苦荞、拟南芥和水稻的基因组中对其同源基因进行筛选与分析(

图2 苦荞、拟南芥、水稻GST基因家族系统进化树
Fig.2 Phylogenetic tree of tartary buckwheat, Arabidopsis and rice GST gene family
苦荞、拟南芥及水稻的GST基因家族进化树分为8个亚家族;四氯代氢醌脱卤素酶(TCHQD)亚族中用白色字体标注的苦荞基因ID为FtGST2
The GST gene family of tartary buckwheat, Arabidopsis thaliana and rice were divided into 8 subfamilies;The buckwheat gene ID labelled in white in the TCHQD subfamily is FtGST2
对FtGST2的跨膜结构域预测结果显示该基因编码蛋白不含跨膜结构域(

(图3)

A:跨膜结构域分析;B:信号肽分析;C:蛋白亲疏水性分析;D:蛋白二级结构;蓝色为延伸链,红色为螺旋链,黑色为卷曲链
A: Transmembrane domain analysis; B: Signal peptide analysis; C: Protein hydrophilicity analysis;D: Protein secondary structure; blue for extended chains, red for spiral chains, black for curly chains
图3 FtGST2蛋白结构分析
Fig.3 FtGST2 protein structure analysis
提取FtGST2编码区上游2000 bp的序列分析启动子区顺式作用元件的数量和类型(

图4 FtGST2启动子结构
Fig.4 The structure of FtGST2 promoter
位点名称 Site name | 位点功能 Function of site | 元件数量 Quantity of element | 概况 Overview |
---|---|---|---|
GT1-motif | Light responsive element | 3 | 光响应 |
G-box | cis-acting regulatory element involved in light responsiveness | 1 | |
GA-motif | Part of a light responsive element | 1 | |
TCT-motif | Part of a light responsive element | 2 | |
MRE | MYB binding site involved in light responsiveness | 1 | |
Sp1 | Light responsive element | 1 | |
Box 4 | Part of a conserved DNA module involved in light responsiveness | 6 | |
GATA-motif | Part of a light responsive element | 1 | |
TCCC-motif | Part of a light responsive element | 1 | |
TGA-element | Auxin-responsive element | 1 | 植物激素 |
CGTCA-motif | cis-acting regulatory element involved in the MeJA-responsiveness | 3 | |
ABRE | cis-acting element involved in the abscisic acid responsiveness | 2 | |
TGACG-motif | cis-acting regulatory element involved in the MeJA-responsiveness | 3 | |
TC-rich repeats | cis-acting element involved in defense and stress responsiveness | 1 | 防御和胁迫响应 |
ARE | cis-acting regulatory element essential for the anaerobic induction | 3 | 厌氧响应 |
O2-site | cis-acting regulatory element involved in zein metabolism regulation | 1 | 蛋白代谢调节 |
CAT-box | cis-acting regulatory element related to meristem expression | 2 | 分生组织表达 |
CCAAT-box | MYBHv1 binding site | 1 | 转录因子结合位点 |
FtGST2基因在不同的组织中表达量有显著差异,表现出明显的组织特异性。FtGST2在叶中的表达量最低,在根中的表达量最高,为叶中的10.68倍,而茎中的表达量为叶中的3.32倍(

图5 FtGST2基因的差异性表达
Fig.5 Differential expression of FtGST2 gene
A:FtGST2基因在苦荞不同组织中的表达;B: FtGST2基因在不同浓度Nacl处理下的表达差异;C:FtGST2过表达毛状根与A4毛状根在100 mmol/L NaCl盐处理下不同时间段的表达情况;*、**、****分别表示在P<0.05、0.01、0.0001水平上差异显著;下同
A: Expression of FtGST2 gene in different tissues of tartary buckwheat; B: Differences in FtGST2 expression under different concentrations of NaCl; C: Expression of FtGST2 overexpressed hairy roots and A4 hairy roots at different time periods under 100 mmol/L NaCl salt treatment;*, **, **** represent significant difference at P<0.05,0.01,0.0001 level,respectively;The same as below
为了分析FtGST2基因在植物体内的功能,在拟南芥中过表达了FtGST2基因,通过PCR鉴定后选出3个过表达FtGST2基因的拟南芥株系AtOE1、AtOE2、AtOE3(

