摘要
十字花科作物主要由S位点的复等位基因控制自交不亲和性,羽衣甘蓝(Brassica oleracea var. acephala)是十字花科芸薹属中典型的自交不亲和性植物。本研究利用20对SSR引物首次构建了20个羽衣甘蓝自交系的指纹图谱,20对SSR引物共鉴定到65个等位变异,平均每对引物含有3.25个变异。等权重算术平均聚类法(UPGMA)将20个自交系聚类为3个遗传类群:OK1、OK2和OK3。其中遗传类群OK1的叶形为紧凑皱叶或披散皱叶,波浪状叶缘,叶色以红紫色为主;遗传类群OK2的叶形为光滑叶,波浪状或裂叶叶缘,叶色为白色外叶;遗传类群OK3的叶形为光滑叶,波浪状或裂叶叶缘,叶色以红紫色为主。利用SRK基因激酶区的特异性引物分析发现,20个羽衣甘蓝自交系中共有9个SRK单元型,分别是8个Class Ⅰ型SRK单元型(SRK7、SRK13、SRK14、SRK16、SRK23、SRK36、SRK45和SRK51)和1个Class Ⅱ型SRK单元型(SRK15)。遗传类群OK1主要为SRK15单元型(50%),其次为SRK23单元型(20%);遗传类群OK2主要为SRK15、SRK16单元型(均为40%);遗传类群OK3主要为SRK23单元型(40%)。亲和指数测定结果进一步验证了不同遗传类群内部或遗传类群间自交系杂交的亲和关系,杂交组合配制的过程中应兼顾遗传类群和SRK单元型。
羽衣甘蓝(Brassica oleracea var. acephala)原产于地中海沿岸,是甘蓝的一个变种,形态和颜色多样化;其作为耐寒的观赏花卉和蔬菜作物,在世界各地广泛种植。品种亲缘关系鉴定是羽衣甘蓝育种中重要的工作,传统的亲缘关系鉴定方法基于表型差异,但在品种表型差异小的情况下,易导致品种鉴定失误,从而影响羽衣甘蓝的育种进程。植物基因组中分布着大量的简单重复序列(SSR,sample sequence repeat),基于这些重复序列设计DNA分子标记,进行PCR检测,根据片段分离情况生成二维数字指纹图谱,再通过聚类方法可对材料的亲缘关系进行快速鉴定及杂种优势群划分,该方法不受环境和人为因素影响。王庆彪
羽衣甘蓝是一种典型的孢子体自交不亲和植物,花期表现出明显的自交不亲和特征。目前普遍认为,这种自交不亲和性由多态性S位点控
不同SRK单元型材料之间花期授粉能正常结籽,相同SRK单元型材料之间花期授粉不能结籽或结籽率极低,因此,在配置杂交组合时,鉴定自交不亲和系的SRK单元型极为重要。亲和指数
本研究利用已开发的20对SSR标记对20个羽衣甘蓝自交系进行PCR扩增及电泳,通过遗传指纹图谱及聚类对自交系间的杂种优势关系进行划分,并利用已开发的2对SRK激酶区特异引物快速准确的鉴定羽衣甘蓝不同遗传类群的SRK单元型,并对不同遗传类群中SRK单元型的分布及花期自交和杂交亲和指数进行分析。通过指纹图谱构建、遗传类群划分及SRK单元型鉴定,为羽衣甘蓝的杂种优势育种提供参考依据。
本研究所使用的20份羽衣甘蓝自交系材料(
编号 Number | 名称 Name | 叶色 Leaf color | 叶形 Leaf shape |
---|---|---|---|
2510 | 浅紫东林 | 红紫色 | 紧凑皱叶、波浪状叶缘 |
2511 | 东林紫红 | 红紫色 | 紧凑皱叶、波浪状叶缘 |
2512 | 名古屋红 | 红紫色 | 紧凑皱叶、波浪状叶缘 |
2515 | 白鸽 | 外叶白色、内叶紫色 | 光滑叶、波浪状叶缘 |
2519 | 白鸽 | 黄白色 | 光滑叶、波浪状叶缘 |
2522 | 东京红 | 红紫色 | 光滑叶、波浪状叶缘 |
2523 | 名混紫 | 红紫色 | 紧凑皱叶、波浪状叶缘 |
2524 | 三雄红 | 红紫色 | 紧凑皱叶、波浪状叶缘 |
2526 | 邹叶白 | 白色 | 紧凑皱叶、波浪状叶缘 |
2528 | 紫鸽 | 红紫色 | 光滑叶、波浪状叶缘 |
2533 | 维多利亚鸽 | 外叶白色、内叶紫色 | 光滑叶、波浪状叶缘 |
2535 | 白孔雀 | 白色 | 光滑叶、裂叶叶缘 |
2536 | 红孔雀 | 紫色 | 光滑叶、裂叶叶缘 |
2538 | 白珊瑚 | 黄白色 | 光滑叶、波浪状叶缘 |
2542 | 红斑鸠 | 红紫色 | 光滑叶、波浪状叶缘 |
2546 | 双色鸽 | 外叶白色、内叶紫色 | 光滑叶、波浪状叶缘 |
2549 | 红宝 | 红色 | 披散皱叶、波浪状叶缘 |
2550 | 苏格兰甘蓝 | 绿色 | 披散皱叶、波浪状叶缘 |
2551 | Red bor | 红色 | 披散皱叶、波浪状叶缘 |
2552 | 布比甘蓝 | 绿色 | 披散皱叶、波浪状叶缘 |
取成熟期的新鲜甘蓝幼嫩叶片2g装入2 mL收集管中,利用改良的CTAB法提取叶片基因组DNA,利用超微量分光光度计(BioDrop)检测DNA浓度和纯度后备用。
利用王庆彪
编号 No. | 引物名称 Primer name | 正向引物(5′-3′) Forward sequence(5′-3′) | 反向引物(5′-3′) Reverse sequence(5′-3′) |
---|---|---|---|
