摘要
脱落酸(ABA)在植物应对非生物逆境胁迫的过程中起到重要作用,然而脱落酸调控油菜幼苗对镉(Cd)胁迫的分子机制仍有待阐明。本研究以甘蓝型油菜(Brassica napus L.)油肥一号为试验材料,在Hoagland液中添加10 μmol/L Cd模拟镉胁迫,分析外施5 μmol/L 对油菜镉胁迫下叶片光合速率、叶绿素和类胡萝卜素含量、幼苗地上/地下部Cd含量、转录组中差异表达基因的影响。结果显示,Cd胁迫3 d,油菜叶片净光合速率、蒸腾速率和气孔导度显著上升,叶绿素和类胡萝卜含量降低,地上部和地下部镉含量显著增加,施用脱落酸能有效降低叶片蒸腾速率、气孔导度,以及地上部和地下部镉含量,明显提高叶绿素a、类胡萝卜素含量。通过转录组测序筛选差异表达基因,获得脱落酸调节油菜Cd胁迫特有上调基因514个,下调基因431个,并对其所富集的相关通路分析。KEGG代谢通路富集分析表明,差异表达基因被大量富集在蔗糖和淀粉代谢、次生代谢物生物合成、代谢途径、MAPK信号通路等。GO功能富集发现,差异表达基因被富集在半纤维素代谢、氧化还原酶活性、含苯化合物代谢、细胞壁大分子代谢过程、系统获得性抗性等分类条目中。qRT-PCR验证与转录组测序结果一致。进一步分析外源脱落酸对镉胁迫下油菜叶片木质素和半纤维素代谢相关基因XTH、BXL、PAL、C4H等的差异表达情况发现其在脱落酸处理后大部分呈现下调表达,研究结果为脱落酸调控油菜镉胁迫的生理机制和分子育种提供参考依据。
镉(Cd,cadmium)是最具毒性的土地重金属污染物之
脱落酸(ABA,abscisic acid)是一种对植物生长、种子休眠和叶片衰老等起重要调节作用的激素,还能在各种非生物胁迫下作出反
油菜是我国重要油料作物,分布范围广,耐镉、抗贫瘠能力较强,易从土壤中吸收且富集
油肥一号甘蓝型油菜来自湖南省作物研究所;脱落酸(ABA),纯度≥98%,购于福州飞净生物科技有限公司;CdCl2∙2.5H2O为分析纯(纯度≥95%),购于南京化学试剂股份有限公司。
挑选籽粒饱满的种子,用95%的酒精消毒 15 min,然后用超纯水冲洗5次。在灭菌的培养皿内以双层滤纸为发芽床,每个培养皿中均匀放入30粒消毒后的油菜种子,置于恒温培养箱(温度23±1 ℃,相对湿度 70%),14 h光照/10 h暗循环(光照强度60%)下培养5 d,待胚根长至3~5 cm,胚芽2~3 cm时,将已萌发的幼苗移植至水培育苗盘并加入Hoagland液在光照培养箱中继续培养,每3 d更换一次营养液,共培养17 d,待幼苗至四叶期移至水培盘(28 cm×20 cm×9 cm),分成4组,具体分组情况为:对照组(CK)、10 μmol/L Cd(Cd),10 μmol/L Cd+5 μmol/L 脱落酸(Cd+ABA),5 μmol/L 脱落酸(ABA),每盆定苗9株,每组设3个技术重复和3个生物学重复,每组共27盘苗。未添加Cd处理的两组置于Hoagland液培养,Cd胁迫条件的两组在Hoagland液中添加10 µmol/L Cd处理1周。1周后,分别在未添加Cd和Cd胁迫组中各选一组添加5 μmol/L 脱落酸于营养液中,脱落酸处理后3 d、7 d,4组材料均取两片(从下往上取第3~4片真叶)、3个生物学重复用于转录组测序、光合作用参数测量、叶绿素和类胡萝卜素含量试验,样本液氮速冻后置于-80℃冰箱保存。
在脱落酸处理后3 d和7 d(上午9:00~11:00)利用光合测定仪(LI-6400XT, Li-COR Inc, USA)测定油菜幼苗从下往上第3~4片真叶的光合参数,包括植物净光合作用速率、细胞间CO2浓度、气孔导度和蒸腾速率,重复测量3次。温室中有效光辐射为1000 μmol/(
根据Wu
每组选取9株油菜幼苗,用超纯水冲洗干净,再用0.02 mol/L EDTA溶液冲洗3遍且按组浸泡15 min, 将地上部和地下部油菜分别在105 ℃下杀青30分钟,然后在70 ℃下烘干至恒重。用IPC-MS(X Series II, Thermo Science, USA)测定烘干的甘蓝型油菜地上部和地下部的Cd含量。
使用RNA提取试剂盒(天根DP452,北京)4组共12个油菜叶片提取总RNA的,操作参照说明书,设置3次生物学重复。用NanoPhotometer分光光度计(Thermo Fisher Scientific,美国)测量样本中RNA纯度。使用反转录试剂盒(天根KR116,北京)获得cDNA,cDNA文库构建和测序由武汉迈特威尔生物技术有限公司进行,将测序获得的RNA-Seq数据比对到油菜基因组数据库(http://cbi.hzau.edu.cn/cgibin/rape/down-load_ext)的参考基因组上。使用DESeq2进行样品间差异表达分析,差异表达基因的筛选条件为|log2Fold Change|≥1,错误发现率(FDR,false discovery rate )≤0.0
选取6个在RNA-Seq实验中差异显著表达的基因(C4H、LHY、 DMR6、SKIP31、 BRH1、 PGR5)。以β-Actin为内参进行qRT-PCR,以验证转录组结果的有效性。使用Primer 5.0软件设计基因的特异性引物(
引物名称 Primer name | 正向引物( 5'-3') Forward primer sequence (5'-3') | 反向引物( 5'-3') Reverse primer sequence(5'-3') |
---|---|---|
C4H | CAAGGGACAGGACATGGTG | TGGTCGCAGAGTCTGGATT |
