摘要
甘蓝型油菜是我国获取食用植物油的主要来源,对我国食用油供给安全具有重要作用,干旱严重制约我国油菜的生产。挖掘甘蓝型油菜萌发期的耐旱基因位点及候选基因,将为培育耐旱油菜新品种提供帮助。本研究以145份甘蓝型油菜种质资源为材料,分别在正常和15% PEG6000 模拟干旱条件下进行种子萌发,调查不同材料的发芽势、成苗率和发芽指数等数据,筛选甘蓝型油菜萌发期耐旱指标,并进行全基因组关联分析。结果表明,发芽指数可以作为油菜萌发期耐旱性指标,以发芽指数为基础,筛选到17 份极端耐旱和9份极度敏感的种质。用混合线性模型(MLM)对发芽指数进行全基因组关联分析,共检测到2个与油菜耐旱性显著关联的主效位点,分布于C07和C09两条染色体,其中C07染色体上有11个显著关联SNP,C09染色体上有3个显著关联SNP。结合显著关联SNP区间内候选基因的功能注释及其在不同胁迫下的表达量数据,发现BnaC07G0290100ZS、BnaC07G0290500ZS和BnaC07G0290700ZS受干旱胁迫诱导,表达量发生显著变化,推测这3个基因为调控甘蓝型油菜萌发期耐旱性的关键候选基因。
干旱严重影响油菜正常生长和产量,培育具有高产潜力的油菜耐旱新品种已经成为育种家的主要目标
在油菜萌发过程中,干旱对油菜生长发育具有重要影响,干旱不仅抑制萌发期油菜的根长、苗高和单株鲜重等,还导致植物细胞内活性氧(ROS ,reactive oxygen species)含量增多,进而使植物细胞内超氧化物歧化酶(SOD,superoxide dismutase )和过氧化物酶(POD,peroxidase )等抗氧化物酶含量升高,抗氧化物酶基因的表达量也有所上
在油菜耐旱性全基因组分析方面,许多学者在油菜不同生育时期都筛选过不同的耐旱指标并进行全基因组关联分析,挖掘到与耐旱性显著关联的SNP位点。洪
种子萌发是作物生长周期的起始阶段,也是作物适应干旱胁迫的关键时期,其萌发阶段的生理进程直接关乎油菜后期的营养生长和生殖生
每份材料分别取大小均匀、饱满、无病虫害的30粒种子灭菌后置于90 mm×15 mm的培养皿中,其中放置已灭菌的两层滤纸作为芽床,加入3 mL 15%的PEG6000 溶液进行萌发,对照加等量蒸馏水,置于16h/8h光/暗条件、25℃恒温光照培养箱中培养7 d,每天记录发芽数及成苗数(将子叶展开成为正常幼苗记为成苗),3次生物学重复,最后计算发芽势、成苗率、相对发芽势、相对成苗率和发芽指数。各指标采用如下公式计
发芽势(%)=第3天发芽种子数/供试种子数×100%
成苗率(%)=第7天成苗数(子叶展开)/供试种子数×100%
发芽指数= ∑(Gt/Dt),其中Gt为在不同时间的发芽数,Dt为发芽天数
相对发芽势=处理组发芽势/对照组发芽势
相对成苗率=处理组成苗率/对照组成苗率
利用Excel软件进行发芽势、成苗率和发芽指数的计算,利用SPSS26软件进行统计分析,并用R语言进行频率分布直方图、相关性图和饼图的绘制。
以Zhang
根据甘蓝型油菜Darmor-bzh参考基因
油菜种子在正常对照组中发芽势和成苗率均大于92%,说明该试验所使用的种子种胚发育良好,生命力强,可以用来进行发芽试
指标 Indicator | 处理重复 Repeat treatment | 平均值± 标准差 Mean±SD | 最小值 Min. | 最大值 Max. | 变异系数 (%) CV | 峰度Kurtosis | 偏度 Skewness | 遗传力 |
---|---|---|---|---|---|---|---|---|
相对发芽势 Relative germination potential | 重复 1 | 0.94±0.09 | 0.57 | 1.00 | 9.57 | 4.022 | -2.027 | 0.85 |
重复 2 | 0.93±0.11 | 0.30 | 1.00 | 11.83 | 9.881 | -2.846 | ||
重复 3 | 0.74±0.24 | 0.10 | 1.00 | 32.43 | -0.199 | -0.742 | ||
平均值 | 0.87±0.12 | 0.34 | 1.00 | 13.79 | 3.253 | -1.601 | ||
相对成苗率 Relative seedling rate | 重复 1 | 0.22±0.15 | 0 | 0.73 | 68.18 | 0.032 | 0.723 | 0.85 |
重复 2 | 0.52±0.24 | 0.03 | 1.00 | 46.15 | -0.696 | -0.348 | ||
重复 3 | 0.59±0.19 | 0.13 | 1.00 | 32.20 | -0.606 | -0. 177 | ||
平均值 | 0.44±0.13 | 0.12 | 0.72 | 29.54 | -0.533 | 0.034 | ||
发芽指数 Germination index | 重复 1 | 25.18±11.7 | 4.83 | 52.00 | 46.50 | -0.612 | 0.537 | 0.87 |
重复 2 | 24.95±9.17 | 1.95 | 42.62 | 36.75 | -0. 126 | -0.809 | ||
重复 3 | 29.23±9.22 | 3.22 | 45.00 | 31.54 | -0.028 | -0.718 | ||
平均值 | 26.45±8.21 | 5.48 | 41.84 | 31.04 | -0.429 | -0.241 |

图 1 PEG6000处理下的发芽指数、相对发芽势和相对成苗率频率分布
Fig.1 Frequency distribution of germination index, relative germination potential and relative seeding rate under FEG6000 treatment

图 2 发芽指数、相对发芽势和相对成苗率的相关性
Fig.2 The correlation of germination index, relative germination potential and relative seeding rate