#1 | BoE188 | CGACGATGGCGAGGAAACA | CACATAACCCAAATACCCAAATCA |
#2 | BoE607 | TCTATTCACAACGATTCAACTAAC | CGGTACGGCTGGCTCTT |
#3 | BoE162 | AGCAGCTTCGTTCAATCTCC | CGGCAGCGTATACCTTCACA |
#4 | BoE966 | TCGAATAAAGAAGAAAAAGAAGA | TAATCCCTGGTAAGAGTAGT |
#5 | BoE222 | ACTACCCTCTCCGTTTACTCCACA | GCCCCATAGCTTTCTCAA |
#6 | BoE718 | CAAGAAACGGACGTGGTGAAAG | TCTCGCGTATGGGGCTGTCT |
#7 | BoE002 | CGTCACGGTGGCGCTTTATTTT | ACGACGTCGCCGCACTGAAC |
#8 | BoE450 | TCTCGCCATGGCTGATAAG | TCGGGGCGTTGATTCTCGTCTCT |
#9 | BoE882 | CCGCTTCTTCCTTGCCTTCCT | TTCGCCAGTAGATCCCCGTAATG |
#10 | BoE699 | TCCCCACCCCCAAAAAGAGA | AACGAGCCATCCGAAGAAGAGG |
#11 | BoE379 | GCGGGGACTCTACCTCTA | AGCAGCTCAGCATACAAG |
#12 | BoE761 | CATTCAGCGACTTCCTTCAAACTT | GGCGCACTTCTTCCCCTGTA |
#13 | BoE723 | CGTTGAGGCCGAGAGTGAGAG | ATGGACGCCGGAAATGAGAA |
#14 | BoE209 | ATCTATCCCATCCGCTCGTCA | AACCCCTATTCGCTTACTCC |
#15 | BoE875 | CCGACAATGGCTGGAGTAGG | GATAAGCCGGTAGAGCATAAGGAG |
#16 | BoE237 | AATCCCGAAAAGAGCGAAACC | CTGGGGAGCCGAGAAGGAG |
#17 | BoE134 | CTCTTATTTCTTGTAGGGCTTTTA | CCGTTGGAGATGACTGACTG |
#18 | BoE734 | TCATCCAAAGAAATCAGAGG | ACAGGGAGAAAGAAAAAGAGA |
#19 | BoE051 | GAGTCTTCGTCTTCTTCTTCC | AGTCGCCATTATTAACACCTCTA |
#20 | BoE917 | AACAACCCTTTCCTGACAC | AAAAACCAAAGAACTACAAAATA |
#21 | Class Ⅰ SRK-K | CAATTTCACAGAGAATAGTGA | ACCATTCCGGATATCCGCATTT |
#22 | Class Ⅱ SRK-K | GAGGGCGAGAAGATCTTAATT | AAGACKATCATATTACCGAGC |
利用陈文
根据20个羽衣甘蓝自交系的SSR扩增结果,统计变异位点和基因型,0表示无扩增,1表示有扩增,人工读带构建二元0、1数字指纹图谱。指纹编码方式为“引物序号_0/1”,如#6_010表示编号为#6标记的3个变异位点编码分别为0、1、0。计算引物的多态信息含量(PIC,polymorphism information content)值,并利用NTSYSY软件中的等权重算术平均聚类(UPGMA,unweighted pair group method with arithmetic mean)方法对数字指纹进行聚类分析,对材料进行遗传类群划分。多态信息含量计算公式如下。
Hj = ∑P
其中,Hj表示第j对引物的PIC值,Pi表示第i个等位基因的基因频率。
将PCR反应液用FastPure Gel DNA Extraction Mini Kit试剂盒(南京诺唯赞生物科技股份有限公司)进行纯化回收、连接pEASY-T1 Cloning Vector载体(北京全式金生物技术股份有限公司)、涂LB培养基、挑单克隆菌和摇菌后送苏州金唯智生物科技有限公司测序,测序完成后,在NCBI数据库中BLAST(https://blast.ncbi.nlm.gov/Blast.cgi)比对,根据SRK基因序列覆盖度和相似性确定20份羽衣甘蓝材料的SRK单元型。
利用王庆彪

图 1 SSR引物BoE718对20份羽衣甘蓝自交系的扩增结果
Fig. 1 Amplification results of SSR primer BoE718 on 20 kale inbred lines
M:2000 bp DNA Marker,1、2和3表示3个不同的等位变异;材料编号同表1,下同
Different allelic variants are represented by 1,2 and 3; Material numbers are the same as in Table 1, the same as below