LHY | GCGGAAACAGATGCCTTAG | CTGAAACGCTTTACGACCC |
DMR6 | ACCTGCTCATACCGACCCA | AGGATTAACGGCGAACCA |
SKIP31 | AGATAGAAACGGTGCAAAGA | CATAAGGATTCATCAGAGGC |
PGR5 | TTCTGCGAGTCAAGGTTTACTAGGA | GGCTGTACTCTGATGGGTTT |
BRH1 | CACATCTAACCCGACCCG | TGCAGTTTCTCAGCCACC |
β-actin | TCCATCCATCGTCCACAG | GCATCATCACAAGCATCCTT |
如

图1 脱落酸处理对油菜光合作用的影响
Fig.1 The effect of external application of abscisic acid on the photosynthesis of rapeseed
CK为对照组;Cd为镉处理组;Cd+ABA 为Cd胁迫1周后加入5 μmol/L ABA处理组;ABA为单独ABA处理组;柱形图上方的小写字母表示不同处理组之间的差异显著;下同
CK is the control group; Cd is a separate cadmium treatment group; Cd+ABA group is treated with 5 μmol/L ABA after one week of Cd stress; ABA is a separate ABA treatment group; The lowercase letters above the bar chart indicate significant differences between different treatment groups;The same as below
脱落酸处理3 d时,与CK组相比,Cd组的叶绿素a、叶绿素b和类胡萝卜素含量均显著降低,分别下降30.6%、52.5%和29.5%;与Cd组相比,Cd+ABA组中只有叶绿素b含量显著增加15.6%。脱落酸处理7 d时,与CK组相比,Cd组的叶绿素a、叶绿素b和类胡萝卜素含量也均显著降低,分别下降49.6%、45.1%和72.1%;与Cd组相比,Cd+ABA组的叶绿素a、叶绿素b和类胡萝卜素含量均显著增加,分别增加35.9%、41%和52.5%(

图 2 脱落酸处理3 d和7 d时油菜叶绿素和类胡萝卜素的含量
Fig.2 Pigment content in rapeseed treated with external abscisic acid for 3 and 7 days
从

图3 脱落酸处理 3 d (A)和7 d (B)时油菜地上部和地下部的镉含量
Fig.3 Cadmium content in the underground and aboveground parts of rapeseed treated with external Abscisic acid for 3 (A) and 7 (B) days
对Illumina NovaSeq 6000平台上获得的初始数据进行筛选,然后对过滤后的总Reads数目和总碱基数目进行分析。高质量碱基与rRNA含量是评判数据是否准确的重要指标,本研究中的各样本质量值大于 30 的碱基(Q30)在原过滤数据中的占比大于94%, 且rRNA 的比重小于 10% (
样本名称 Sample name | 过滤得到的 总reads数目(Mb) Clean reads number | 过滤得到的 总碱基数目(Gb) Clean reads base | Q20 (%) | Q30 (%) | rRNA含量(%) rRNA ratio |
---|---|---|---|---|---|
CK-1 | 55.82 | 8.37 | 98.60 | 95.46 | 0.41 |
CK-2 | 54.29 | 8.14 | 98.58 | 95.45 | 0.38 |
CK-3 | 55.89 | 8.38 | 98.64 | 95.56 | 0.34 |
Cd-1 | 60.97 | 9.15 | 98.38 | 94.85 | 0.34 |
Cd-2 | 56.05 | 8.41 | 98.61 | 95.48 | 0.33 |
Cd-3 | 56.12 | 8.42 | 98.58 | 95.42 | 0.34 |
Cd+ABA-1 | 46.41 | 6.96 | 98.58 | 95.44 | 0.36 |
Cd+ABA-2 | 54.05 | 8.11 | 98.65 | 95.60 | 0.45 |
Cd+ABA-3 | 45.93 | 6.89 | 98.60 | 95.49 | 0.41 |
ABA-1 | 52.14 | 7.82 | 98.21 | 94.52 | 0.36 |
ABA-2 | 51.61 | 7.74 | 98.20 | 94.50 | 0.45 |
ABA-3 | 42.85 | 6.43 | 98.23 | 94.55 | 0.54 |
-1、-2、-3为3次不同的重复;下同
-1,-2 and -3 represent three duplicates;The same as below
12个样本的转录组共获得94.82 Gb Clean data,每个样本的Clean data均达到6 Gb。基于各组差异表达基因的功能注释和富集分析,利用 Pearson相关性评估样本时发现,相同处理组的不同重复间的Pearson相关系数均超过0.95(

