2025年5月18日 6:09 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

玉米籽粒相关性状遗传解析及主效位点qKW2.04精细定位  PDF

    穆志生 1
    ✉
    汤彬 1,2
    陈林 1
    张登峰 1
    李春辉 1
    王天宇 1
    黎裕 1
    石云素 1
    ✉
    李永祥 1
    ✉
1. 中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室,北京 100081; 2. 湖南省作物研究所,长沙 410125

最近更新:2024-11-07

DOI:10.13430/j.cnki.jpgr.20240223002

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN 引
分享给微信好友或者朋友圈
目录contents
摘要
关键词
1 材料与方法
1.1 试验材料
1.2 田间试验与表型鉴定
1.3 DNA提取与基因型鉴定
1.4 遗传连锁图谱的构建
1.5 表型数据分析及QTL作图
2 结果与分析
2.1 高密度遗传图谱的构建
2.2 基于RIL群体的玉米籽粒相关性状QTL定位
2.3 近等基因导入系NIL-1041A表型和导入片段分析
2.4 基于B73及其导入系组合F2分离群体的籽粒相关性状QTL定位
2.5 粒宽主效QTL qKW2.04-1的精细定位
3 讨论
4 结论
参考文献

摘要

籽粒相关性状包含粒长、粒宽和百粒重,是决定玉米产量的重要因素。本研究以玉米自交系B73与CML277构建的重组自交系群体为试验材料,应用基于测序的基因分型技术构建高精度遗传图谱,利用完备区间作图法鉴定到9个QTL,其中第2染色体上的qKW2.04位点分别解释粒宽和百粒重表型变异的20.34%和15.84%。在此基础上,利用轮回亲本B73及其近等基因导入系材料NIL-1041A构建F2分离群体,将qKW2.04位点进一步分解为2个紧密连锁的粒宽QTL,qKW2.04-1和qKW2.04-2,分别位于标记区间InDel23.32~umc1555和InDel47.09~InDel57.06,表型贡献率分别为22.45%和12.22%,增效等位变异均来自CML277。其中,通过筛选目标区段重组单株将qKW2.04-1精细定位在分子标记InDel26.76和InDel27.86间1.1 Mb区间之内。本研究为阐明玉米籽粒相关性状遗传基础提供了新的线索,为玉米高产分子设计育种提供了基因资源。

关键词

玉米; 粒宽; 百粒重; 遗传解析; 精细定位

玉米(Zea mays L.)是重要粮经饲兼用作物,在保障粮食安全、改善人民生活水平等方面起着至关重要的作用[

参考文献 1-2
1-2]。已有研究表明,现代栽培玉米起源于小颖大刍草亚种和墨西哥高原大刍草亚种[
参考文献 3
百度学术    
3],从大刍草到玉米的驯化过程中,籽粒形态和大小变化明显[
参考文献 4-5
4-5]。高产是玉米育种最重要的目标之一,而产量是由多基因控制的复杂数量性状,其遗传力较低、易受环境影响[
参考文献 6
百度学术    
6]。粒长、粒宽和百粒重等籽粒相关性状也是决定玉米单产水平的关键因子和品种改良的重要目标性状,遗传力较高[
参考文献 7-8
7-8]。因此,解析玉米籽粒相关性状遗传基础,对高产种质资源创新和新品种培育具有理论指导意义。

随着玉米基因组测序的完成和高通量分子标记技术的应用[

参考文献 9
百度学术    
9],玉米籽粒性状遗传基础解析取得了显著进展,定位了大量与籽粒大小相关的位点和候选基因[
参考文献 10-11
10-11],并在玉米全基因组范围内鉴定到多个控制籽粒大小的热点区域[
参考文献 12-15
12-15],为相关基因精细定位和图位克隆提供了重要的候选区域。同时,一些玉米籽粒大小相关的主效QTL被精细定位和图位克隆,如粒宽主效QTL qKW7被精细定位在第7染色体上的一个647 kb区间[
参考文献 16
百度学术    
16],qKW9.2精细定位在第9染色体的一个630 kb区间[
参考文献 14
百度学术    
14]; 控制玉米粒型的主效QTL qKM4.08编码retromer蛋白,通过增加早期发育籽粒中生长素生物合成和转运影响粒型[
参考文献 17
百度学术    
17]; 控制籽粒大小和粒重的主效QTL qHKW1编码CLV1/BAM相关的类受体激酶蛋白,是影响热带玉米产量的关键基因[
参考文献 18
百度学术    
18]; 爆裂玉米中控制粒重和粒型的关键基因ZmKW1编码1个含有seven in absentia结构域的E3泛素连接酶,可以负调控胚乳细胞数量和大小[
参考文献 19
百度学术    
19]。