将20对SSR引物扩增结果转换为0和1的二元矩阵,其中1代表扩增条带存在,0代表条带的缺失。基于这些标记位点,首次构建了羽衣甘蓝自交系的SSR遗传指纹图谱(

图2 20份羽衣甘蓝自交系的SSR指纹图谱数据库
Fig. 2 SSR finger-printing database of 20 kale inbred lines
蓝色和绿色方块分别代表1和0,数字1~65代表不同的变异位点
The blue and green square represent the value 1 and 0, respectively, numbers1-65 represent different mutation sites

图 3 羽衣甘蓝自交系二元矩阵聚类
Fig. 3 Binary matrix cluster of kale inbred lines
遗传类群 Genetic group | 编号 Number | #1_#2_____#3____#4___#5_#6_#7_#8__#9____#10___#11_#12_#13_#14_#15_#16_#17_#18_#19_#20 |
---|---|---|
OK1 | 2510 | 10_00111_0010011_001_10_100_10_01_010101_001000_10_01_0110_1100_10_10_100_010_001_10 |
2511 | 10_00111_1010100_001_10_100_10_01_010101_001000_10_10_0110_1100_10_10_100_010_001_01 | |
2512 | 01_11100_1010100_001_10_001_10_01_010101_001000_10_10_1000_1100_01_10_100_100_001_10 | |
2523 | 01_00110_1010100_100_10_001_10_10_010101_001000_10_10_0110_1100_01_10_100_100_001_10 | |
2524 | 01_00110_1010100_100_10_001_10_01_010101_001000_10_10_1101_1100_10_10_100_100_001_01 | |
OK1 | 2526 | 01_11100_0101010_001_10_100_10_10_010101_001000_10_01_0110_1100_10_10_100_100_010_10 |
2549 | 10_01100_1010100_011_10_100_01_01_010101_001000_01_10_0110_1100_10_10_100_010_010_01 | |
2550 | 10_00111_1010100_011_10_001_01_10_010101_010000_10_01_1000_1111_10_10_010_100_010_10 | |
2551 | 10_01110_1010100_010_10_100_01_01_010101_001000_01_10_0110_1000_10_10_100_100_010_01 | |
2552 | 10_00110_1010100_010_10_100_01_10_010101_001000_10_10_1000_1111_10_10_100_010_010_10 | |
OK2 | 2515 | 01_11100_1010100_001_01_010_01_01_101010_001000_10_01_1000_1111_01_10_100_001_001_10 |
2519 | 01_11100_0101010_001_01_010_01_01_101010_001000_10_01_0110_1111_01_10_100_010_001_01 | |
2533 | 10_01110_0101010_010_01_010_10_10_101010_110001_10_01_0110_1111_01_10_100_001_001_01 | |
2535 | 10_00111_1010100_001_10_010_01_01_101010_110000_10_01_0110_1111_01_10_100_001_001_10 | |
2538 | 01_00111_1010100_001_10_010_01_01_101010_001000_10_01_1000_1111_01_10_100_001_001_10 | |
OK3 | 2522 | 10_00110_0101010_001_10_001_10_10_101010_001000_00_10_0110_1100_10_10_011_001_100_10 |
2528 | 10_00110_0101010_001_10_010_10_10_101010_110001_10_10_0110_1111_10_10_011_001_100_10 | |
