摘要
为探究不同果形葡萄的种质特点和性状差异,以国家葡萄种质资源圃(郑州)的666份种质资源为材料,对果实的纵径、横径、单粒重和种子粒数等进行统计分析和综合评价,并对果实形状相关基因的表达量进行分析。结果表明,葡萄栽培品种果形类型丰富,可分为圆形、扁圆形、长圆形、近圆形、长椭圆形、椭圆形、倒卵形、卵圆形、弯形、鸡心形和束腰形11种,野生种质果实基本为圆形,仅刺葡萄中有少量椭圆形和鸡心形种质。欧亚种较欧美杂种果形类型更丰富;酿酒葡萄果实主要为圆形和椭圆形,较鲜食葡萄果形类型少。圆形(3.9 g)和鸡心形(3.4 g)葡萄平均单粒重较小,长圆形(6.3 g)和倒卵形(7.1 g)葡萄平均单粒重较大。葡萄单粒重与纵径、横径呈正相关,不同果形葡萄的单粒重与纵径、横径的一元回归方程存在一定差异;葡萄种子数量以2~3粒居多,其中,具有5~6粒种子的种质多为圆形果,无核品种的果实以椭圆形居多。对葡萄果形候选基因进行实时荧光定量分析,发现基因VvFUL
葡萄作为最古老的水果之一,深受人们喜爱,在全世界广泛种植,果实可用来酿酒、鲜食、制干、制汁
葡萄品种最初都为野生类型,且野生葡萄果实形状普遍为圆形,果粒较
葡萄果实形状为数量遗传性状,除了发挥主导作用的遗传因素外,还与植株营养状况、环境条件和植物激素水平等有
试验材料均取自国家葡萄种质资源圃(郑州),北纬34°43′,东经113°39′,北温带大陆性季风气候,全年平均气温14.2℃,平均降雨量632 mm。种植方向为南北方向,避雨栽培,植株生长状态良好。资源圃采用人工管理,果实为自然坐果,不使用生长调节剂。在资源圃中选取666份葡萄种质资源为试验材料,其中包括欧亚种377份、欧美杂种172份、欧山杂种3份、山欧杂种2份、山美杂种1份、美洲杂种2份、欧河杂种1份、加州葡萄1份、美洲种1份、夏特沃氏葡萄1份、夏葡萄1份、中国野生葡萄(刺葡萄、复叶葡萄、红叶葡萄、毛葡萄、秋葡萄、桑叶葡萄、网脉葡萄、小果葡萄、燕山葡萄、山葡萄、腺枝葡萄、华东葡萄、蘡薁、桦叶葡萄)100份、种性不详种质4份(
葡萄种或杂种类型 Grape species or hybrid type | 种质名称 Germplasm name |
---|---|
欧亚种 Vitis vinifera L. | 濑户、大粒玫瑰香、黑大粒、红地球、李子香、玛瑙、小白葡萄、早金香、京早晶、克瑞森无核、红宝石无核、红巴拉多、黑巴拉多、黑比诺、霞多丽、品丽珠、赤霞珠、贵人香、阿达玫瑰、阿芳、阿拉卡其、阿利克赛尼、安吉文、安娜马里亚、奥利文、奥托玫瑰、阿登纳玫瑰、白达拉依、白哈丽丽、白鸡心、白拉查基、白夏尼、保尔加尔、斯堪地拜格、贝加干、比昂扣、比赛尔、表链罗也尔、布拉金涅、德苏拉乌苏姆、登瓦斯玫瑰、东京红、二号白香、芳香、芳香拉查基、芳香葡萄、绯红、粉红珂尔娜、粉红亚都蜜、粉红亚依苏娜、凤凰51、佛斯玫瑰、高蓓蕾、格拉卡、瑰宝、哈特,等 |
欧美杂种 Vitis vinifera × Vitis labrusca | 夏黑、安芸皇后、户太8号、巨峰、巨玫瑰、茉莉香、藤稔、阳光玫瑰、京亚、黑佳酿、安尼斯基、巴士、白香蕉、蓓蕾、蓓蕾玫瑰、碧绿珠、脆红、大阪48202、大平地拉洼、笛吹、地拉洼、嘟噜玫、丰宝、高地、高砂、贵妃玫瑰、哈佛德、黑贝蒂♀、黑香蕉、黑旋风、红双味、红香蕉、红星、琥珀、霍里冈、金玫瑰、康拜尔、纽约玫瑰香、罗德浆果、罗曼尔、罗也尔玫瑰、玫瑰后、玫瑰怡、美洲白、蜜尔紫、摩尔多瓦、尼加拉、秋蜜、斯蒂本、斯立潘、太姆泼、天使玫瑰香、晚霞、维金娜斯、秀特玫瑰、一品香、早熟黑虎香、郑康1号、着色香、紫早、白玫康、玫野黑、二伯娜、布朗无核、范讷萨无核、火星无核、累克芒特、无核密、贵妇人、早茉莉,等 |
欧山杂种Vitis vinifera × Vitis amurensis | 北玫、北醇、北红 |
山欧杂种Vitis amurensis × Vitis vinifera | 公酿1号、黑丰 |
山美杂种Vitis amurensis × Vitis labrusca | 俄罗斯康可 |
美洲杂种North American interspecific hybrids | 5BB、黑虎香 |
欧河杂种Vitis vinifera × Vitis riparis | Leonmillt |
加州葡萄Vitis californica | DVIT1360 Californica #1 Hybrid 3 |
美洲种Vitis labrusca | 香槟 |
夏特沃氏葡萄Vitis shuttleworthii | DVIT1719 shuttleworthii Olmo(U69-50) |
夏葡萄Vitis aestivalis | DVIT1717 aestivalis Olmo(U69-50) |
刺葡萄Vitis davidii | 湘珍珠(绿叶)、洪江(桐木)刺07、洪江刺11、紫罗兰、浙江天目山刺葡萄3号、浙江天目山刺葡萄2号、福安刺葡萄、洪江刺10、洪江刺04、冬葡萄、武汉刺葡萄、会同刺2、紫秋、G01刺葡萄、刺葡萄1号、刺葡萄2号、江刺葡萄、刺3号、湘刺3号、刺葡萄星斗山1442、刺葡萄星斗山1439、刺葡萄恩施1426、刺葡萄恩施1425、刺葡萄临武1201、刺葡萄临武1202、刺葡萄壶瓶山1204、刺中方1号JJF016、中方2号JJF017、紫罗兰JJF005、高山2号JJF013、高山1号JJF006,等 |
复叶葡萄Vitis piasezkii Maxim. | 老君山无毛复叶、龙峪湾复叶、王相岩变叶,等 |
红叶葡萄Vitis erythrophylla | 红叶葡萄-浮梁1605 |
毛葡萄Vitis heyneana | 罗城毛葡萄、信阳毛葡萄 |
秋葡萄Vitis Romaneti. | 秋葡萄-宝天曼、秋葡萄-西安翠华山、秋葡萄-灵宝 |
桑叶葡萄Vitis heyneana | 桑叶葡萄九里沟、青要山桑叶、信阳桑叶,等 |
网脉葡萄Vitis wilsonae | 网脉葡萄三清山、卢氏网脉 |
小果葡萄Vitis balanseana | 小果葡萄南宁1606 |
燕山葡萄Vitis yeshanensis | 燕山葡萄北植1702 |
山葡萄Vitis amurensis | 山葡萄(N43-3)、山葡萄(N44-2-N)、长白9号,等 |
腺枝葡萄Vitis adenoclada | 腺枝葡萄-三清山、腺枝双溪 |
华东葡萄Vitis pseudoreticulata | 华东葡萄湖北浠水、华东葡萄临武 1202、华东葡萄梅岭,等 |