玉米自然群体中籽粒大小具有丰富的遗传变异,其优良基因/等位基因有待深入挖掘和利用。本研究以玉米自交系B73和CML277为亲本构建的重组自交系(RIL,recombinant inbred line)群体为试验材料,借助高密度遗传图谱开展籽粒大小相关性状QTL遗传定位,并以定位到的粒宽和百粒重主效位点qKW2.04为目标,利用B73及其近等基因导入系材料NIL-1041A为亲本构建F2分离群体,用于验证RIL群体的定位结果,最后通过目标QTL区间跨叠系,明确主效位点的染色体物理位置和遗传效应,为玉米籽粒性状主效QTL精细定位和候选基因的挖掘奠定基础,也为玉米产量相关性状的分子标记辅助选择提供参考和科学依据。

1 材料与方法

1.1 试验材料

以玉米自交系B73(温带)和CML277(热带)为亲本构建的182个RIL家系为籽粒相关性状初定位群体,该群体来源于美国康奈尔大学的巢式关联作图(NAM,nested association mapping)群体[

参考文献 20
百度学术    
20]。

以轮回亲本B73及其近等基因导入系NIL-1041A杂交构建的564个F2次级分离群体及其衍生家系为材料,用于籽粒相关性状主效QTL验证和精细定位。其中,导入系NIL-1041A选自于国际玉米小麦改良中心(CIMMYT,Centro Internacional de Mejoramiento de Maizy Trigo)的以CML277为供体亲本、B73为受体亲本构建的导入系(ILs, introgression lines)群体。经多环境下的表型精准鉴定,导入系NIL-1041A的粒宽、百粒重等籽粒相关性状与受体亲本B73存在极显著差异(P<0.01)。

1.2 田间试验与表型鉴定

B73×CML277组合RIL群体分别于2010年海南三亚南滨农场(18.39°N,109.19°E)、2011年重庆潼南(30.03°N, 106.22°E)、2011年河南新乡(35.19°N, 113.53°E)、2011年天津(39.40°N, 117.05°E)、2011年北京顺义(39.48°N, 116.28°E)共5个环境进行种植。各环境下的RIL群体均采用随机区组设计,单行区,2次重复,行长3 m,行距0.6 m,株距0.25 m,每行定苗12株。

为了验证RIL群体的定位结果,2015年春在北京昌平试验基地(40.17°N,116.23°E)种植B73和NIL-1041A杂交组合的F2分离群体(包含564个单株),分离群体全部单株自交后进行基因型和表型鉴定。根据F2群体的定位结果,2015年冬在海南三亚南滨农场利用籽粒大小目标主效QTL两侧的分子标记和MaizeSNP50芯片覆盖玉米全基因组的SNP标记挑选出目标区段为杂合基因型,而其余区段为纯合B73基因型的单株并自交用于后续精细定位。2016年在北京昌平和海南三亚南滨农场种植目标QTL的分离群体,利用QTL两侧的分子标记筛选重组单株并自交,2017年在北京昌平扩繁重组单株衍生的纯合重组家系(HR,homozygous recombinant)及其纯合非重组家系(HNR,homozygous non-recombinant)。为了进一步缩小目标主效QTL的定位区间,2017年在海南三亚南滨农场和梅山(18.37°N,109.06°E)种植所有重组单株衍生的纯合重组家系和对应的纯合非重组家系。田间试验采用随机区组设计,单行区,3次重复,每个家系种1行,行长3 m,行距0.6 m,株距0.25 m,每行定苗12株。

试验材料生长期内的施肥、灌溉和病虫草害防治等所有田间管理措施均遵循当地大田生产管理。待完全成熟后,每行收获中间5株的果穗用于考察粒长、粒宽和百粒重。粒长和粒宽为每个果穗中部随机挑选10个籽粒测量,每个果穗重复测量3次取平均值,单位为cm。百粒重为每个果穗随机选取100个籽粒的重量,每个果穗重复测量3次取平均值,单位为g。

1.3 DNA提取与基因型鉴定

当玉米植株长至6叶时,按单株取幼嫩叶片(纯合家系为所有单株叶片的混合),采用CTAB法[

参考文献 21
百度学术    
21]提取叶片的基因组DNA。利用基于测序的基因分型技术(GBS,genotyping-by-sequencing)[
参考文献 22
百度学术    
22]鉴定RIL群体家系的基因型。

用于QTL验证和精细定位的分子标记,主要参考MaizeGDB网站(http://www.maizegdb.org/)公布的简单重复序列(SSR,simple sequence repeats)标记,其他来源于B73和CML277参考基因组序列信息比对分析获得的插入缺失(InDel,insertion deletion)标记,使用Primer5.0软件设计亲本间多态性分子标记[

参考文献 23
百度学术    
23]。反应体系10 μL(模板DNA 2 μL,引物 1.5 μL,Supermix 5 μL,ddH2O 1.5 μL)。反应程序:预变性95℃ 300 s;变性 95℃ 30 s,退火55~58℃ 30 s,延伸72℃ 25 s,循环34次;最后延伸72℃ 300s;4℃保存。PCR扩增产物通过8.0%非变性聚丙烯酰胺凝胶电泳和银染法显色,鉴定定位群体的基因型。