2536 | 10_00111_0101010_010_10_010_10_01_010101_110111_10_01_0111_1111_01_10_100_010_100_10 | |
2542 | 01_00110_1010100_010_10_001_10_01_101010_110001_10_10_0110_1111_10_01_010_001_100_10 | |
2546 | 01_00111_0101010_100_10_010_10_01_101010_001000_10_01_0110_1001_10_10_010_010_010_01 |
#1~#20为引物编号,与表2同;不同的列对应20对标记的65个等位变异,指纹编码方式为引物序号_0/1;红色为7个特异指纹
Primers #1 to #20 are the same as in Table 2; Different columns represent 65 allelic variations across the 20 pairs of markers,the fingerprint encoding format is primer-number_0/1; Seven unique fingerprint have been labeled in red

图4 指纹与遗传类群相关性分析
Fig. 4 Correlation analysis of fingerprint and genetic group
A:OK1;B:OK2;C:OK3;红色部分为与遗传类群高度相关的指纹
The red portion represents fingerprints highly correlated with genetic groups
遗传类群OK1包括10个自交系,叶色以红紫色为主,叶形为紧凑皱叶或者披散皱叶,波浪状叶缘,包括自交系2510、2511、2512、2523、2524、2526、2549、2550、2551和2552,其中前5个自交系的表型高度相似。遗传类群OK2和OK3均为光滑叶,叶缘包括波状和裂叶,遗传类群OK2包括自交系2515、2519、2533、2535和2538,其中自交系2515和2533的表型相似,自交系2519和2538的表型相似;遗传类群OK3包括2522、2528、2536、2542和2546,其中自交系2522、2528和2542表型高度相似。另外遗传类群OK2基本为白色外叶,遗传类群OK3基本为红紫色叶。
利用基于SRK基因设计的Class Ⅰ型SRK单元型特异标记PKC6F/PKC6R与Class Ⅱ型SRK单元型特异标记KD4/KD7,对羽衣甘蓝3个遗传类群不同自交系进行扩增,如

图 5 特异引物PKC6F/PKC6R和KD4/KD7的PCR扩增结果
Fig. 5 PCR amplification results of specific primers PKC6F/PKC6R and KD4/KD7
将PKC6F/PKC6R和KD4/KD7的扩增产物进行测序,在NCBI数据库中进行BLAST分析,确定不同材料的SRK单元型。结果发现,羽衣甘蓝3个遗传类群共包括9个不同的SRK单元型,遗传类群OK1包括SRK7、SRK14、SRK15、SRK23和SRK45,遗传类群OK2包括SRK15、SRK16和SRK51,遗传类群OK3包括SRK13、SRK23、SRK36和SRK45;除SRK15、SRK23和SRK45外,其余6个SRK单元型特异分布在不同的遗传类群中(
类群Cluster | 材料Materials | SRK单元型SRK haplotype | 类群Cluster | 材料Materials | SRK单元型SRK haplotype |
---|---|---|---|---|---|
OK1 | 2510 | SRK15 | OK2 | 2515 | SRK51 |
2511 | SRK15 | 2519 | SRK15 | ||
2512 | SRK23 | 2533 | SRK15 | ||
2523 | SRK23 | 2535 | SRK16 | ||
2524 | SRK14 | 2538 | SRK16 | ||
2526 | SRK45 | OK3 | 2522 | SRK23 | |
2549 | SRK15 | 2528 | SRK23 | ||
2550 | SRK15 | 2536 | SRK45 | ||
2551 | SRK15 | 2542 | SRK13 | ||
2552 | SRK7 | 2546 | SRK36 |
分析不同遗传类群羽衣甘蓝自交系的SRK单元型分布,结果发现,Class Ⅰ型SRK单元型和ClassⅡ型S单元型在不同遗传类群中存在明显差异(
类群Cluster | S单元型 S haplotype | 类型 Type | 数量 Quantity |
---|---|---|---|
OK1 | SRK7 | Class Ι型 | 1 |
SRK14 | Class Ι型 | 1 | |
SRK15 | Class Ⅱ型 | 5 | |
SRK23 | Class Ι型 | 2 | |
SRK45 | Class Ι型 | 1 | |