***:在0.001水平上相关性显著
***:Significant correlation at 0.001 level
将PEG6000胁迫处理的油菜种质的平均发芽指数按照0~12.00(极度敏感)、12.01~24.00(中度敏感)、24.01~36.00(中度耐旱)和36.01~48.00(极端耐旱)分为4组(

图 3 油菜自然群体中萌发期耐旱等级分布
Fig.3 Drought tolerance grade distribution of rapeseed natural population at germination stage
材料编号 Material number | 发芽指数 Germination index | 相对发芽势 Relative germination potential | 相对成苗率 Relative seeding rate |
---|---|---|---|
L3 | 36.07 | 0.99 | 0.42 |
L116 | 36.17 | 0.94 | 0.70 |
L62 | 37.73 | 0.83 | 0.40 |
L72 | 37.92 | 1 | 0.32 |
L7 | 38.38 | 0.93 | 0.51 |
L136 | 38.42 | 1 | 0.57 |
L20 | 38.49 | 1 | 0.58 |
L145 | 39.12 | 0.94 | 0.63 |
L52 | 39.12 | 0.97 | 0.63 |
L76 | 39.66 | 0.99 | 0.58 |
L57 | 40.48 | 0.99 | 0.68 |
L73 | 40.66 | 0.99 | 0.64 |
L144 | 40.68 | 1 | 0.72 |
L24 | 40.73 | 1 | 0.43 |
L16 | 40.99 | 0.98 | 0.67 |
L135 | 41.13 | 1 | 0.67 |
L2 | 41.84 | 1 | 0.70 |
通过MLM模型对145份油菜种质在干旱胁迫下的发芽指数进行全基因组关联分析,共检测到14个与油菜发芽指数显著相关的SNP位点,划分为两个主效QTL位点,分别位于C07、C09染色体上,其中C07染色体上显著关联的SNP位点最多,有11个(

图 4 抗旱条件下发芽指数全基因组关联分析
Fig.4 Genome-wide association analysis of germination index under drought-resistant conditions
-log10(p)值大于4的SNP可以被认为是与耐旱性显著关联的位点
SNPs with a -log10(p) greater than 4 can be considered as loci significantly associated with drought tolerance
关联位点 SNP | 染色体 Chromosome | -log10(p) | 表型贡献率(%) |
---|---|---|---|
C07:29403943 | C07 | 4.24 | 8.77 |
C07:29526454 | C07 | 5.80 | 11.63 |
C07:29526503 | C07 | 5.72 | 11.44 |
C07:29526531 | C07 | 5.81 | 12.76 |
C07:29654163 | C07 | 5.04 | 9.48 |
C07:29654197 | C07 | 5.01 | 9.31 |
C07:29654215 | C07 | 5.18 | 10.70 |
C07:29654235 | C07 | 5.18 | 10.10 |
C07:29724045 | C07 | 4.07 | 7.39 |
C07:29725644 | C07 | 4.50 | 6.88 |
C07:29725703 | C07 | 4.63 | 8.87 |
C09: 14235875 | C09 | 4.16 | 7.27 |
C09: 14235894 | C09 | 4.16 | 7.18 |
C09: 14235922 | C09 | 4.07 | 7.34 |
基因 ID Gene ID | 中双11 基因编号 ZS11 gene ID | 染色体 Chr. | 位置(bp) Position | 拟南芥基因 ID Arabidopsis gene ID | 基因名 Gene name |
---|---|---|---|---|---|
BnaC07g22840D | BnaC07G0290100ZS | C07 | 29375462~29380040 | AT3G25690.2 | CHUP1 |
BnaC07g22850D | BnaC07G0290200ZS | C07 | 29382225~29383581 | AT3G25700.1 | - |
BnaC07g22860D | BnaC07G0290300ZS | C07 | 29412127~29413807 | AT3G25710.1 | BHLH32 |
BnaC07g22870D | BnaC07G0290500ZS | C07 | 29486216~29487654 | AT3G25730.1 | EDF3 |
BnaC07g22880D | BnaC07G0290600ZS | C07 | 29487726~29489679 | AT3G25740.1 | MAP1C |
BnaC07g22890D | BnaC07G0290600ZS | C07 | 29491098~29491407 | AT3G25740.1 | - |
BnaC07g22900D | BnaC07G0290700ZS | C07 | 29491639~29492573 | AT3G25770.1 | AOC2 |
BnaC07g22910D | BnaC07G0290700ZS | C07 | 29503475~29504453 | AT3G25770.1 | AOC2 |
BnaC07g22920D | - | C07 | 29513424~29515594 | AT1G28430.1 | CYP705A24 |
BnaC07g22930D | BnaC07G0290800ZS | C07 | 29515705~29516634 | AT3G25780.1 | AOC3 |