1.4 遗传连锁图谱的构建

对于RIL群体,选择测序质量好、最小等位基因频率高于0.05的多态性SNP标记,利用重组最大简约法(MPR,maximum parsimony of recombination)推测RIL群体的双亲基因型,根据双亲SNP基因型对RIL群体的基因型进行赋值,将具有相同基因型的SNP区域集约化为一个区块(bin),利用全基因组的所有区块构建RIL群体的重组区块图谱(Recombination bin map)[

参考文献 24
百度学术    
24]。最后,将每个重组区块当成基因组的一个标记,利用Mapchart V2.2软件构建RIL群体的高密度遗传连锁图谱[
参考文献 25
百度学术    
25]。

对于B73和NIL-1041A组配的F2分离群体,选择符合正常分离的InDel和SSR标记,利用QTL IciMapping V4.1软件中的MAP模块构建导入片段的局部遗传连锁图[

参考文献 26
百度学术    
26]。

1.5 表型数据分析及QTL作图

使用Microsoft Excel 2010与SAS V9.2软件对表型数据进行统计分析。利用QTL IciMapping V4.1软件中的完备区间作图法(ICIM,inclusive composite interval mapping)对籽粒相关性状进行QTL定位,其中缺失表型数据用“-100”表示,LOD阈值设置为2.50[

参考文献 27-28
27-28]。利用Mapchart V2.2软件对RIL群体籽粒相关QTL在遗传连锁图谱上的分布进行绘制。使用SAS V9.2软件中基于单因子的成组法t检验判断纯合重组型及其纯合非重组型家系之间的表型差异是否显著[
参考文献 29
百度学术    
29],验证精细定位区间交换片段的遗传效应。

2 结果与分析

2.1 高密度遗传图谱的构建

利用GBS技术,对以B73和CML277为亲本构建的RIL群体进行基因型检测,过滤掉等位基因频率小于0.05的SNP后获得372534个高质量SNP位点。利用高质量SNP位点构建RIL群体的重组区块图谱,共包含2141个bin标记。再利用2141个bin标记构建遗传连锁图谱,结果表明,遗传连锁图谱总长度为1264.26 cM,标记间最大距离为15.02 cM,最小距离为0.29 cM,标记间平均遗传距离为0.59 cM(图1)。

图1  籽粒相关性状QTL在遗传图谱上的分布

Fig.1  Distribution of kernel related QTL detected on genetic linkage maps

白色矩形代表粒长QTL,交叉线矩形代表粒宽QTL,黑色矩形代表百粒重QTL

The rectangle in white represent kernel length QTL(qKL), the rectangle with crossed lines represent kernel width QTL(qKW),the rectangle in black represent hundred kernel weight QTL(qHKW)

2.2 基于RIL群体的玉米籽粒相关性状QTL定位

5个环境下RIL群体粒长均值为8.71 cm,变异范围为7.59~9.65 cm;粒宽均值为7.38 cm,变异范围为6.69~8.11 cm;百粒重均值为21.02 g,变异范围为15.99~27.67 g。粒长、粒宽和百粒重的表型频率分布均呈正态分布或近似正态分布(图2),表现为典型的数量性状特征,适于开展QTL分析。

图2  粒长、粒宽和百粒重在RILs群体中的分布

Fig.2  The distribution of kernel length, kernel width and hundred kernel weight in RILs

利用RIL群体5个环境下籽粒性状的表型均值进行QTL定位,共检测到9个QTL,分别在第 1、2、3、5、9、10 染色体上,单个QTL可以解释的表型变异在5.12%~20.34%之间(表1)。其中,在第10染色体上共检测到2个粒长QTL,分别命名为 qKL10-1和qKL10-2,表型贡献率分别为7.98%和7.54%,增效等位基因分别来源于CML277和B73;在第2、3和9 染色体上检测到3个粒宽QTL,表型贡献率分别为20.34%、8.42%和5.12%,增效等位基因都来源于CML277;在第 1、2、5、9 染色体上检测到4个百粒重QTL,单个QTL可以解释的表型变异在5.51%~15.84%之间,除qHKW5增效等位基因来源于B73外,其余QTL增效等位基因均来源于CML277,表明热带亲本CML277在更多基因位点上拥有大籽粒等位变异。

表1  多环境下基于RIL群体的籽粒相关性状QTL定位结果
Table 1  QTL analysis of kernel related traits under multi-environments in RILs

籽粒性状

Kernel trait

染色体

Chr.