蘡薁Vitis bryoniifolia | 蘡薁武大1418、蘡薁-泰山1437、蘡薁-九江2130 ,等 |
桦叶葡萄Vitis betulifolia | 老君山桦叶、嵩山森林公园桦1、王相岩桦叶 |
种性不详Not clear | 富岛、复法中计281、9-18-4、SG |
于2022年7-9月采集成熟期(果实转色完成,变软,大小不再变化,糖度达到16以上,种子完全变褐)果实,参照《葡萄种质资源描述规范和数据标准
分别在花期前一周、开花期、花后一周3个时期取生长状况一致且花期相同的长果品种和圆果品种的花序或果实,其中长果品种为甜蜜蓝宝石(长圆形)、葡之梦(弯形)、金手指(弯形),圆果品种为京亚(椭圆形)、甜峰(近圆形)、龙眼(近圆形),长果与圆果果形指数差异较大。每个品种选择生长周期相同的3棵葡萄植株,3次生物学重复。采集完成后迅速放入液氮中速冻,置于-80℃保存。提取各葡萄品种花序或果实的总RNA,将200 mg的组织在液氮中迅速研磨成粉末,用离心管装取100 mg样品后加入细胞裂解液,放置于涡旋振荡器震荡30 s使其充分裂解,具体提取方法与步骤参照多糖多酚植物总RNA提取试剂盒(华越洋生物科技有限公司,北京)。逆转录反应按照HiScript III All-in-one RT SuperMix Perfect for qPCR逆转录试剂盒(诺唯赞生物科技股份有限公司,南京)进行基因组DNA清除与cDNA合成,反应体系:5×All-in-one qRT SuperMix 4 μL,Enzyme Mix 1 μL,模板RNA 1 μg,RNase-free ddH2O至20 μL,用移液器轻轻吹打8~10次至充分混匀,短暂离心收集至管底。反应条件:50℃ 15 min,85℃ 5 s。cDNA稀释10倍后用于实时荧光定量分析。qRT-PCR采用20 μL反应体系:模板cDNA 2 μL,正反引物各0.5 μL,2×PerfectStar
基因名称 Gene ID | 引物名称 Primer name | 引物序列 Sequence | GC含量(%) GC content | 退火温度(℃) TM |
---|---|---|---|---|
VvEF1-γ(Vitvi12g02055) | VvEF1-γ-F | CAAGAGAAACCATCCCTAGCTG | 50.0 | 55.3 |
VvEF1-γ-R | TCAATCTGTCTAGGAAAGGAAG | 40.9 | 50.9 | |
VvSUN(Vitvi08g02330) | VvSUN-F | ACAGAATCTGCCAAGGCGAA | 50.0 | 57.0 |
VvSUN-R | AGGCTTTTCATGCTTACAGTGTT | 39.1 | 54.4 | |
VvGLOBE(Vitvi11g00424) | VvGLOBE-F | AGAGCTGGGAGGCTACAAGA | 55.0 | 58.0 |
VvGLOBE-R | TGGCCTGCAAGATGGCTAAA | 50.0 | 57.2 | |
VvBZR1.7(Vitvi08g00772) | VvBZR1.7-F | CAGCAAGGGACCATGGGTAG | 60.0 | 58.6 |
VvBZR1.7-R | GCTCTTCGATTTCGCTCCCT | 55.0 | 57.7 | |
VvFUL | VvFUL-F | AGACACATTGGGAGCAGCAA | 50.0 | 57.0 |
VvFUL-R | TCAAGCGTAAGGTCCAGCTC | 55.0 | 57.3 | |
VvOVATE(Vitvi04g01262) | VvOVATE-F | GTCCTCCAGGCAATGCTTCT | 55.0 | 57.8 |
VvOVATE-R | TCGTAGACCTTGGCAACCAC | 55.0 | 57.6 |
根据《葡萄种质资源描述规范和数据标准

图 1 葡萄果形及代表品种
Fig.1 Berry shape and representative variety of grape
鉴定评价的葡萄种质中,栽培品种共563份,以圆形(56.13%)和椭圆形(19.36%)为主,其次为近圆形(7.46%),而其他果形共占比17.05%,其中扁圆形和弯形数量较少,各3份,束腰形仅1份。野生葡萄共103份,果实基本均为圆形,仅有4份椭圆形和1份鸡心形(

图2 不同品种类型葡萄果形种质的数量及比例
Fig.2 The number and proportion of berry shape in different grape varieties
在果粒纵径、横径方面,不同果形的变异系数在5.9%~22.9%之间,纵径最小和最大的分别是圆形(0.72 cm,小果葡萄南宁1606♀)和长圆形(3.75 cm,美人指),横径最小(0.72 cm,小果葡萄南宁1606♀)和最大(2.97 cm,红皇后)的都是圆形。果形指数的变异系数在1.0%~21.0%之间,圆形、近圆形和卵圆形的变异系数较小。果形指数最大的是长圆形(2.42,美人指),最小的为扁圆形(0.87,罗曼尔)。根据果形指数平均值,果形指数从大到小依次为弯形、长圆形、长椭圆形、束腰形、鸡心形、倒卵形、椭圆形、卵圆形、近圆形、圆形、扁圆形(
果形 Fruit shapes | 纵径(cm)Vertical diameter | 横径(cm)Transverse diameter | 果形指数 Fruit shape index | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
最小Min. | 最大Max. | 平均 Average | 变异系数(%) CV | 最小Min. | 最大Max. | 平均 Average | 变异系数(%) CV | 最小Min. | 最大Max. | 平均 Average | 变异系数(%) CV | |
扁圆形 Obloid | 1.76 | 1.97 | 1.86±0.11 | 5.9 | 1.86 | 2.27 | 2.03±0.22 | 10.8 | 0.87 | 0.95 | 0.92±0.05 | 5.4 |
圆形 Round | 0.72 | 2.97 | 1.75±0.40 | 22.9 | 0.72 | 2.97 | 1.75±0.40 | 22.9 | 0.97 | 1.03 | 1.00±0.01 | 1.0 |