BnaC07g22940D | BnaC07G0290900ZS | C07 | 29529284~29532482 | AT3G25790.1 | HHO1 |
BnaC07g22950D | BnaC07T0291100ZS | C07 | 29538790~29541043 | AT1G45688 | NLP1 |
BnaC07g22960D | BnaA10G0155900ZS | C07 | 29582570~29584174 | - | - |
BnaC07g22970D | BnaC07T0291400ZS | C07 | 29597144~29599957 | - | - |
BnaC07g22980D | BnaC07G0291600ZS | C07 | 29630838~29633910 | AT3G25830.1 | TPS27 |
BnaC07g22990D | BnaC07T0291700ZS | C07 | 29634044~29637565 | AT4G22100.1 | BGLU3 |
BnaC07g23000D | BnaC07G0291600ZS | C07 | 29651509~29654378 | AT3G25830.1 | TPS27 |
BnaC07g23010D | BnaC07T0292300ZS | C07 | 29656031~29660449 | AT3G25840.1 | PRP4KA |
BnaC07g23020D | BnaC07G0292400ZS | C07 | 29665201~29665641 | AT3G25855.1 | ATHMP28 |
BnaC07g23030D | BnaC07G0292500ZS | C07 | 29665965~29668282 | AT3G25860.1 | LTA2 |
BnaC07g23040D | - | C07 | 29668405~29668755 | - | - |
BnaC07g23050D | BnaC07G0292600ZS | C07 | 29672086~29672689 | AT3G25870.1 | - |
BnaC07g23060D | BnaC07G0292700ZS | C07 | 29683438~29683576 | - | - |
BnaC07g23070D | BnaC07G0292800ZS | C07 | 29708307~29708899 | AT3G25882.1 | NIMIN-2 |
BnaC07g23080D | BnaC07G0292900ZS | C07 | 29726649~29727918 | AT3G25890.2 | CRF11 |
BnaC07g23090D | BnaC07G0293000ZS | C07 | 29738806~29741086 | AT3G25900.3 | HMT-1 |
BnaC07g23100D | BnaC07G0293100ZS | C07 | 29745969~29746212 | AT3G25905.1 | CLE27 |
BnaC07g23110D | BnaC07T0117800ZS | C07 | 29748172~29749071 | AT3G23600.1 | - |
BnaC07g23120D | BnaC07G0293200ZS | C07 | 29755250~29756610 | AT3G25910.1 | SIZ1 |
BnaC07g23130D | BnaC07G0293300ZS | C07 | 29756676~29757961 | AT3G25920.1 | RPL15 |
BnaC07g23140D | BnaC07G0293400ZS | C07 | 29760095~29761037 | AT3G25930.1 | - |
BnaC07g23150D | BnaC07G0293500ZS | C07 | 29766652~29767390 | AT3G25950.1 | LAG1 |
BnaC09g17510D | BnaC09G0219200ZS | C09 | 14225601~14227580 | AT5G43360.1 | PHT1-3 |
BnaC09g17520D | BnaA09G0190300ZS | C09 | 14227709~14229865 | AT5G43370.2 | PHT1-2 |
BnaC09g17530D | - | C09 | 14246756~14247048 | - | - |
-表示未查找到相关信息
- indicates that no relevant information was found
为了进一步锁定关键候选基因,对这些候选基因在不同胁迫下的表达量进行分析。根据这些基因对应的中双11号参考基因组的基因编号,在BnIR数据库检索候选基因在不同胁迫下的转录组数

图 5 不同胁迫下的叶片和根中候选基因的表达量
Fig.5 Expression heatmap of candidate genes in leaves and roots under different stress conditions
A、 C、 E、 G、 I、 K、 M和U 表示基因在叶片中的表达量数据,B、 D、 F、 H、 J、 L、 N和P 表示基因在根中的表达量数据
A, C, E, G, I, K, M and U indicate gene expression data in leaves, B, D, F, H, J, L, N and P indicate gene expression data in roots
其中基因BnaC07G0290100ZS在干旱处理0.25 h后,其叶片中的表达量相对于对照组急剧减少,之后保持着表达量低于对照组的状态。BnaC07G0290500ZS在干旱处理后,其在根部的表达量始终维持在高于对照组的状态,并且在第3 h时表达量急剧上升,达到对照组的10倍。BnaC07G0290700ZS基因在干旱胁迫处理3 h时后,其在根和叶中的表达量在相较于对照组迅速升高,但在6 h时又迅速下降。据报道, BnaC07G0290100ZS 在拟南芥中的同源基因CHUP1(Chloroplast unusual positioning 1)是叶绿体运动系统的重要组成部分,蓝光受体FKF1通过与CHUP1发生物理相互作用来调节叶绿体重定位,从而提高光合作