图4 不同处理组转录组间的Pearson相关分析
Fig.4 Pearson correlation analysis between transcriptomes of different treatment groups
样本Sample | 过滤数据总数目 Total reads | 唯一比对的reads数目 Uniq-Mapped | 比对到多处的reads数目 Multi-Mapped | 不能比对的reads数目Un-Mapped |
---|---|---|---|---|
CK-1 | 55828660 | 50112201(89.76%) | 3166235(5.67%) | 2550224 |
CK-2 | 54291864 | 48639262(89.59%) | 3054580(5.63%) | 2598022 |
CK-3 | 55891894 | 50089151(89.62%) | 3257347(5.83%) | 2545396 |
Cd-1 | 60976546 | 54505566(89.39%) | 3504854(5.75%) | 2966126 |
Cd-2 | 56054376 | 50248428(89.64%) | 3251709(5.80%) | 2554239 |
Cd-3 | 56129798 | 50350620(89.70%) | 3178170(5.66%) | 2601008 |
Cd+ABA-1 | 46410854 | 41597603(89.63%) | 2733831(5.89%) | 2079420 |
Cd+ABA-2 | 54052248 | 48466302(89.67%) | 3164481(5.85%) | 2421465 |
Cd+ABA-3 | 45930080 | 41126906(89.54%) | 2581581(5.62%) | 2221593 |
ABA-1 | 52142598 | 46421591(89.03%) | 2913981(5.59%) | 2807026 |
ABA-2 | 51607110 | 45906900(88.95%) | 2955779(5.73%) | 2744431 |
ABA-3 | 42846640 | 38174963(89.10%) | 2453589(5.73%) | 2218088 |
括号内的数据为比对数量占总数目的百分比
The data in parentheses represents the percentage of comparison quantity to the total number
脱落酸处理3 d,ABA组相对于CK组(ABA vs CK组)共鉴定出1028个差异表达基因(DEGs,differentially expressed genes)(

图5 脱落酸调控油菜Cd胁迫的差异表达基因韦恩图及共有差异表达基因聚类
Fig. 5 Venn diagram of differentially expressed genes alleviated by external application of ABA under cadmium stress and cluster diagram of shared differentially expressed genes
A:上调基因韦恩图;B:下调基因韦恩图;C:上调和下调基因共有差异表达基因聚类图; ABA vs CK表示脱落酸处理组相较于对照组;Cd vs CK表示Cd胁迫组相较于对照组;Cd+ABA vs CK表示 Cd胁迫后加脱落酸处理相较于对照组;Cd+ABA vs Cd表示Cd胁迫后加脱落酸处理相较于Cd胁迫组;下同
A: Venn diagram of up-regulated genes;B: Venn diagram of down-regulated genes;C: Cluster diagram of differentially expressed genes shared by upregulated and downregulated genes; ABA vs CK represents the abscisic acid treatment group compared to the control group; Cd vs CK represents the Cd stress group compared to the control group; Cd+ABA vs CK indicates that after Cd stress, abscisic acid treatment was added compared to the control group; Cd+ABA vs Cd indicates that after Cd stress, abscisic acid treatment was added compared to the Cd stress group; The same as below
对Cd+ABA vs Cd上调的514个差异表达基因与下调的431个差异表达基因进行共有差异表达基因的聚类分析,通过各组的FPKM表达值,得到差异表达基因的聚类图(
KEGG 通路功能分类及富集分析结果表明,差异表达基因主要富集在细胞过程、环境信息处理、代谢和有机系统(

图6 差异表达基因KEGG分类
Fig.6 Bar chart of KEGG classification of differentially expressed genes