近圆形 Nearly round | 1.24 | 2.70 | 2.04±0.37 | 18.1 | 1.19 | 2.60 | 1.91±0.36 | 18.8 | 1.04 | 1.13 | 1.07±0.03 | 2.7 |
卵圆形 Ovoid | 1.60 | 2.75 | 2.00±0.33 | 16.5 | 1.40 | 2.60 | 1.83±0.34 | 18.6 | 1.03 | 1.21 | 1.10±0.05 | 4.5 |
椭圆形 Broad lipsoid | 1.50 | 2.88 | 2.16±0.32 | 14.8 | 1.20 | 2.60 | 1.92±0.30 | 15.6 | 1.04 | 1.29 | 1.13±0.07 | 6.3 |
倒卵形 Obovoid | 1.78 | 3.10 | 2.55±0.28 | 11.0 | 1.52 | 2.65 | 2.21±0.25 | 11.3 | 1.05 | 1.32 | 1.16±0.07 | 6.2 |
鸡心形 Chicken heart shape | 1.75 | 2.37 | 2.08±0.25 | 12.0 | 1.40 | 1.85 | 1.66±0.16 | 9.6 | 1.05 | 1.41 | 1.25±0.12 | 9.3 |
束腰形 Waist shape | 2.95 | 2.95 | 2.95 | / | 2.30 | 2.30 | 2.30 | / | 1.28 | 1.28 | 1.28 | / |
长椭圆形 Long oval | 1.60 | 3.15 | 2.39±0.42 | 17.6 | 1.10 | 2.20 | 1.69±0.30 | 17.8 | 1.30 | 2.00 | 1.42±0.18 | 12.3 |
长圆形 Oval shape | 2.70 | 3.75 | 3.09±0.37 | 12.0 | 1.55 | 2.20 | 1.90±0.22 | 11.6 | 1.33 | 2.42 | 1.65±0.34 | 21.0 |
弯形 Curved shape | 2.70 | 3.20 | 3.00±0.25 | 8.3 | 1.50 | 1.75 | 1.63±0.13 | 8.0 | 1.71 | 1.94 | 1.82±0.12 | 6.4 |
/:无数据
/:No data
欧亚种和欧美杂种占鉴定评价种质的88%以上,且欧亚种种质数量为欧美杂种的两倍多。整体上,两者果形均以圆形和椭圆形为主,其中圆形分别占欧亚种和欧美杂种的55%和54%以上,椭圆形分别占欧亚种和欧美杂种的22%和14%以上,其他果形种质数量相对较少。与欧亚种相比,欧美杂种缺少长圆形和束腰形的品种,表明欧亚种的果形类型更为丰富(
葡萄种质 Grape germplasm | 圆形Round | 椭圆形Broad lipsoid | 近圆形Nearly round | 倒卵形Obovoid | 长椭 圆形 Long oval | 鸡心形Chicken heart shape | 卵圆形Ovoid | 扁圆形Obloid | 弯形Curved shape | 长圆形Oval shape | 束腰形Waist shape | 合计Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
欧亚种 Vitis vinifera L. | 209 | 85 | 19 | 7 | 20 | 3 | 18 | 2 | 2 | 12 | 1 | 378 |
欧美杂种 Vitis vinifera × Vitis labrusca | 94 | 24 | 22 | 22 | 3 | 3 | 1 | 1 | 1 | 171 |
中国野生葡萄 Chinese wild grapes | 圆形 Round | 椭圆形 Broad lipsoid | 鸡心形 Chicken heart shape |
---|---|---|---|
刺葡萄Vitis davidii | 40 | 3 | 1 |
复叶葡萄Vitis piasezkii Maxim. | 11 | ||
红叶葡萄Vitis erythrophylla | 1 | ||
毛葡萄Vitis heyneana | 2 | ||
秋葡萄Vitis Romaneti. | 3 | ||
桑叶葡萄Vitis heyneana | 8 | ||
网脉葡萄Vitis wilsonae | 2 | ||
小果葡萄Vitis balanseana | 1 | ||
燕山葡萄Vitis yeshanensis | 1 | ||
山葡萄Vitis amurensis | 5 | ||
腺枝葡萄Vitis adenoclada | 6 | ||
华东葡萄Vitis pseudoreticulata | 6 | ||
蘡薁Vitis bryoniifolia | 7 | ||
桦叶葡萄Vitis betulifolia | 3 |
葡萄果实用途多样,其中以鲜食和酿酒为主。在鉴定评价的葡萄种质中,鲜食和酿酒葡萄共563份,其中主要为圆形和椭圆形,占75%以上。酿酒葡萄果形类型较少,除圆形和椭圆形外,仅有少量的近圆形、长椭圆形、卵圆形和鸡心形种质,鲜食葡萄果形类型丰富,有全部11种果形(
葡萄种质 Grape germplasm | 圆形Round | 椭圆形Broad lipsoid | 卵圆形Ovoid | 近圆形Nearly round | 长椭圆形 Long oval | 鸡心形Chicken heart shape | 倒卵形Obovoid | 长圆形Oval shape | 扁圆形Obloid | 弯形Curved shape | 束腰形Waist shape | 合计Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
酿酒Wine grape | 162 | 21 | 2 | 7 | 5 | 2 | 199 | |||||
鲜食Table grape | 154 | 88 | 17 | 35 | 18 | 4 | 29 | 12 | 3 | 3 | 1 | 364 |