目前,人工模拟自然环境下的干旱条件主要有两种方法,一种是土壤干旱法,另一种是高渗透溶液模拟干旱法,后者由于省时省力而被广泛应
本研究以145份甘蓝型油菜种质资源为材料,采用PEG6000模拟干旱条件进行种子萌发,每天统计油菜种子数和最后的成苗数,统计分析获得发芽指数、发芽势和成苗率等数据,发现在3个生物学重复中发芽指数的相关性最高,并且发芽指数综合了发芽势和成苗率,可以更加综合的评价种子的萌发情况。利用前期开发的35765个SNP标
本研究共挖掘到3个甘蓝型油菜萌发期耐旱候选基因,有关其在拟南芥中同源基因的研究也被多位学者报道。BnaC07G0290100ZS 在拟南芥中的同源基因CHUP1,主要参与叶绿体重定位等生物学过
参考文献
蔡东芳,张书芬,何俊平,朱家成,王建平,文雁成,曹金华,赵磊,王东国. 甘蓝型油菜抗旱机制及育种研究进展. 河南农业科学,2017 ,46 (3):8-28 [百度学术]
Cai D F, Zhang S F, He J P, Zhu J C, Wang J P, Wen Y C, Cao J H,Zhao L, Wang D G. Research progress on drought resistance mechanism and breeding in rapeseed(Brassica napus L.). Journal of Henan Agricultural Sciences, 2017, 46(3):8-28 [百度学术]
Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis D T, McCourt P, Huang Y. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. The Plant Journal, 2005, 43(3):413-424 [百度学术]
Lu S, Bahn SC, Qu G, Qin H, Hong Y, Xu Q, Zhou Y, Hong Y, Wang X l. Increased expression of phospholipase Dα1 in guard cells decreases water loss with improved seed production under drought in Brassica napus. Plant Biotechnology Journal, 2012, 11(3):380-389 [百度学术]
李浩辉,刘彩月,张海文,王旭静,唐巧玲,王友华. 2022 年度全球转基因作物产业化发展现状及趋势分析. 中国农业科技导报,2023 ,25 (12): 6-16 [百度学术]
Li H H, Liu C Y, Zhang H W, Wang X J, Tang Q L, Wang Y H.Global genetically modified crop industrialization trends in 2022. Journal of Agricultural Science and Technology, 2023, 25(12):6-16 [百度学术]
游淳惠,俞露,林暄. 全球化发展下我国转基因技术的风险评估与风险管理分析. 今日科苑,2021 (3):75-84 [百度学术]
You C H, Yu L, Lin X. Risk assessment and risk management analysis of China's genetically modified technology under the development of globalization. Modern Science, 2021 (3):75-84 [百度学术]
方玉洁,李剑,夏凌君,孙念礼,王幼平. PEG 胁迫下油菜种子萌发期生理及基因表达研究. 分子植物育种,2016 ,14 (10):2812-2822 [百度学术]
Fang Y J, Li J, Xia L J, Sun N L, Wang Y P. Physiological and antioxidant enzyme gene expression analysis of Brassica napus during seed germination stage under PEG stress. Molecular Plant Breeding, 2016, 14(10):2812-2822 [百度学术]
洪双. 全基因组关联分析挖掘甘蓝型油菜耐旱候选基因. 北京:中国农业科学院,2018 [百度学术]
Hong S. Genome-wide association study identifies candidate genes for drought tolerance in Brassica napus. Beijing: Chinese Academy of Agricultural Sciences, 2018 [百度学术]
Khanzada H, Wassan G M, He H, Mason A S, Keerio A A, Khanzada S, Faheem M, Solangi A M, Zhou Q, Fu D, Huang Y, Rasheed A. Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. Journal of Advanced Research, 2020, 24: 447-461 [百度学术]
Ashraf M. Inducing drought tolerance in plants:Recent advances. Biotechnol Advance, 2010, 28(1) : 169-183 [百度学术]
孔佳茜,赵铭森,孟晓康,高金虎,冯旭平,薛红丽,康红梅. PEG 模拟干旱胁迫对大麻种子萌发的影响. 种子,2020,39 (9):26-52 [百度学术]