图6 过表达拟南芥的构建与盐胁迫下的表型分析
Fig.6 Construction of overexpression in Arabidopsis thaliana and phenotypic analysis under salt stress
A:过表达拟南芥阳性鉴定;M:DL5000 marker;1~3:3个FtGST2过表达株系;B:过表达拟南芥与WT的发芽情况;C:过表达拟南芥与WT的根长变化;D:过表达拟南芥与WT的根长统计柱形图
A: Positive identification of overexpression in Arabidopsis thaliana; 1~3: Three FtGST2 overexpression strains; B: Germination of overexpressed Arabidopsis thaliana and WT; C: Changes in root length of overexpressed Arabidopsis thaliana and WT; D: Statistical histogram of root length overexpressed Arabidopsis thaliana and WT
为了进一步探究FtGST2基因在苦荞中的功能,在苦荞毛状根中过表达了FtGST2基因,鉴定出3个FtGST2过表达毛状根株系(FtOE1、FtOE2、FtOE3)(

图7 FtGST2过表达毛状根的构建与表型
Fig.7 Construction and phenotype of hairy roots overexpressed by FtGST2
A:过表达毛状根DNA的PCR鉴定; M:DL 5000 marker;1~3:FtGST2过表达毛状根株系的PCR扩增;B:毛状根培养;a:苦荞无菌苗;b:外植体受农杆菌浸染后长出毛状根;c:从外植体获得的毛状根株系;d:毛状根在液体培养基中振荡培养; C:毛状根在不同盐处理下的鲜重; ns表示在P<0.05水平上差异不显著
A: PCR identification of overexpressed hairy root DNA; 1-3: PCR amplification of hairy roots with FtGST2 overexpression; B: Hairy root culture; a: Tartary buckwheat sterile seedlings; b: Exoplands are infected with Agrobacterium and grow hairy roots; c: Hairy root lines obtained from exocolonies; d: Hairy roots are incubated in liquid medium with shaking; C: Fresh weight of hairy roots under different salt treatments; ns represents no significant difference at P<0.05 level
SOD、POD、CAT的检测结果显示,在未处理环境下,A4毛状根与过表达毛状根的酶活性基本一致,差异不显著,在100 mmol/L NaCl处理下,对照A4和3个过表达毛状根株系的酶活性均有升高,且过表达毛状根酶活性的升高幅度明显高于A4毛状根(