括号内为注释到该通路的差异表达基因数占注释到该背景通路的背景基因数的百分比
The parentheses represents the percentage of differentially expressed genes annotated to this pathway compared to the background genes annotated to this pathway
将Cd+ABA vs Cd 进行GO富集分析,共有945个差异表达基因富集到分子功能、细胞组分和生物过程3个大类的50个功能类别中,其中分子功能中包含17个功能类别,生物过程包含33个功能类别。在富集到的前20个GO 条目中(

图7 差异表达基因GO分类
Fig.7 Differentially expressed gene GO classification
对Cd+ABA vs Cd组中GO分类条目中富集差异表达基因最多的半纤维素代谢通路以及和KEGG差异表达基因较多的木质素合成通路进行进一步分析。
半纤维素代谢通路 对油菜叶片中半纤维素代谢相关的差异表达基因进行筛选,共筛选到10个差异表达基因。对这10个差异表达基因进行聚类分析发现,编码木葡聚糖内转葡糖基酶/水解酶(XTH,xyloglucan endo-transglycosylase/hydrolase)的XTH33、XTH6、XTH20、XTH22基因在Cd处理后发生上调,脱落酸处理后其表达量则下调。编码β-木糖苷酶(BXL,beta-xylosidase) 的BXL1基因在Cd处理后表达下调,脱落酸处理后其表达量进一步下调(图8A) 。
木质素合成通路 与CK组相比,Cd处理组在初始苯丙烷通路中,7个编码苯丙氨酸解氨酶(PAL,phenylalanine ammonia-Lyase)的基因,6个编码肉桂酸-4-羟化酶 (C4H,cinnamic acid-4-hydroxylase) 的基因,3个编码4-香豆酸∶辅酶A连接酶(4CL,4-coumarate∶CoA ligase)的基因在Cd组表现为大部分上调表达,而Cd+ABA组则大部分下调表达。在木质素合成通路中,与CK组相比,编码肉桂酰辅酶 A 还原酶 (CCR,cinnamoyl-CoA reductase)、肉桂醇脱氢酶(CAD,cinnamyl alcohol dehydrogenase)、阿魏酸5-羟化酶(F5H ,ferulate 5-hydroxylase)和咖啡酸-O-甲基转移酶(COMT ,caffeic acid O-methyltransferase)的基因在Cd处理组大部分上调表达,在Cd+ABA处理组表达量发生大部分下调(

图8 细胞壁中与半纤维素代谢和木质素合成相关基因表达量
Fig. 8 Expression levels of genes related to hemicellulose metabolism and lignin synthesis in cell walls
A:半纤维素代谢相关基因分析;B: 木质素合成相关基因分析
A: Analysis of genes related to hemicellulose metabolism; B: Genes related to lignin synthesis
为了验证转录组的可靠性,筛选了4个加镉后上调表达和2个下调表达的差异表达基因进行qRT-PCR验证,基因的相对表达量以CK为对照组,

图9 差异表达基因的RNA-seq与qRT-PCR验证结果
Fig.9 RNA-seq and qRT-PCR validation results of differentially expressed genes
目前已有研究表明外源脱落酸能够减缓植物根部吸收的Cd向地上部转移,而蒸腾速率的差异是导致植物Cd转移速度不同的主要原
细胞壁作为金属离子跨膜进入细胞质的第一道屏障,在重金属离子固定、吸收和转运过程中起着重要作
细胞壁中含有大量的还原性官能团(-OH和-SH等),半纤维素、果胶等细胞壁多糖,这些成分能够结合Cd等重金属,从而减少Cd由根部向地上部的转
目前脱落酸对油菜苯丙烷途径中与木质素合成相关的代谢物和基因影响的研究较少。木质素是细胞壁的重要组分,可维持细胞壁的刚性并为细胞提供机械支撑,是保护细胞原生质体免受许多生物和非生物胁迫的重要物理屏障,木质化会降低细胞壁的穿透性,是阻止Cd进入细胞的有效屏
本研究对甘蓝型油菜幼苗在低浓度镉(10 μmol/L Cd)胁迫下外施5 μmol/L 脱落酸,通过分析油菜叶片生理指标和转录组结果,发现外源脱落酸可以有效降低蒸腾速率,增加叶绿素含量,降低油菜镉含量;并引起一系列差异表达基因的表达变化且主要涉及蔗糖和淀粉代谢、半纤维素代谢、细胞壁大分子代谢等代谢等信号通路。此外,木质素和半纤维素代谢通路的相关基因在脱落酸调控油菜镉胁迫中发挥重要作用。
参考文献
Wu S, Wu K, Shi L, Sun X, Tan Q, Hu C. Recruitment of specific microbes through exudates affects cadmium activation and accumulation in Brassica napus. Journal of Hazardous Materials,2023,442:130066 [百度学术]