Kong J Q, Zhao M S, Meng X K, Gao J H, Feng X P, Xue H L, Kang H M. Effect of PEG-modeled drought stress on the germination of Cannabis seeds. Seed, 2020, 39(9): 26-52 [百度学术]
宋鑫玲,田玉杰,曹洪勋,钱海霞,高树仁. PEG 模拟干旱胁迫对纤维用亚麻种子萌发的影响. 黑龙江科学,2013(9):79-82 [百度学术]
Song X L, Tian Y J, Cao H X, Qian H X, Gao S R. Effect of PEG-modeled drought stress on seed germination of Linum usitatissimum for fibers. Heilongjiang Science, 2013(9):79-82 [百度学术]
胡承伟,张学昆,邹锡玲,程勇,曾柳,陆光远. PEG 模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报,2013 ,35(1):48-53 [百度学术]
Hu C W, Zhang X K, Zou X L, Cheng Y, Zeng L, Lu G Y. Root structure and drought tolerance of Brassica napus under PEG imposed drought. Chinese Journal of Oil Crop Sciences,2013, 35(1):48-53 [百度学术]
杨春杰,张学昆,邹崇顺,程勇,郑普英,李桂英. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响. 中国油料作物学报,2007(4):425-430 [百度学术]
Yang C J, Zhang X K, Zou C S, Cheng Y, Zheng P Y, Li G Y. Effects of drought simulated by PEG-6000 on germination and seedling growth of rapeseed(Brassica napus L.). Chinese Journal of Oil Crop Sciences, 2007(4):425-430 [百度学术]
张慧珂,吴潞梅,马甜甜,叶沈华,万何平,赵伦,易斌,沈金雄,傅廷栋,文静. 不同作物种子耐热性评价及油菜种子耐热性全基因组关联分析. 中国油料作物学报,2023,45(5):923-934 [百度学术]
Zhang H K, Wu L M, Ma T T, Ye S H, Wan H P, Zhao L, Yi B, Shen J X, Fu T D, Wen J. Evaluation of seed heat tolerance in different crops and genome-wide association analysis of seed heat tolerance in Brassica napus. Chinese Journal of Oil Crop sciences, 2023,45(5):923-934 [百度学术]
Zhang Y, Li P, Zhang J, Li Y, Xu A, Huang Z. Genome-wide association studies of salt tolerance at the seed germination stage and yield-related traits in Brassica napus L..International Journal of Molecular Sciences, 2022, 23(24):15892 [百度学术]
Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science, 2014, 345(6199):950-953 [百度学术]
Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang Q Y. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Molecular Plant,2023, 16(4):775-789 [百度学术]
Yuan N, Mendu L, Ghose K, Witte CS, Frugoli J, Mendu V. FKF1 interacts with CHUP1 and regulates chloroplast movement in Arabidopsis. Plants-Basel, 2023, 12(3):542 [百度学术]
Smit M E, McGregor S R, Sun H, Gough C, Bågman A M, Soyars C L, Kroon J T, Gaudinier A, Williams C J, Yang X, Nimchuk Z L, Weijers D, Turner S R, Brady S M, Etchells J P. A PXY-Mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell, 2020, 32(2):319-335 [百度学术]
Goulas E, Schubert M, Kieselbach T, Kleczkowski L A, Gardeström P, Schröder W, Hurry V. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature . The Plant Journal, 2006, 47(5):720-734 [百度学术]
刘翔,左凯峰,许伟,郭娜,秦梦凡,徐宇,马宁,李青青,张淼,李浩东,王茸茸,黄镇,徐爱遐. PEG6000 模拟干旱胁迫下甘蓝型油菜芽期及苗期抗旱指标筛选. 干旱地区农业研究,2021 ,39(5):66-83 [百度学术]