对不同果形的葡萄单粒重进行统计分析,其中野生葡萄多为圆形,果粒较小,分布在0.50~4.61 g。栽培品种数目较多,不同果形之间差异较大,单粒重平均值最小的为鸡心形(3.4 g),最大的为倒卵形(7.1 g)。不同果形单粒重最小和最大分别为0.9 g和16.6 g,且果实均为圆形(

图3 不同果形葡萄单粒重统计
Fig.3 Statistics of single berry weight of grape with different berry shapes

图4 不同果形葡萄单粒重的频率分布
Fig.4 Frequency distribution of individual berry weight of grape with different berry shapes
A:圆形;B:椭圆形;C:卵圆形;D:倒卵形;E:长椭圆形;F:长圆形;G:近圆形;H:合计
A:Round;B:Broad lipsoid;C:Ovoid;D:Obovoid;E:Long oval;F:Oval shape;G:Nearly round;H: Total
为探究葡萄纵径、横径与单粒重之间的相关性,对品种数量较多的圆形、椭圆形、卵圆形、倒卵形、长椭圆形、长圆形和近圆形葡萄进行回归分析。大部分果形的回归方程拟合度较好,其中卵圆形和近圆形的
果形 Berry shapes | 直径 Diameter | 回归方程 Regression equation | 相关系数 |
---|---|---|---|
圆形Round | 纵径 | y=5.407x-5.772 | 0.797 |
横径 | y=5.421x-5.791 | 0.796 | |
椭圆形Broad lipsoid | 纵径 | y=5.155x-6.498 | 0.780 |
横径 | y=5.691x-6.299 | 0.783 | |
卵圆形Ovoid | 纵径 | y=5.627x-7.171 | 0.948 |
横径 | y=5.436x-5.873 | 0.923 | |
倒卵形Obovoid | 纵径 | y=5.721x-7.513 | 0.698 |
横径 | y=6.923x-8.184 | 0.816 | |
长椭圆形Long oval | 纵径 | y=3.921x-4.941 | 0.867 |
横径 | y=5.261x-4.463 | 0.804 | |
长圆形Oval shape | 纵径 | y=0.364x+5.192 | 0.014 |
横径 | y=2.968x+0.665 | 0.313 | |
近圆形Nearly round | 纵径 | y=6.743x-8.933 | 0.904 |
横径 | y=6.904x-8.339 | 0.911 | |
合计Total | 纵径 | y=4.303x-4.159 | 0.718 |
横径 | y=5.668x-6.102 | 0.803 |

图5 葡萄单粒重与纵径、横径的一元线性回归分析
Fig.5 Linear regression diagram of single berry weight and diameter of grape
A:圆形;B:椭圆形;C:卵圆形;D:倒卵形;E:长椭圆形;F:长圆形;G:近圆形;H:合计
A:Round;B:Broad lipsoid;C:Ovoid;D:Obovoid;E:Long oval;F:Oval shape;G:Nearly round;H:Total
葡萄种子的数量主要受授粉、受精和胚珠发育相关因素的影
果形 Berry shapes | 不同种子粒数的葡萄品种数量 The number of grape varieties with different seed counts | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
圆形Round | 8 | 40 | 167 | 128 | 59 | 8 | 4 |
椭圆形Broad lipsoid | 14 | 3 | 44 | 36 | 16 | ||
卵圆形Ovoid | 8 | 6 | 2 | 2 | 1 | ||
倒卵形Obovoid | 3 | 20 | 5 | 1 | |||
长圆形Oval shape | 7 | 5 | |||||
鸡心形Chicken heart shape | 2 | 2 | 2 | 1 | |||
近圆形Nearly round | 8 | 1 | 19 | 8 | 6 | ||
长椭圆形Long oval | 5 | 1 | 9 | 6 | 2 | ||
扁圆形Obloid | 3 | ||||||
弯形Curved shape | 1 | 2 | |||||
束腰形Waist shape | 1 | ||||||
合计Total | 45 | 41 | 265 | 175 | 82 | 9 | 5 |
以不同时期的长果与圆果葡萄花序为材料,分别对葡萄果形候选基因进行表达分析。与圆果品种相比,长果品种纵径较大,横径较小,果形指数差异显著(

图6 不同葡萄品种果形指数
Fig.6 Berry shape index of different grape varieties
L1:甜蜜蓝宝石;L2:葡之梦;L3:金手指;R1:京亚;R2:甜峰;R3:龙眼;L为长果;R为圆果;不同字母表示在P<0.05差异显著;下同
L1:Sweet Sapphire Grapes;L2:Puzhimeng;L3:Gold Finger;R1:Jingya;R2:Tianfeng;R3:Longyan;L is elongated shape fruits;R is round shape fruits; Different letters mean significant difference at P<0.05;The same as below

图7 不同基因在不同果形葡萄中的表达结果
Fig.7 Expression results of genes in different berry shapes
1:花前一周;2:开花期;3:花后一周
1:One week before anthesis;2:Anthesis;3:One week after anthesis