OK2 | SRK15 | Class Ⅱ型 | 2 |
SRK16 | Class Ι型 | 2 | |
SRK51 | Class Ι型 | 1 | |
OK3 | SRK13 | Class Ι型 | 1 |
SRK23 | Class Ι型 | 2 | |
SRK36 | Class Ι型 | 1 | |
SRK45 | Class Ι型 | 1 |
叶形叶色分析发现,遗传类群OK1的5种SRK单元型叶缘均为波浪状,SRK15单元型包括5份自交系(2510、2511、2549、2550和2551),占50%,其中2510和2511的叶色叶形为红紫色紧凑皱叶,2549和2551为红色披散皱叶,2550为绿色披散皱叶;SRK23单元型包括2份自交系(2512和2523),占20%,均为红紫色紧凑皱叶;SRK14、SRK7、SRK45单元型均只包括1份自交系(分别为2524、2552、2526),均占10%,分别为红紫色紧凑皱叶,绿色披散皱叶和白色紧凑皱叶。遗传类群OK2的3种SRK单元型均为光滑叶,SRK15单元型包括2份自交系(2519和2533)均为波浪状叶缘,分别为黄白色叶和外白内紫色叶,占40%;SRK16单元型包括两份自交系(2535和2538),分别为白色叶、裂叶叶缘和黄白色叶、波浪状叶缘,占40%;SRK51单元型只包括1份自交系(2515),占20%,为外白内紫色叶、波浪状叶缘。遗传类群OK3的4种SRK单元型均为光滑叶,SRK23单元型包括两份自交系(2522和2528),占40%,均为红紫色叶、波浪状叶缘;SRK13、SRK36、SRK45单元型均只包括1份自交系(分别为2542、2546、2536),均占20%,分别为红紫色叶、波浪状叶缘,外白内紫色叶、波浪状叶缘和紫色叶、裂叶叶缘(
通常认为花期亲和指数在0.5或1以下为强自交不亲和系,在1~3之间为弱自交不亲和系,3~10之间为弱自交亲和系,10以上为强自交亲和
类型 Type | 自交系或杂交组合 Inbred line or hybrid combination | 遗传类群Genetic cluster | 花朵数Number of flowers | 种子数Seed number | 亲和指数 Compatible index |
---|---|---|---|---|---|
花自交 Flowering self-pollination | 2546(SRK36) | OK3 | 18 | 0 | 0i |
2524(SRK14) | OK1 | 14 | 1 | 0.07i | |
2535(SRK16) | OK2 | 19 | 2 | 0.11i | |
2542(SRK13) | OK3 | 18 | 13 | 0.72g | |
2538(SRK16) | OK2 | 16 | 12 | 0.75g | |
2510(SRK15) | OK1 | 23 | 132 | 5.74f | |
杂交 Flowering cross-pollination | 2522×2528(SRK23×SRK23) | OK3×OK3 | 19 | 6 | 0.36h |
2546×2515(SRK36×SRK51) | OK3×OK2 | 17 | 414 | 24.35e | |
2542×2551(SRK13×SRK15) | OK3×OK1 | 20 | 524 | 26.2d | |
杂交 Flowering cross-pollination | 2523×2519(SRK23×SRK15) | OK1×OK2 | 15 | 491 | 32.73c |
2552×2549(SRK7×SRK15) | OK1×OK1 | 19 | 764 | 40.21b | |
2550×2549(SRK15×SRK15) | OK1×OK1 | 20 | 885 | 43.25a |
不同字母表示差异显著(P<0.05)
Different letters indicate a significant difference (P<0.05)
在植物的自交不亲和性中,S单元型和遗传背景之间存在密切的关系,S单元型是植物自交不亲和性的关键因素,它们位于植物基因组中的特定位点,并影响花粉和雌蕊之间的亲和
SSR标记因具有基因组分布广泛、数量丰富、重复性好、多态性高、共显性和成本低等优点而被广泛应用于亲缘关系分析、遗传图谱构建和基因定位等研
植物的自交不亲和性按花的形态分为同型花蕊型自交不亲和(Homomorphic self-incompatibility)和异型花蕊型自交不亲和(Heteromorphic self-incompatibility
参考文献
王庆彪, 张扬勇, 庄木. 中国50个甘蓝代表品种EST-SSR指纹图谱的构建. 中国园艺文摘, 2016, 32(1): 227-228 [百度学术]
Wang Q B, Zhang Y Y, Zhuang M. Construction of EST-SSR fingerprints of 50 representative cabbage varieties in China. Chinese Horticultural Abstracts, 2016, 32(1): 227-228 [百度学术]