Liu X, Zuo K F, Xu W, Guo N, Qin M F, Xu Y, Ma N, Li Q Q, Zhang M, Li H D, Wang R R, Huang Z, Xu A X. Screening of drought tolerance indexes at shoot and seedling stages of Brassica napus under simulated drought stress by PEG6000. Agricultural Research in Arid Areas, 2021, 39(5): 66-83 [百度学术]
杨旭东. PEG 模拟干旱胁迫对向日葵种子活力影响的研究. 呼和浩特:内蒙古农业大学,2017 [百度学术]
Yang X D. Effects of PEG-modeled drought stress on seed viability of sunflower (Helianthus annuus). Huhhot: Inner Mongolia Agricultural University, 2017 [百度学术]
李阳阳. 甘蓝型油菜苗期耐旱候选基因筛选及干旱适应性机制研究. 重庆:西南大学,2021 [百度学术]
Li Y Y. Screening of candidate genes for seedling drought tolerance and drought adaptation mechanism in Brassica napus. Chongqing: Southwest University, 2021 [百度学术]
朱维卓. 甘蓝型油菜苗期耐旱基因型差异及耐旱基因挖掘. 杭州:浙江大学,2021 [百度学术]
Zhu W Z. Genotypic differences in response to drought stress at seedling stageand identification of the genes responsible for the tolerance in Brassica napus. Hangzhou: Zhejiang University, 2021 [百度学术]
Oikawa K, Yamasato A, Kong S G, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiology, 2008, 148(2):829-842 [百度学术]
Kong S G, Yamazaki Y, Shimada A, T Kijima S, Hirose K, Katoh K, Ahn J, Song H G, Han J W, Higa T, Takano A, Nakamura Y, Suetsugu N, Kohda D, Uyeda T Q P, Wada M. CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor regulating chloroplast movement. Plant Cell, 2023, 36(4): 1159-1181 [百度学术]
Kitashova A, Schneider K, Fürtauer L, Schröder L, Scheibenbogen T, Fürtauer S, Nägele T. Impaired chloroplast poitioning affects photosynthetic capacity and regulation of the central carbohydrate metabolism during cold acclimation. Photosynthesis Research, 2021, 147(1):49-60 [百度学术]
Howard M M, Bae A, Pirani Z, Van N, Königer M. Impairment of chloroplast movement reduces growth and delays reproduction of Arabidopsis thaliana in natural and controlled conditions. American Journal of Botany, 2020, 107(9):1309-1318 [百度学术]
Li B, Gaudinier A, Tang M, Taylor-Teeples M, Nham N T, Ghaffari C, Benson D S, Steinmann M, Gray J A, Brady S M, Kliebenstein D J. Promoter-based integration in plant defense regulation. Plant Physiology, 2014, 166(4):1803-1820 [百度学术]
Cassan O, Pimparé L L, Dubos C, Gojon A, Bach L, Lèbre S, Martin A. A gene regulatory network in Arabidopsis roots reveals features and regulators of the plant response to elevated CO2. New Phytologist, 2023, 239(3):992-1004 [百度学术]
He Y, Fukushige H, Hildebrand D F, Gan S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. The Plant Physiology, 2002, 128(3): 876-884 [百度学术]
Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana:Tissue and organ-specific promoter activities and in vivo heteromerization. Journal of Expeimental Botany, 2012, 63(17):6125-6138 [百度学术]