果形是葡萄的重要外观品质性状之一,对其商品价值具有重要影响,对葡萄种质资源果形性状的鉴定评价可为遗传调控研究和良种选育提供参考。果实大小和形状通常用果粒重和纵径、横径来衡量,不同形状的果实纵横比(或果形指数)不同。描述果实形状的标准比较多,国际上一般采用国际葡萄与葡萄酒组织(OIV,International Organisation of Vine and Wine)和国际葡萄种质资源数据库组织(IPGRI,International Plant Genetic Resources Institute)制定的标准,不同国家或地区也会结合自身情况制定相应标准。国内结合国际标准和中国种质资源特点制定了《葡萄种质资源描述规范和数据标准
欧亚种和欧美杂种果形类型丰富,主要以圆形和椭圆形为主,与欧美杂种相比,欧亚种的果形类型更丰富;野生葡萄果形基本上均为圆形,仅在刺葡萄中发现其他果形类型。不同种葡萄的果形类型差异与驯化程度有关,栽培品种主要为欧亚种和欧美杂种,经过长期的驯化与选择,相较于其他种,其驯化程度更高,果形的分化类型更为丰富。从用途上划分,栽培葡萄主要分为鲜食和酿酒葡萄,由于对目标性状的选择不同,鲜食葡萄更加注重外观品质的多样性而有着更加丰富的果形。中国野生葡萄种质资源丰富,分布广泛,多样性
为探究不同果形葡萄的特点和性状差异,对不同果形葡萄种质资源的单粒重也进行了鉴定评价。单粒重是衡量葡萄品质的重要指标之一,本研究中不同果形葡萄的单粒重从大到小依次为倒卵形、长圆形、近圆形、椭圆形、长椭圆形、卵圆形、圆形、鸡心形。其中圆形、椭圆形和近圆形葡萄种质种类丰富,不同品种之间的单粒重差异较大。大量的野生种质和栽培品种具有圆形果,野生种质果粒一般较小,经过驯化后的栽培品种果粒较大,因此圆形葡萄单粒重差异较大,在调查的品种中果粒重最大达16.6 g(石榴红),最小为0.5 g(红叶葡萄-浮梁1605)。葡萄单粒重与纵径、横径均为衡量葡萄大小的重要指标,对其进行回归分析可知,不同的果形之间存在一定的差异,但均具有正相关关系。随着育种技术的不断发展,分子育种将成为育种的重要手段,挖掘重要目标性状的关键调控基因,解析其遗传调控机制是实现分子育种的重要基础。葡萄果形与其他相关性状的遗传位点是否也存在关联,仍需开展深入研究,以解析其遗传调控机制。
现阶段,虽然围绕葡萄果形遗传调控机制已开展了一些研究,但具体的调控机制仍不清晰,而番茄、黄瓜等园艺作物在果形方面已有较深入的研究,发掘了一批重要的果形调控基因,可为葡萄果形的研究提供重要参考。番茄种质资源在果实形状和大小方面也表现出丰富的遗传多样
同源基因在不同物种中发挥功能的时期可能不同,因此首先要明确葡萄果实形状建成的关键时期。根据解剖学定义,葡萄果实是成熟的子房,是花授粉受精后发育产生的器官,因此在某种程度上果实的形状是由子房的形状决定的。在雌花开花和细胞分裂发生之前,子房表现出独特的形状,这影响了果实的发育以及果实的纵径和横
栽培葡萄由野生种驯化而来,果形性状驯化明显,出现了丰富的变异类型。不同种、不同用途的葡萄种质果形性状具有明显差异,不同果形葡萄在单粒重、种子数量等性状上也表现出较大差异。基因VvFUL
参考文献
Venkitasamy C, Zhao L M, Zhang R H, Pan Z L. Grapes. Integrated processing technologies for food and agricultural by-products. London: Academic Press, 2019:133-163 [百度学术]
田野,陈冠铭,李家芬,向雄鹰,刘扬,李宏杨.世界葡萄产业发展现状.热带农业科学,2018,38(6):96-101,105 [百度学术]
Tian Y, Chen G M, Li J F, Xiang X Y, Liu Y, Li H Y. Present development of grape industry in the world. Chinese Journal of Tropical Agriculture, 2018 ,38(6):96-101,105 [百度学术]
李小红,李运景,马晓青,郭军,刘海礁,郑国清,陶建敏.我国葡萄产业发展现状与展望.中国南方果树,2021,50(5):161-166 [百度学术]
Li X H, Li Y J, Ma X Q, Guo J, Liu H J, Zheng G Q, Tao J M. Development status and prospect of grape industry in China. South China Fruits, 2021, 50(5):161-166 [百度学术]
Zhang X M, Wu Y F, Li Z, Song C B, Wang X P. Advancements in plant regeneration and genetic transformation of grapevine (Vitis spp.). Journal of Integrative Agriculture, 2021, 20(6): 1407-1434 [百度学术]
Grassi F, De L. Back to the origins: Background and perspectives of grapevine domestication. International Journal of Molecular Sciences, 2021, 22(9):4518 [百度学术]
Zhang C, Fan X C, Liu C H, Fang J G. Anatomical berry characteristics during the development of grape berries with different shapes. Horticultural Plant Journal, 2021, 7(4):295-306 [百度学术]
Grassi F, Rosa A. Origins and domestication of the grape. Frontiers in Plant Science, 2020, 11: 1176 [百度学术]
Aradhya M K, Dangl G S, Prins B H, Boursiquot J M, Walker M A, Meredith C P, Simon C J. Genetic structure and differentiation in cultivated grape, Vitis vinifera L.. Genetics Research, 2003 ,81(3):179-192 [百度学术]