QTL名称

QTL name

标记区间

Marker interval

LOD 值

LOD score

贡献率(%)

PVE

加性效应

Additive effect

粒长

Kernel length

10 qKL10-1 m6839~m6859 3.01 7.98 0.111
10 qKL10-2 m7117~m7130 3.10 7.54 -0.107

粒宽

Kernel width

2 qKW2 m1403~m1420 9.65 20.34 0.122
3 qKW3 m1869~m1896 3.94 8.42 0.079
9 qKW9 m6598~m6608 2.63 5.12 0.061

百粒重

Hundred kernel weight

1 qHKW1 m855~m857 3.24 6.36 0.497
2 qHKW2 m1403~m1420 7.59 15.84 0.781
5 qHKW5 m3463~m3503 3.65 7.44 -0.535
9 qHKW9 m6641~m6650 2.79 5.51 0.460

PVE: Phenotypic variations explained; The same as below

qKW2和qHKW2是控制粒宽和百粒重的主效QTL,可解释的表型贡献率分别为20.34%和15.84%,增效等位基因都来源于CML277;qKW2和qHKW2共定位于第2染色体bin2.04同一区间内(标记m1403~m1420),且粒宽的LOD值和贡献率都大于百粒重。因此,m1403~m1420位点可能存在同时控制粒宽和百粒重的主效QTL(一因多效),或者是2个紧密连锁的主效QTL,将其命名为qKW2.04用于后续进一步研究。

2.3 近等基因导入系NIL-1041A表型和导入片段分析

对B73和导入系NIL-1041A的籽粒相关性状进行精准评价(图3),发现两者在籽粒形态表型方面存在明显差异:B73籽粒属于马齿形籽粒,籽粒扁长;NIL-1041A籽粒也属于马齿形籽粒,但籽粒扁宽;在粒宽方面,NIL-1041A表型值(7.80 cm)极显著高于B73(6.50 cm),但籽粒长度无显著变化;在百粒重方面,NIL-1041A(21.70 g)也极显著高于B73(19.70 g)。

图3  B73及其导入系NIL-1041A的粒宽、百粒重表型差异分析

Fig.3  Phenotypic difference between B73 and its introgression line NIL-1041A in kernel width and hundred kernel weight

A:亲本间粒宽的表型差异;**:在P < 0.01水平达到显著差异

A:Phenotypic difference in kernels between parents; **:Significantly different at P< 0.01

利用MaizeSNP50高密度基因芯片对NIL-1041A的导入片段进行分析,结果表明NIL-1041A及其轮回亲本B73之间的全基因组相似性为86.2%。进一步分析发现,在B73遗传背景下,NIL-1041A中主要导入2个来源于CML277的染色体片段,分别位于第2和第3染色体,导入片段大小分别为182.63 Mb、133.97 Mb(表2)。根据RIL群体籽粒相关性状 QTL定位结果,NIL-1041A的导入片段包含2个粒宽QTL(qKW2、qKW3)和1个百粒重QTL(qHKW2),其中包含粒宽和百粒重主效QTL qKW2.04所在的染色体区段,因此NIL-1041A可作为qKW2.04深入遗传解析的遗传材料。

表2  导入系NIL-1041A染色体导入片段分析
Table 2  Analysis of chromosome introgression segments in NIL-1041A

染色体

Chr.

标记区间

Marker interval

物理位置 (Mb)

Physical position

片段大小 (Mb)

Size

2 PZE-102045397~PZE-102159564 23.32~205.95 182.63
3 SYN682~SYN15478 28.33~162.30 133.97

物理位置参考B73_RefGen_v2

Physical location reference B73_RefGen_v2

2.4 基于B73及其导入系组合F2分离群体的籽粒相关性状QTL定位

根据MaizeSNP50基因芯片对NIL-1041A的染色体导入片段的分析结果,针对第2、3染色体上的导入片段,一方面在MazieGDB公共数据库中筛选亲本间具有多态性的SSR标记,另一方面参考亲本CML277和B73的参考基因组序列设计InDel标记,筛选亲本间具有差异的多态性InDel标记(表3)。利用这些多态性标记鉴定B73和NIL-1041A组合F2群体(包含564个单株)的基因型,并构建导入片段的局部遗传连锁图。

表3  多态性标记的引物序列
Table 3  The primer sequences of polymorphic markers

标记名

Marker name

上游引物(5'→3')

Forward primer (5'→3')

下游引物(5'→3')

Reverse primer (5'→3')