Wu X, Tian H, Li L, Guan C. Higher Cd-accumulating oilseed rape has stronger Cd tolerance due to stronger Cd fixation in pectin and hemicellulose and higher Cd chelation. Environmental Pollution,2021,285:117218 [百度学术]
Shen S, Li Y, Chen M, Huang J, Liu F. Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium. Journal of Hazardous Materials,2023,449:131040 [百度学术]
赵铭.土壤重金属污染现状、原因、危害及修复研究.资源节约与环保,2016(4):181,184 [百度学术]
Zhao M. Research on the status, causes, hazards, and remediation of soil heavy metal pollution. Resources Economization & Environmental Protection, 2016 (4):181,184 [百度学术]
林琳,旦增卓嘎,吴玲玲.铅、镉单一及复合胁迫对生菜幼苗抗氧化酶及亚细胞结构的毒性效应.生态毒理学报,2022,17(2):337-348 [百度学术]
Lin L, Dolker T Z, Wu L L. Toxicity of single and combined Pb and Cd stress on antioxidant enzymes and subcellular structure of lettuce. Asian Journal of Ecotoxicology, 2022, 17 (2): 337-348 [百度学术]
张慧,张欣雨,袁旭, 陈伟达, 杨婷.烟草叶片响应镉胁迫的差异表达基因鉴定及分析.作物学报,2024,50(4):944-956 [百度学术]
Zhang H, Zhang X Y, Yuan X, Chen W D, Yang T. Transcriptome analysis of tobacco in response to cadmium stress.Acta Agronomica Sinica,2024,50(4):944-956 [百度学术]
卞建林,郭俊娒,王学东, 杨俊兴, 杨军, 陈同斌, 曹柳, 成永霞, 任战红, 王杰, 周小勇.两种不同镉富集能力油菜品种耐性机制.环境科学,2020,41(2): 970-978 [百度学术]
Bian J L, Guo J X, Wang X D, Yang J X, Yang J, Chen T B, Cao L, Cheng Y X, Ren Z H, Wang J, Zhou X Y. Tolerance mechanism and cadmium enrichment abilities in two Brassica napus L. cultivars. Environmental Science, 2020, 41(2): 970-978 [百度学术]
王涛,唐天娇,廖佳元,姚珺玥,官春云,张振华. 外源 ABA 提高甘蓝型油菜抗镉胁迫能力和氮素生理利用效率.植物营养与肥料学报, 2020, 26(3): 522-531 [百度学术]
Wang T, Tang T J, Liao J Y, Yao J Y, Guan C Y, Zhang Z H. Exogenous abscisic acid improves resistance to cadmium stress and physiological nitrogen use efficiency in Brassica napus. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 522-531 [百度学术]
朱晓琛,张汉马,南文斌.脱落酸调控植物根系生长发育的研究进展.植物生理学报,2017,53(7):1123-1130 [百度学术]
Zhu X C, Zhang H M, Nan W B. Research progress on regulation of ABA in plant root development. Plant Physiology Journal, 2017,53 (7): 1123-1130 [百度学术]
Hsu Y T, Kao C H. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell & Environment, 2003, 26(6): 867-874 [百度学术]
Deng B, Zhang W, Yang H. Abscisic acid decreases cell death in malus hupehensis rehd. Under Cd Stress by reducing root C
Shen G, Niu J, Deng Z. Abscisic acid treatment alleviates cadmium toxicity in purple flowering stalk(Brassica campestris L. ssp. chinensis var. purpurea Hort.) seedlings. Plant Physiology and Biochemistry,2017,118:471-478 [百度学术]