Pitrat M. Melon genetic resources: Phenotypic diversity and horticultural taxonomy. Switzerland: Springer, 2016:25-60 [百度学术]
Pan Y P, Wang Y H, McGregor C, Liu S, Luan F S, Gao M L, Weng Y Q. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics, 2020, 133:1-21 [百度学术]
Walker M A, Heinitz C, Riaz S, Uretsky J. Grape taxonomy and germplasm. Switzerland: Springer, 2019:25-38 [百度学术]
杨亚蒙,姜建福,樊秀彩,张颖,李民,刘崇怀.葡萄属野生资源分类研究进展.植物遗传资源学报,2020,21(2):275-286 [百度学术]
Yang Y M,Jiang J F,Fan X C,Zhang Y,Li M,Liu C H. A review of taxonomic research in wild grape resources. Journal of Plant Genetic Resources, 2020, 21(2):275-286 [百度学术]
徐美隆,乔改霞,仝倩,刘玉娟,谢军,秦彬彬.山葡萄砧木对‘黑比诺’葡萄耐旱寒的影响研究.中外葡萄与葡萄酒,2021(6):66-70 [百度学术]
Xu M L, Qiao G X, Tong Q, Liu Y J, Xie J, Qin B B. Effect of Vitis amurensis rootstock on drought and cold tolerance of ‘Pinot Noir’ grapevine. Sino-Overseas Grapevine & Wine, 2021(6):66-70 [百度学术]
林洪.优质抗寒葡萄新品种‘凌丰红’.北方果树,2022(1):41 [百度学术]
Lin H. New quality cold-resistant grape ‘Ling feng hong'. Northern Fruits,2022(1):41 [百度学术]
Arnold C, Schnitzler A. Ecology and genetics of natural populations of North American Vitis species used as rootstocks in European grapevine breeding programs, Frontiers in plant science, 2020(11):886 [百度学术]
管乐,亓桂梅,房经贵.世界葡萄主要品种与砧木利用概述.中外葡萄与葡萄酒,2019(1):64-69 [百度学术]
Guan L, Qi G M, Fang J G. A summary of main varieties of grapevine and the adoption of rootstock in the world. Sino-Overseas Grapevine & Wine, 2019(1):64-69 [百度学术]
乔改霞,王荣,刘玉娟,曾继娟,徐美隆,谢军,范培格.葡萄多种群种间杂种后代抗病性特征研究.中外葡萄与葡萄酒,2020(4):8-13 [百度学术]
Qiao G X, Wang R, Liu Y J, Zeng J J, Xu M L, Xie J, Fan P G. Study on disease resistance characteristics of hybrid progeny among different grapevine populations. Sino-Overseas Grapevine & Wine, 2020 (4):8-13 [百度学术]
Heinitz C, Uretsky J, Dodson P J, Huerta-acosta K, Walker M. Crop wild relatives of grape (Vitis vinifera L.) throughout North America. North American Crop Wild Relatives, 2019(2): 329-351 [百度学术]
吴艳迪,樊秀彩,张颖,姜建福,孙磊,王勇,孙锋,刘崇怀.果树作物果实形状的研究进展.分子植物育种,2022, 22(14): 4641-4647 [百度学术]
Wu Y D, Fan X C, Zhang Y, Jiang J F, Sun L, Wang Y, Sun F, Liu C H. Research progress of fruit shape in fruit crops. Molecular Plant Breeding, 2022, 22(14): 4641-4647 [百度学术]
Guerios I T, Chiarotti F, Cuquel F L, Biasi L A. Growth regulators improve bunch and berry characteristics in‘Niagara Rosada’grape. Acta Horticulturae, 2016(1115): 243-248 [百度学术]
张鸿雁,陈莉,屈嘉燕,李少华,曾青青,张鹏,管雪强,张克坤,房玉林,陈可钦.外源植物激素对‘赤霞珠’葡萄冬芽萌发的影响.中外葡萄与葡萄酒,2022,245(5):52-58 [百度学术]
Zhang H Y, Chen L, Qu J Y, Li S H, Zeng Q Q, Zhang P, Guan X Q, Zhang K K, Fang Y L, Chen K Q. Effects of exogenous plant hormones on germination of grape winter buds. Sino-Overseas Grapevine & Wine, 2022 ,245(5):52-58 [百度学术]
Grandillo S, Ku H M, Tanksley S D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics. 1999, 99:978-987 [百度学术]