phi053 CTGCCTCTCAGATTCAGAGATTGAC AACCCAACGTACTCCGGCAG
phi083 CAAACATCAGCCAGAGACAAGGAC ATTCATCGACGCGTCACAGTCTACT
umc1223 TTCAACAGATTCAGAGAAAGCACA TTGATAATTAATCCGCAGCTCTCTC
umc1448 ATCCTCTCATCTTTAGGTCCACCG CATATACAGTCTCTTCTGGCTGCTCA
umc1501 CCACATTTGGCTGAATTTGTTGTA CTTGTTGGCTAGAAATTTGCCTTG
umc1535 GGCAGAGAGATGAAAAAGAATGGA CAAGGCACCCACACACATACATA
umc1555 ATAAAACGAACGACTCTCTCACCG ATATGTCTGACGAGCTTCGACACC
umc1908 CGTACACTCAATCACGATCCAAAC AACTTTGGGTACAAGTCAAGAGGC
umc2002 TGACCTCAACTCAGAATGCTGTTG CACAAAATCCTCGAGTTCTTGATTG
umc2254 GCACAAAGCATCGTACTTGGATAG CCTTTGTCCTCGATCTCTCAGTTC
umc2625 GTGTGGTTGGATCTCTATGAGCCT CGCTGACCATGTAGCGTCATTAT
bnlg108 GCACTCACGCGCACAGGTCA CGCCTGCCAAGGTACATCAC
bnlg2077 GACCAGAGGATGGGGAAATT GTAGGCACATGCACATGAGG
InDel23.11 GAAACCGAGATGAGGGAATA GATGTGATGACGACCAGTAAG
InDel23.32 ACAGGGGCAGACCCAAAAGG TTTCGGGGACGAGGATGGAG
InDel23.73 GCCAGTTTGGACCAGGGACG CTACGAGCAACACCTTTATCTTTA
InDel26.76 GGAGCAGGCAGAAAAGAAAC AGGGAGGGAAACGCTATACTA
InDel27.86 CTAATGGGCTCTAAGATGGT CAATAGCTTTGGTTGGACGT
InDel28.31 GAGTTCACGCTCAAGTCGG CAAACAGTGGCGGCAGATA
InDel28.64 GTTGGTCGGTCAGTTTGCT CTCGTCCTCTGGTTCGTTC
InDel29.12 TTTCTGTTCAGGCACAAGTA TCGTGACAGGATGTGGCTAT
InDel31.06 TCCGACAAGTACAACGAGAT ACACGAGCGTCACTCCCTAT
InDel32.58 AGGAGGATGAAGATACGAGTG CAAGAAGCAACCAGGACAGC
InDel47.09 GGGCTGGACCAGGCACTAT CGGAAGCAGAGGCATGAGA
InDel57.06 CTGGGCTGCTCACGAAGTCA ACTCAACCACCCTCGCCATT

应用QTL IciMapping V4.1的ICIM-ADD模型分析法,对B73和NIL-1041A组合F2群体的粒宽和百粒重进行QTL分析,检测到3个粒宽QTL,其中在第2染色体导入片段内检测到2个紧密连锁的粒宽QTL,分别位于标记区间InDel23.32~umc1555和InDel47.09~InDel57.06,表型贡献率分别为22.45%和12.22%,增效等位变异均来自CML277。与RIL群体定位结果类似,在第3染色体上同样检测到1个粒宽QTL,标记区间为umc1908~umc1223,遗传效应较小,表型贡献率为6.90%。同时,还检测到2个百粒重QTL,分别在第2染色体标记区间umc1555~umc1448和第3染色体标记区间phi053~umc1501,表型贡献率分别为13.97%和8.21%,增效等位变异均来自CML277(表4)。

结合RIL群体和导入系衍生F2群体的定位结果可知,RIL群体定位的粒宽和百粒重主效QTL qKW2.04可进一步分解为2个紧密连锁的相引相QTL,第1个位点记作qKW2.04-1,第2个位点记作qKW2.04-2(表4)。由于qKW2.04-1的LOD值和贡献率均高于qKW2.04-2,因此选择qKW2.04-1作为精细定位的目标位点。

表4  轮回亲本B73与NIL-1041A组合的F2群体的籽粒性状QTL定位
Table 4  The identification of QTL for kernel traits in F2 population derived from B73 and NIL-1041A

籽粒性状

Kernel trait

染色体

Chr.

QTL名称

QTL name

标记区间

Marker interval

LOD 值

LOD score

贡献率(%)

PVE

加性效应

Additive effect

显性效应

Dominance effect

粒宽

Kernel width

2 qKW2.04-1 InDel23.32~umc1555 16.18 22.45 0.266 0.101
2 qKW2.04-2 InDel47.09~InDel57.06 9.41 12.22 0.195 0.069
3 qKW3 umc1908~umc1223 3.51 6.90 0.139 0.087

百粒重

Hundred kernel weight

2 qHKW2 umc1555~umc1448 12.04 13.97 1.588 0.706
3 qHKW3 phi053~umc1501 7.22 8.21 1.254 0.706

2.5 粒宽主效QTL qKW2.04-1的精细定位

选择qKW2.04-1区段(InDel23.32和umc1448)为杂合基因型,而其余区段为B73纯合基因型的单株自交,用于筛选目标QTL区间内的重组单株。为避免非目标QTL导入片段对精细定位结果的影响,将所有重组单株自交2代,利用交换断点的分子标记筛选出纯合重组家系和纯合非重组家系,经多代背景选择后筛选出qKW2.04-1区段发生交换的101个纯合家系,2017年在海南三亚南滨和梅山试验基地进行后代测验和粒宽表型比较。由图4可知,12个分子标记可以将qKW2.04-1鉴定的重组单株分为9种重组类型,编号为REC1~REC9。