李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋. 球茎甘蓝SSR分子标记开发及指纹图谱构建. 南方农业学报, 2023, 54 (1): 22-33 [百度学术]
Li X J, Zhao W J, Zhao M L, Shao D K, Ma Y D. Development of SSR molecular markers and fingerprinting of bulbous kale. Southern Journal of Agriculture, 2023, 54 (1): 22-33 [百度学术]
Kusaba M, Nishio T, Satta Y, Hinata K, Ockendon D. Striking sequence similarity in inter-and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris: Implications for the evolution and recognition mechanism. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7673-7678 [百度学术]
Iwano M, Takayama S. Self/non-self discrimination in angiosperm self-incompatibility. Current Opinion in Plant Biology, 2012, 15(1): 78-83 [百度学术]
Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(19): 8816-8820 [百度学术]
Suzuki G, Kakizaki T, Takada Y, Shiba H, Takayama S, Isogai A, Watanabe M. The S haplotypes lacking SLG in the genome of Brassica rapa. Plant Cell Reports, 2003, 21(9): 911-915 [百度学术]
Lalonde B A, Nasrallah M E, Dwyer K G, Chen C H, Barlow B, Nasrallah J B. A highly conserved Brassica gene with homology to the S-locus-specific glycoprotein structural gene. The Plant Cell, 1989, 1(2): 249-258 [百度学术]
Hatakeyama K, Takasaki T, Suzuki G, Nishio T, Watanabe M, Isogai A, Hinata K. The S receptor kinase gene determines dominance relationships in stigma expression of self-incompatibility in Brassica. The Plant Journal, 2001, 26(1): 69-76 [百度学术]
Okamoto S, Sato Y, Sakamoto K, Nishio T. Distribution of similar self-incompatibility (S) haplotypes in different genera, Raphanus and Brassica. Sexual Plant Reproduction, 2004, 17(1): 33-39 [百度学术]
田磊, 庄木, 苗雯雯, 方智远, 刘玉梅, 杨丽梅, 张扬勇. 甘蓝自交系S单元型的快速分类鉴定//中国园艺学会,中国农业科学院蔬菜花卉研究所. 中国园艺学会2011年学术年会论文摘要集. 北京:园艺学会,2011:106 [百度学术]
Tian L, Zhuang M, Miao W W, Fang Z Y, Liu Y M, Yang L M, Zhang Y Y. Rapid classification and identification of S-haplotype of cabbage inbred lines//Chinese Society for Horticultural Science, Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences. Abstracts of 2011 annual academic conference of Chinese Horticultural Society. Beijing:Horticultural Society, 2011:106 [百度学术]
方智远, 孙培田, 刘玉梅. 甘蓝杂种优势利用和自交不亲和系选育的几个问题. 中国农业科学, 1983, 16(3): 51-62 [百度学术]