Wu S, Zhang B, Keyhaninejad N, Rodríguez G R, Kim H J, Chakrabarti M, Illa-Berenguer E, Taitano N K, Gonzalo M J, Díaz A, Pan Y. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 2018, 9(1):4734 [百度学术]
Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology, 2011, 157(3):1175-1186 [百度学术]
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics, 2020, 133:1-21 [百度学术]
Wei Q Z, Fu W Y, Wang Y Z, Qin X D, Wang J, Li J, Lou Q F, Chen J F. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Scientific Reports, 2016, 133:1-21 [百度学术]
Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theoretical and Applied Genetics, 2015, 128(9):1747-1763 [百度学术]
Pan Y, Liang X, Gao M, Liu H, Meng H, Weng Y, Cheng Z. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theoretical and Applied Genetics, 2017, 130(3):573-586 [百度学术]
刘崇怀.葡萄种质资源描述规范和数据标准.北京:中国农业出版社:2006: 41-46 [百度学术]
Liu C H. The description and data standard for grape (Vitis). Beijing: China Agriculture Press, 2006:41-46 [百度学术]
Wei T L, Wang H, Pei M S, Liu H N, Yu Y H, Jiang J F, Guo D L. Identification of optimal and novel reference genes for quantitative real‐time polymerase chain reaction analysis in grapevine. Australian Journal of Grape and Wine Research. 2021, 27(3):325-333 [百度学术]
Li Q, Luo S X, Zhang L Y, Feng Q, Song L J, Sapkota M, Xuan S X, Wang Y H, Zhao J J, Van D K E, Chen X P, Shen S X. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. Horticulture Research, 2023, 10(7):108 [百度学术]
闫守伟,张素丽,张国军,徐海英,胡建芳. 不同葡萄品种柱头、花柱发育与种子形成的关系.西北植物学报,2007,27(3):435-441 [百度学术]
Yan S W, Zhang S L, Zhang G J, Xu H Y, Hu J F. Development of stigma and style and formation of seed withfour grapevine cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2007, (3):435-441 [百度学术]
Wan Y Z, Schwaninger H D, Li D, Simon C J, Wang Y J, He P C. The eco-geographic distribution of wild grape germplasm in China. Vitis: Journal of Grapevine Research, 2008, 47(2):77-80 [百度学术]
程大伟,张国海,姜建福,樊秀彩,张颖,刘崇怀. 刺葡萄种内遗传多样性研究进展.植物遗传资源学报,2015,16(6):1141-1151 [百度学术]
Cheng D W, Zhang G H, Jiang J F, Fan X C, Zhang Y, Liu C H. Intraspecies genetic diversity of Vitis davidii. Journal of Plant Genetic Resources, 2015 ,16(6):1141-1151 [百度学术]
金燕,石雪晖,熊兴耀,秦丹.刺葡萄种质资源的研究与利用现状.中外葡萄与葡萄酒,2008(4):60-62,69 [百度学术]
Jin Y, Shi X H, Xiong X Y, Qin D. Current situation of research and utilization of germplasm resources of Vitis davidii. Sino-Overseas Grapevine & Wine, 2008 (4):60-62,69 [百度学术]
Paran I, Van D K E. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 2007 ,58: 3841-3852 [百度学术]
Xiao H, Jiang N, Schaffner E K, Stockinger E J, Van D K E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 2008 ,319: 1527-1530 [百度学术]