图4  粒宽主效位点qKW2.04-1的精细定位

Fig.4  Fine mapping of kernel width related QTL qKW2.04-1

A:纯合重组家系及其对应的纯合非重组家系的基因型;白色为B73基因型,黑色为CML277基因型,REC1~REC9为重组单株的9种重组类型;B:不同环境下纯合重组家系和对应的纯合非重组家系间的粒宽差异,括号内数值为样本量大小

A:The genotype of the homozygous recombinant (HR) families and homozygous non-recombinant (HNR) families; White and black indicated introgressed segments from B73 and CML277, respectively; REC1-REC9 represent nine recombinant types of recombinant individual; B:Kernel width difference between HR and homologous HNR families,numbers in brackets is the sample size

重组单株后代测验结果表明,在南滨和梅山2个试验点,REC5、REC6、REC7、REC8的纯合重组家系和纯合非重组家系间均存在显著的粒宽差异,可以将qKW2.04-1定位在标记InDel26.76和InDel28.31间约1.55 Mb的范围内。而在南滨和梅山2个试验点,REC1、REC2、REC3、REC4、REC9的纯合重组家系和纯合非重组家系间粒宽差异均不显著,可以将qKW2.04-1定位在标记InDel26.76和InDel27.86间约1.1 Mb的范围内。因此,利用目标QTL区间内的跨叠系群体,将qKW2.04-1定位在标记InDel26.76的下游和InDel27.86的上游,在B73 RefGenV2参考基因组第2染色体的26.76~27.86 Mb区间之内,区间大小约1.1 Mb。

3 讨论

玉米是全球种植范围最广、产量最高的粮食作物,其显著的高产潜能对于保障国家粮食安全意义重大[

参考文献 30
百度学术    
30]。玉米产量与籽粒大小相关性状显著相关,因此籽粒相关性状的遗传基础解析对于提高玉米产量具有重要意义[
参考文献 7
百度学术    
7]。热带玉米自交系具有许多温带自交系所缺失的优良等位基因,如热带/亚热带玉米种质CIMBL55,在干旱胁迫条件下,与B73和Mo17相比,CIMBL55的苗期存活率高,而基因组分析表明,在108个前期鉴定的抗旱基因中,CIMBL55中至少携带了65个优异等位变异,推测其是构成CIMBL55优良抗旱性的遗传基础[
参考文献 31
百度学术    
31]。本研究以温带自交系B73和热带自交系CML277为亲本构建的RIL群体在玉米第2染色体上定位到控制粒宽和百粒重的主效QTL qKW2.04,且增效等位基因都来源于CML277,为挖掘热带玉米种质中籽粒大小相关的优异等位基因,阐明玉米籽粒大小形成的遗传基础积累了有益资料。

本研究所鉴定到的qKW2.04可以分别解释20.34%的粒宽和15.84%的百粒重表型变异,为主效位点。另外,qKW2.04定位区域与之前很多籽粒产量相关性状QTL定位的区段重叠,例如,以B73和A7为亲本构建的F3群体将1个粒重主效QTL定位至第2染色体bin2.04,可解释表型变异的26.5%[

参考文献 32
百度学术    
32];以普通玉米自交系丹232和爆裂玉米自交系N04为亲本构建的RIL群体同样将1个粒重主效QTL定位至第2染色体umc1776~umc1448之间[
参考文献 33
百度学术    
33];以黄C与许178构建的RIL群体和永久F2群体在第2染色体标记区间umc1185~umc1579定位到1个控制粒宽的主效QTL[
参考文献 34
百度学术    
34]。Wang等[
参考文献 35
百度学术    
35]根据文献利用QTL元分析将产量相关的2个meta-QTLs区段,即MQTL22与MQTL23定位至第2染色体bin2.04的区域。Chen等[
参考文献 36
百度学术    
36]根据文献利用QTL元分析将粒宽、粒重相关的3个meta-QTLs区段,即MQTL-8、MQTL-9与MQTL-10定位至第2染色体bin2.04的区域。由此可见,玉米第2染色体bin2.04区域是籽粒大小等产量相关性状QTL定位的重要热点区域,在不同的遗传群体和不同的环境中均可检测到粒宽和粒重相关的主效QTL,值得进一步开展主效QTL的精细定位和图位克隆。

同一个QTL内可能存在多个影响表型的基因,由于群体大小、标记数目和表型鉴定准确性等原因,在初级QTL群体中定位的数量性状主效位点可能包含多个紧密连锁的基因位点,需要构建遗传背景较为简单的高代回交群体、鉴定更多的重组交换单株,才能更好地估计单个QTL的遗传效应。水稻中2个粒宽基因GS5和GW5在第5染色体上的物理距离不到2 Mb,在GS5的图位克隆过程中由于GW5的影响使得GS5的部分交换单株基因型和表型发生矛盾,最后通过构建固定GW5基因而GS5基因分离的定位群体才最终完成GS5的图位克隆[