Pan W, You Y, Shentu J, Weng Y, Wang S, Xu Q, Liu H, Du S. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. Journal of Hazardous Materials, 2020, 391: 122189 [百度学术]
Meng Y, Huang J, Jing H, Wu Q, Shen R, Zhu X. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake, translocation and accumulation, and promoting Cd chelation and efflux. Plant Science, 2022, 325: 111464 [百度学术]
张大为,杜云燕,吴金锋, 周定港,刘丽莉,刘忠松,严明理.镉胁迫对甘蓝型油菜幼苗生长及基因表达的影响.中国油料作物学报,2020,42(4):613-622 [百度学术]
Zhang D W, Du Y Y, Wu J F, Zhou D G, Liu L L, Liu Z S,Yan M L. Effect of cadmium stress on plant growth and gene expression in Brassica napus seedlings. Chinese Journal of Oil Crop Sciences,2020,42(4):613-622 [百度学术]
Feng J, Jia W, Lv S, Bao H, Miao F, Zhang X, Wang J, Li J, Li D, Zhu C, Li S, Li Y. Comparative transcriptome combined with morpho‐physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnology Journal, 2018, 16(2): 558-571 [百度学术]
Liao Y, Tang Y, Wang S, Su H, Chen J, Zhang D, Wu J, Zhou D. Abscisic acid modulates differential physiological and biochemical responses to cadmium stress in Brassica napus. Environmental Pollutants and Bioavailability, 2023, 35(1): 2168216 [百度学术]
Jiao Z, Shi Y, Wang J, Wang Z, Zhang X, Jia X, Du Q, Niu J, Liu B, Du R, Ji G, Cao J, Lv P. Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway. Frontiers in Plant Science, 2023,14:1144265 [百度学术]
Wu X, Song H, Guan C, Zhang Z. Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Science of the Total Environment,2020,728:138833 [百度学术]
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with deseq2. Genome Biology, 2014, 15(12): 1-21 [百度学术]
Varet H, Brillet-Guéguen L, Coppée J-Y, Dillies M-A. SARTools: A DESeq2- and EdgeR-based r pipeline for comprehensive differential analysis of RNA-seq data. PLoS ONE, 2016, 11(6): e0157022 [百度学术]
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: Tool for the unification of biology. Nature Genetics, 2000, 25(1): 25-29 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2
Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009, 60(9): 2677-2688 [百度学术]
Khanna K, Kohli S K, Ohri P, Bhardwaj R, Ahmad P. Agroecotoxicological aspect of Cd in soil-plant system: Uptake, translocation and amelioration strategies. Environmental Science and Pollution Research, 2022, 29(21): 30908-30934 [百度学术]
Hsu Y T, Kao C H. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell & Environment, 2003, 26(6): 867-874 [百度学术]