Rodríguez G R, Muños S, Anderson C, Sim S C, Michel A, Causse M, Gardener B B M, Francis D,Van D K E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 2011 ,156(1):275-285 [百度学术]
Liu J, Eck J V, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2002, 90(20):13302-13306 [百度学术]
Rodriguez G R, Kim H J ,Van D K E. Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity, 2013, 111(3):256-264 [百度学术]
Sierra-Orozco E, Shekasteband R, Illa B E, Snouffer A, Van D K E, Lee T G,Hutton S F. Identification and characterization of GLOBE, a major gene controlling fruit shape and impacting fruit size and marketability in tomato. Horticulture Research, 2021 ,8(1):138 [百度学术]
Zhang B, Li Q, Keyhaninejad N, Taitano N, Sapkota M, Snouffer A,Van D K E. A combinatorial TRM‐OFP module bilaterally fine‐tunes tomato fruit shape. New Phytologist, 2023 ,238(6):2393-2409 [百度学术]
Yu T, Ai G, Xie Q, Wang W, Song J, Wang J, Tao J, Zhang X, Hong Z, Lu Y,Ye J. Regulation of tomato fruit elongation by transcription factor BZR1. 7 through promotion of SUN gene expression. Horticulture Research, 2022, 9:121 [百度学术]
Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S ,Sun C. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. The Plant Cell, 2019, 31(6):1289-1307 [百度学术]
Floyd S K, Bowman J L. Gene expression patterns in seed plant shoot meristems and leaves: Homoplasy or homology? Journal of Plant Research, 2010, 123:43-55 [百度学术]
Patel R V, Nahal H K, Breit R, Provart N J. BAR expressolog identification: Expression profile similarity ranking of homologous genes in plant species. The Plant Journal, 2012, 71(6):1038-1050 [百度学术]
Sinnott E W. A developmental analysis of inherited shape differences in cucurbit fruits.The American Naturalist, 1936, 70(728):245 [百度学术]
Perin C, Hagen L S, Giovinazzo N, Besombes D, Dogimont C, Pitrat M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Molecular Biology Reports, 2002, 266:933-941 [百度学术]
Weng Y Q, Colle M, Wang Y H, Yang L M, Rubinstein M, Sherman A, Ophir R, Grumet R. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theoretical and Applied Genetics, 2015, 128:1747-1763 [百度学术]
Chusreeaeom K, Ariizumi T, Asamizu E, Okabe Y, Shirasawa K, Ezura H. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary. Molecular Genetics and Genomics, 2014, 289:399-409 [百度学术]
Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N. Endoreduplication and fruit growth in tomato: Evidence in favour of the karyoplasmic ratio theory. Journal of Experimental Botany, 2014, 65(10):2731-2746 [百度学术]
Gillaspy G, Ben-David H, Gruissem W. Fruits: A developmental perspective. Plant Cell, 1993 ,5(10):1439-1451 [百度学术]
Considine J A, Knox R B. Tissue origins, cell lineages and patterns of cell division in the developing dermal system of the fruit of Vitis vinifera L.. Planta, 1981 ,151(5): 403-412 [百度学术]