参考文献 37
百度学术    
37]。控制玉米粒宽的主效QTL qKW7在高代回交群体中被分解为2个加性效应相反的QTL,分别命名为qKW7a和qKW7b,增效等位基因分别来源于黄早四和掖478,通过构建qKW7a为黄早四纯合基因型,而qKW7b分离的粒宽近等基因系qKW7bYE478,采用重组单株后代测验的方法最终将qKW7b精细定位在59 kb的物理区间[
参考文献 38
百度学术    
38]。本研究以RIL群体定位的粒宽和百粒重主效QTL qKW2.04为靶标,进一步将qKW2.04分解为紧密连锁、加性效应方向相同的2个主效位点:qKW2.04-1与qKW2.04-2,并将qKW2.04-1精细定位在1.1 Mb的物理区间,为玉米籽粒大小基因的精细定位和图位克隆提供了很好的示例。

4 结论

利用玉米自交系B73与CML277构建的RIL群体,在第2染色体bin2.04区间内鉴定到可分别解释20.34%的粒宽和15.84%的百粒重表型变异的主效QTL,增效等位基因源于CML277,将其命名为qKW2.04。以B73及其近等导入系材料NIL-1041A为亲本构建F2分离群体,以qKW2.04为靶标,构建目标QTL区间的跨叠系,将qKW2.04分解为2个紧密连锁的相引相粒宽QTL qKW2.04-1与qKW2.04-2,并将qKW2.04-1精细定位到第2染色体的26.76~27.86 Mb区间之内,为进一步开展qKW2.04位点的功能基因克隆和遗传资源的创制提供了重要的研究基础。

参考文献

1

Hubert B, Rosengrant M, Boekel M, Ortiz R. The future of food: Scenarios for 2050. Crop Science, 2010, 50 (S1): 33-50 [百度学术] 

2

Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8 (6): e66428 [百度学术] 

3

Yang N, Wang Y B, Liu X G, Jin M L, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes B P, Gui S T, Fan X M, Harper T K, Kennett D J, Li W Q, Lu Y L, Ding J Q, Chen Z Q, Luo J Y, Mambakkam S, Menon M, Snodgrass S, Veller C, Wu S S, Wu S Y, Zhuo L, Xiao Y J, Yang X H, Stitzer M C, Runcie D, Yan J B, Ross-Ibarra J. Two teosintes made modern maize. Science, 2023, 382 (6674): eadg8940 [百度学术] 

4

Doebley J. The genetics of maize evolution. Annual Review of Genetics, 2004, 38: 37-59 [百度学术] 

5

Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, Mccarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 2015, 47 (12):1489-1493 [百度学术] 

6

Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127 (7): 1309-1321 [百度学术] 

7

Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y, Wang D, Shi Y S, Song Y C, Wang T Y, Li Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193 (3): 303-316 [百度学术] 

8

Li Y, Ma X L, Wang T Y, Li Y X, Liu C, Liu Z Z, Sun B C, Shi Y S, Song Y C, Carlone M, Bubeck D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, Sun S K, Niebur W, Smith S. Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Science, 2011, 51 (6): 2391-2400 [百度学术] 

9

Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C Z, Zhang J W, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F Y, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W Z, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R F, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J K, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C Z, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M J, McMahan L, Van Buren P, Vaughn M W, Ying K, Yeh C T, Emrich S J, Jia Y, Kalyanaraman A, Hsia A P, Barbazuk W B, Baucom R S, Brutnell T P, Carpita N C, Chaparro C, Chia J M, Deragon J M, Estill J C, Fu Y, Jeddeloh J A, Han Y J, Lee H, Li P H, Lisch D R, Liu S S, Liu Z J, Nagel D H, McCann M C, SanMiguel P, Myers A M, Nettleton D, Nguyen J, Penning B W, Ponnala L, Schneider K L, Schwartz D C, Sharma A, Soderlund C, Springer N M, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T K, Yang L X, Yu Y, Zhang L F, Zhou S G, Zhu Q H, Bennetzen J L, Dawe R K, Jiang J M, Jiang N, Presting G G, Wessler S R, Aluru S, Martienssen R A, Clifton S W, McCombie W R, Wing R A, Wilson R K. The B73 maize genome: Complexity, diversity, and dynamics. Science, 2009, 326 (5956): 1112-1115 [百度学术] 

10

Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J, Pan Q C, Qiao F, Raihan M S, Liu H J, Zhang X H, Yang N, Wang X Q, Deng M, Jin M L, Zhao L J, Luo X, Zhou Y, Li X, Zhan W, Liu N N, Wang H, Chen G S, Li Q, Yan J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiology, 2017, 175 (2): 774-785 [百度学术] 

11

Li X W, Wang M, Zhang R Y, Fang H, Fu X Y, Yang X H, Li J S. Genetic architecture of embryo size and related traits in maize. The Crop Journal, 2022, 10 (1): 204-215 [百度学术] 

12

Chen L, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Candidate loci for yield-related traits in maize revealed by a combination of metaQTL analysis and regional association mapping. Frontiers in Plant Science, 2017, 8: 2190 [百度学术] 