SOD: Superoxide dismutase detection;POD:Peroxidase assay; CAT: Catalase detection;MDA: Malondialdehyde detection
图8 过表达毛状根生理指标检测
Fig.8 Detection of physiological indexes of overexpression hairy roots
本研究从中苦3号中克隆出了一个在根中高表达的谷胱甘肽-S-转移酶基因FtGST2,该基因编码区全长804 bp,编码268个氨基酸。FtGST2蛋白不含跨膜结构域,无信号肽,为亲水性蛋白,其二级结构中延伸链占比4.49%,螺旋链占比约为56.17%,卷曲链约占39.34%。研究表明,谷胱甘肽-S-转移酶作为一种二聚体多功能酶,能够通过偶联各类底物达到解除毒性与缓解非生物胁迫的目
Sappl
茉莉酸是一种重要的防御激素,其表达受到水杨酸的负调
本研究从中苦3号中克隆出一个耐盐基因FtGST2。该基因在根中的表达量最高并且受盐胁迫调控。对过表达拟南芥进行根长试验发现,该基因受到盐胁迫后主要是通过在根部高表达来抵抗盐胁迫。对过表达毛状根盐处理后发现,盐处理下过表达毛状根的鲜重远高于A4毛状根的鲜重,并且生理指标的结果也显示,过表达毛状根的POD、CAT、SOD酶活性比A4毛状根显著提高,MDA的酶含量增长幅度远低于A4毛状根,说明过表达FtGST2基因提高了苦荞的耐盐性。
参考文献
Zhang K X, He M, Fan Y, Zhao H, Gao B, Yang K, Li F L, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo S H, Georgiev M I ,Zhou M. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology, 2021, 22(1): 23 [百度学术]
范昱,丁梦琦 ,张凯旋,杨克理,唐宇,张宗文,方沩,严俊,周美亮.荞麦种质资源概况. 植物遗传资源学报, 2019,20(4): 813-828 [百度学术]
Fan Y, Ding M Q, Zhang K X, Yang K L, Tang Y, Zhang Z W, Fang W, Yan J, Zhou M L. Overview of buckwheat germplasm resources. Journal of Plant Genetic Resources, 2019,20(4): 813-828 [百度学术]
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H,Guo Y. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 2024, 51(1): 16-34 [百度学术]
Yang Y,Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 2018, 217(2): 523-539 [百度学术]
Liu C, Mao B, Yuan D, Chu C,Duan M. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 2022, 10(1): 13-25 [百度学术]
Zhu J K. Abiotic stress signaling and responses in pants. Cell, 2016, 167(2): 313-324 [百度学术]
Wang X, Meng X, Dong Y, Song C, Sui F, Lu X, Mei X, Fan Y,Liu Y. Differential protein analysis of saline-alkali promoting the oil accumulation in Nitzschia palea. Biotechnology for Biofuels and Bioproducts, 2024, 17(1): 11 [百度学术]
Muchate N S, Nikalje G C, Rajurkar N S, Suprasanna P,Nikam T D. Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 2016, 82(4): 371-406 [百度学术]
戚元成,高玉千,张世敏,张慧,邱立友.过量表达GST基因对盐胁迫下转基因拟南芥氧化损伤的影响.西北植物学报, 2006,(8):1621-1626 [百度学术]
Qi Y C, Gao Y Q, Zhang S M, Zhang H, Qiu L Y. Effect of overexpression of GST gene on oxidative damage of transgenic Arabidopsis thaliana under salt stress. Journal of Northwest Botany, 2006,(8):1621-1626 [百度学术]
Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y.Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. Journal of Hazardous Materials, 2013, 260: 1100-1107 [百度学术]
左倩. 苦荞种质资源抗盐性评价及抗盐基因的挖掘和功能分析.湘潭:湖南科技大学, 2021 [百度学术]
Zuo Q. Evaluation of salt resistance and mining and functional analysis of salt resistance genes in tartary buckwheat germplasm resources. Xiangtan:Hunan University of Science and Technology, 2021 [百度学术]
Kumar S, Trivedi P K. Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science, 2018, 9:751 [百度学术]
Sharma R, Sahoo A, Devendran R, Jain M. Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE, 2014, 9(3): e92900 [百度学术]
Sappl P G, Carroll A J, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh K B. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal, 2009, 58(1): 53-68 [百度学术]
Han Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell & Environment, 2013, 36(6): 1135-1146 [百度学术]
Roxas V P, Lodhi S A, Garrett D K, Mahan J R, Allen R D. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant & Cell Physiology, 2000, 41(11): 1229-1234 [百度学术]
Takesawa T, Ito M, Kanzaki H, Kameya N, Nakamura I. Over-expression of glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Molecular Breeding, 2002, 9(2): 93-101 [百度学术]
Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell, 2014, 117(1): 99-112 [百度学术]
Leon-Reyes A, Van der Does D, De Lange E S, Delker C, Wasternack C, Van Wees S C M, Ritsema T, Pieterse C M J. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 2010, 232(6): 1423-1432 [百度学术]
Xiang C, Oliver D J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell, 1998, 10(9): 1539-1550 [百度学术]
Subramanian S, Mitkus E, Souleimanov A, Smith DL. Lipo-chitooligosaccharide and thuricin 17 act as plant growth promoters and alleviate drought stress in Arabidopsis thaliana. Frontiers in Microbiology, 2023, 14: 1184158 [百度学术]
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim A Y, Li Z, Kinoshita T, Ecker J R , Schroeder J I. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription Factor: A putative link of ABA and JA signaling. Scientific Reports, 2016, 6(1): 28941 [百度学术]
Hu Y, Zeng L, Lv X, Guo J, Li X, Zhang X, Wang D, Wang J, Bi J, Julkowska M M, Li B. NIGT1.4 maintains primary root elongation in response to salt stress through induction of ERF1 in Arabidopsis. The Plant Journal, 2023, 116(1): 173-186 [百度学术]
Reinhardt D H, Rost T L. Primary and lateral root development of dark- and light-grown cotton seedlings under salinity stress. Botanica Acta, 1995, 108(5): 457-465 [百度学术]
Galvan-Ampudia C S,Testerink C. Salt stress signals shape the plant root. Current Opinion in Plant Biology, 2011, 14(3): 296-302 [百度学术]
Huang Y, Zhou J, Li Y, Quan R, Wang J, Huang R , Qin H. Salt stress promotes abscisic acid accumulation to affect cell proliferation and expansion of primary roots in rice. International Journal of Molecular Sciences, 2021, 22(19): 10892 [百度学术]
Zhang X, He P, Guo R, Huang K , Huang X. Effects of salt stress on root morphology, carbon and nitrogen metabolism, and yield of Tartary buckwheat. Scientific Reports, 2023, 13(1): 12483 [百度学术]
Kiziltepe T, Hideshima T, Ishitsuka K, Ocio E M, Raje N, Catley L, Li C Q, Trudel L J, Yasui H, Vallet S, Kutok J L, Chauhan D, Mitsiades C S, Saavedra J E, Wogan G N, Keefer L K, Shami P J, Anderson K C. A GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood, 2007, 110(2): 709-718 [百度学术]