Liu X, Peng K, Wang A, Lian C, Shen Z. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 2010, 78(9): 1136-1141 [百度学术]
Aroca R, Vernieri P, Ruiz-Lozano J M. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany, 2008, 59(8): 2029-2041 [百度学术]
Dawuda M M, Liao W, Hu L, Yu J, Xie J, Calderón-Urrea A, Wu Y, Tang Z. Foliar application of abscisic acid mitigates cadmium stress and increases food safety of cadmium-sensitive lettuce (Lactuca sativa L.) genotype. PeerJ, 2020, 8(7): e9270 [百度学术]
Wang Z, Zhang Y, Huang Z, Huang L. Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant and Soil, 2008, 310(1-2): 137-149 [百度学术]
Chen G, Liu Y, Wang R, Zhang J, Owens G. Cadmium adsorption by willow root:The role of cell walls and their subfractions. Environmental Science and Pollution Research, 2013, 20(8): 5665-5672 [百度学术]
Yu X, Yang L, Fan C, Hu J, Zheng Y, Wang Z, Liu Y, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Pan Y, Li X, Gao S Zhou Y. Abscisic acid (ABA) alleviates cadmium toxicity by enhancing the adsorption of cadmium to root cell walls and inducing antioxidant defense system of Cosmos bipinnatus. Ecotoxicology and Environmental Safety, 2023, 261: 115101 [百度学术]
Kong X, Li C, Zhang F, Yu Q, Gao S, Zhang M, Tian H, Zhang J, Yuan X, Ding Z. Ethylene promotes cadmium-induced root growth inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis. Plant, Cell & Environment, 2018, 41(10): 2449-2462 [百度学术]
Cosgrove D J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861 [百度学术]
Van Sandt V S T, Suslov D, Verbelen J P, Vissenberg K. Xyloglucan endotransglucosylase activity loosens a plant cell wall. Annals of Botany, 2007, 100(7): 1467-1473 [百度学术]
Eklöf J M, Brumer H. The XTH gene family:An update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 2010, 153(2): 456-466 [百度学术]
Leng Y, Li Y, Ma Y, He L, Li S. Abscisic acid modulates differential physiological and biochemical responses of roots, stems, and leaves in mung bean seedlings to cadmium stress. Environmental Science and Pollution Research, 2021, 28(5): 6030-6043 [百度学术]
Yu R, Jiang Q, Xv C, Li L, Bu S, Shi G. Comparative proteomics analysis of peanut roots reveals differential mechanisms of cadmium detoxification and translocation between two cultivars differing in cadmium accumulation. BMC Plant Biology, 2019, 19(1): 1-15 [百度学术]
韩彦莎. 胡杨 XTH 调控烟草盐诱导肉质化及缓解重金属胁迫的机理研究. 北京:北京林业大学, 2013 [百度学术]