Fang Z Y, Sun P T, Liu Y M. Several problems on utilization of cabbage heterosis and breeding of self-incompatible lines . Scientia Agricultura Sinica, 1983, 16(3): 51-62 [百度学术]
张恩慧. 用荧光显微法测定甘蓝的自交不亲和性. 陕西农业科学, 1989 (1): 6-7 [百度学术]
Zhang E H. Determination of self-incompatibility of cabbage by fluorescence microscopy . Shaanxi Agricultural Sciences, 1989 (1): 6-7 [百度学术]
Kandasamy M K, Paolillo D J, Faraday C D, Nasrallah J B, Nasrallah M E. The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Developmental Biology, 1989, 134(2): 462-472 [百度学术]
Nishio T, Hinata K. Analysis of S-specific proteins in stigma of Brassica oleracea L. by isoelectric focusing. Heredity, 1977, 38(3): 391-396 [百度学术]
Tang J, Zhang J, Ma C, Tang W, Gao C, Li F, Wang X, Liu Y, Fu T. CAPS and SCAR markers linked to maintenance of self-incompatibility developed from SP11 in Brassica napus L.. Molecular Breeding, 2009, 24(3): 245-254 [百度学术]
Nishio T, Sakamoto K, Yamaguchi J. PCR-RFLP of S locus for identification of breeding lines in cruciferous vegetables. Plant Cell Reports, 1994, 13(10): 546-550 [百度学术]
Park J I, Lee S S, Watanabe M, Takahata Y, Nou I S. Identification of S-alleles using polymerase chain reaction-cleaved amplified polymorphic sequence of the S-locus receptor kinase in inbreeding lines of Brassica oleracea. Plant Breeding, 2002, 121(3): 192-197 [百度学术]
蓝兴国, 解莉楠, 于晓敏, 李玉花. 羽衣甘蓝自交不亲和系的选育及S13b单倍型的鉴定. 北京林业大学学报, 2006 (S2): 31-39 [百度学术]
Lan X G, Xie L N, Yu X M, Li Y H. Self-incompatible line breeding of kale and identification of S13b haplotype. Journal of Beijing Forestry University, 2006 (S2): 31-39 [百度学术]
苗雯雯, 田磊, 庄木, 刘玉梅, 杨丽梅, 张扬勇, 方智远. 甘蓝一代杂种S单元型的分布. 中国蔬菜, 2013 (10): 23-28 [百度学术]
Miao W W, Tian L, Zhuang M, Liu Y M, Yang L M, Zhang Y Y, Fang Z Y. Distribution of S-type of cabbage F1 hybrids. Chinese Vegetables, 2013 (10): 23-28 [百度学术]
陈文迪. 越冬甘蓝自交不亲和S单元型的鉴定及中甘2418双亲杂交不亲和的克服. 北京:中国农业科学院, 2022 [百度学术]
Chen W D. Identification of self-incompatible S-haplotypes and breakdown of cross-incompatibility between two parents of elite hybrid zhong-gan 2418 in overwinter cabbage. Beijing: Chinese Academy of Agricultural Sciences, 2022 [百度学术]