13

Chen L, Li C H, Li Y X, Song Y C, Zhang D F, Wang T Y, Li Y, Shi Y S. Quantitative trait loci mapping of yield and related traits using a high-density genetic map of maize. Molecular Breeding, 2016, 36 (9):134 [百度学术] 

14

Raihan M S, Liu J, Huang J, Guo H, Pan Q C, Yan J B. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Theoretical and Applied Genetics, 2016, 129 (8): 1465-1477 [百度学术] 

15

Li L, Li X H, Li L L, Schnable J, Gu R L, Wang J H. QTL identification and epistatic effect analysis of seed size-and weight-related traits in Zea mays L.. Molecular Breeding, 2019, 39 (5): 67 [百度学术] 

16

Li X, Li Y X, Chen L, Wu X, Qin W W, Song Y C, Zhang D F, Wang T Y, Li Y, Shi Y S. Fine mapping of qKW7, a major QTL for kernel weight and kernel width in maize, confirmed by the combined analytic approaches of linkage and association analysis. Euphytica, 2016, 210 (2): 221-232 [百度学术] 

17

Chen L, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang H Y, Li Y, Wang T Y. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnology Journal, 2020, 18 (4): 1004-1014 [百度学术] 

18

Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z X, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li S, Li W Q, Liu L, Jackson D, Yan J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 2019, 51 (6): 1052-1059 [百度学术] 

19

Zhang L, Fu M M, Li W Y, Dong Y B, Zhou Q, Wang Q L, Li X Y, Gao J, Wang Y, Wang H, Li Y Y, Wang J C, Wu Y R, Li Y L. Genetic variation in ZmKW1 contributes to kernel weight and size in dent corn and popcorn. Plant Biotechnology Journal, 2024, 22(6):1453-1467 [百度学术] 

20

Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Sanchez Villeda H, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J M, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325 (5941): 714-718 [百度学术] 

21

Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15 (1): 8-15 [百度学术] 

22

Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6 (5): e19379 [百度学术] 

23

Zhai Z H, Chen X N, Wang J. Primer design with primer Premier 5.0. Northwest Medical Education, 2008, 16 (4): 695-698 [百度学术] 

24

Li C H, Li Y X, Shi Y S, Song Y C, Zhang D F, Buckler E S, Zhang Z W, Wang T Y, Li Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE, 2015, 10 (3): e0121624 [百度学术] 

25

Voorrips R E. MapChart:Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93 (1): 77-78 [百度学术] 

26

Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal, 2015, 3 (3): 269-283 [百度学术] 

27

Li H, Hearne S, Bänziger M, Li Z, Wang J. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity, 2010, 105 (3): 257-267 [百度学术] 

28

Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genetic Research, 2006, 88 (2): 93-104 [百度学术] 

29

Marasinghe M G, Kennedy W J. SAS for data analysis: Intermediate statistical methods. New York: Springer-Verlag, 2008 [百度学术] 

30

Yan J B, Tan B C. Maize biology: From functional genomics to breeding application. Journal of Integrative Plant Biology, 2019, 61 (6): 654-657 [百度学术] 

31

Tian T, Wang S H, Yang S P, Yang Z R, Liu S X, Wang Y J, Gao H J, Zhang S S, Yang X H, Jiang C F, Qin F. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nature Genetics, 2023, 55 (3): 496-506 [百度学术] 

32

Ajnone-Marsan P, Monfredini G, Ludwig W F, Melchinger A E, Franceschini P, Pagnotto G, Motto M. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theoretical and Applied Genetics, 1995, 90 (3-4): 415-424 [百度学术] 

33

Li J Z, Zhang Z W, Li Y L, Wang Q L, Zhou Y G. QTL consistency and meta-analysis for grain yield components in three generations in maize. Theoretical and Applied Genetics, 2010, 122 (4): 771-782 [百度学术] 

34

Zhang Z H, Liu Z H, Hu Y M, Li W H, Fu Z Y, Ding D, Li H C, Qiao M M, Tang J H. QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS ONE, 2014, 9 (2): e89645 [百度学术] 

35

Wang Y J, Huang Z J, Deng D X, Ding H D, Zhang R, Wang S X, Bian Y L, Yin Z T, Xu X M. Meta-analysis combined with syntenic metaQTL mining dissects candidate loci for maize yield. Molecular Breeding, 2013, 31 (3): 601-614 [百度学术] 

36

Chen L, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Candidate loci for yield-related traits in maize revealed by a combination of metaQTL analysis and regional association mapping. Frontier in Plant Science, 2017, 8: 2190 [百度学术] 

37

Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43 (12): 1266-1269 [百度学术] 

38

Tang B, Li Y X, Mu Z S, Chen L, Guo H L, Chen Z H, Li C H, Liu X Y, Zhang D F, Shi Y S, Li Y, Wang T Y. Fine mapping and candidate gene analysis of qKW7b, a major QTL for kernel width in maize. Molecular Breeding, 2020, 40:67 [百度学术] 

您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!