Han Y S. Populus euphraticaXTH mediates salinity-induced leaf succulence and alleviates heavy metal stress in tobacco plants. Beijing:Beijing Forestry University, 2013 [百度学术]
李娜,张蕊,黄遵锡,周峻沛.β-木糖苷酶的生物活性物质转化功能研究进展.微生物学通报,2020,47(7):2290-2299 [百度学术]
Li N, Zhang R, Huang Z X, Zhou J P. Research progress in bioactive substances transformation by β-xylosidases. Microbiology China, 2020,47 (7): 2290-2299 [百度学术]
Chandrasekar B, Van der Hoorn R A L. Beta galactosidases in Arabidopsis and tomato-a mini review. Biochemical Society Transactions, 2016, 44(1): 150-158 [百度学术]
Zhang Q, Wang L, Wang Z, Zhang R, Liu P, Liu M, Liu Z, Zhao Z, Wang L, Chen X, Xu H. The regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube. Horticulture Research, 2021, 8(1):3257-3270 [百度学术]
Micheli F. Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 2001, 6(9): 414-419 [百度学术]
Liu Y, Tao Q, Li J, Guo X, Luo J, Jupa R, Liang Y, Li T. Ethylene-mediated apoplastic barriers development involved in cadmium accumulation in root of hyperaccumulator Sedum alfredii. Journal of Hazardous Materials, 2021, 403: 123729 [百度学术]
刘荣鹏,盛莎莎,王晓云, 袁俊.江西道地药用植物车前镉富集特点及其响应镉胁迫的转录组分析.分子植物育种,2024,http://kns.cnki.net/kcms/detail/46.1068.s.20230228.1513.013.html [百度学术]
Liu R P, Sheng S S, Wang X Y, Yuan J. Characteristics of cadmium enrichment of Jiangxi daodi medicinal plant Plantago asiatica L. and its transcriptome analysis in response to cadmium stress. Molecular Plant Breeding,2024,http://kns.cnki.net/kcms/detail/46.1068.s.20230228.1513.013.html [百度学术]
Zhao L, Zhu Y, Wang M, Ma L, Han Y, Zhang M, Li X, Feng W, Zheng X. Comparative transcriptome analysis of the hyperaccumulator plant Phytolacca americana in response to cadmium stress. 3 Biotech, 2021, 11(7): 327 [百度学术]
倪显春,任建国,庞玉新, 王俊丽.转录组测序分析艾纳香对镉胁迫响应机制.分子植物育种,2024,http://kns.cnki.net/kcms/detail/46.1068.S.20230119.0907.002.html [百度学术]
Ni X C, Ren J G, Pang Y X, Wang J L. Transcriptome sequencing analysis of the response mechanism of Blumea balsamifera Dc to cadmium stress. Molecular Plant Breeding,2024,http://kns.cnki.net/kcms/detail/46.1068.S.20230119.0907.002.html [百度学术]
Li, D, Zhou C, Ma J, Wu Y, Kang L, An Q, Zhang J, Deng K, Li J, Pan C. Nanoselenium transformation and inhibition of cadmium accumulation by regulating the lignin biosynthetic pathway and plant hormone signal transduction in pepper plants. Journal of Nanobiotechnology, 2021, 19(1): 1-14 [百度学术]