Sun P,Kao T H. Self-incompatibility in Petunia inflata:The relationship between a self-incompatibility locus F-box protein and its non-self S-RNases. Plant Cell, 2013,25 (2):470-485 [百度学术]
Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics, 1994, 88(1):1-6 [百度学术]
Weber J L. The informativeness of human(dC-dA)n(dG-dT)n polymorphism. Genomics, 1990, 7: 524-530 [百度学术]
Pavani M, Sundaram R M, Ramesha M S, KaviKishor P B, Kemparaju K B. Prediction of heterosis in rice based on divergence of morphological and molecular markers. Journal of Genetics, 2018, 97(5): 1263-1279 [百度学术]
Liu Y L, Geng Y P, Song M L, Zhang P F, Hou J L, Wang W Q. Genetic structure and diversity of Glycyrrhiza populations based on transcriptome SSR markers. Plant Molecular Biology Reporter, 2019, 37(5): 401-412 [百度学术]
谭晨, 刘慧春, 张加强, 周江华, 朱开元. 观赏羽衣甘蓝主要品种间的SSR遗传多样性分析. 分子植物育种, 2020, 18 (16): 5395-5402 [百度学术]
Tan C, Liu H C, Zhang J Q, Zhou J H, Zhu K Y. Analysis of SSR genetic diversity among main varieties of ornamental kale (Brassica oleracea L.). Molecular Plant Breeding, 2020, 18 (16): 5395-5402 [百度学术]
郭宁, 高怀杰, 韩硕, 宗梅, 王桂香, 张月云, 刘凡. 观赏羽衣甘蓝SSR标记分型与亲缘关系研究. 植物遗传资源学报, 2017, 18 (2): 349-357,366 [百度学术]
Guo N, Gao H J, Han S, Zong M, Wang G X, Zhang Y Y, Liu F. Genotypic and genetic relationship analysis of ornamental kale(Brassica oleracea var.acephala) by SSR markers. Journal of Plant Genetic Resources, 2017, 18(2): 349-357,366 [百度学术]
Watanabe M, Hatakeyama K, Takada Y, Hinata K. Molecular aspects of self-Incompatibility in Brassica species. Plant and Cell Physiology, 2001, 42(6): 560-565 [百度学术]
de Nettancourt D. Incompatibility in angiosperms. Sexual Plant Reproduction, 1997, 10(4): 185-199 [百度学术]
Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403(6772): 913-916 [百度学术]
Nasrallah J, Nasrallah M. Pollen[mdash]stigma signaling in the sporophytic self-incompatibility response. The Plant Cell, 1993, 5(10): 1325-1335 [百度学术]
郑敏, 朱陈曾, 刘梦慈, 徐冰冰, 马存发, 李勤菲, 任雪松, 司军, 宋洪元. 基于SRK基因序列分析的甘蓝自交不亲和系单倍型鉴定及验证. 中国蔬菜, 2018, (3): 32-39 [百度学术]
Zheng M, Zhu C Z, Liu M C, Xu B B, Ma C F, Li Q F, Ren X S, Si J, Song H Y. Haplotype identification and verification of cabbage self-incompatibility lines based on SRK gene sequence analysis . Chinese Vegetables, 2018, (3): 32-39 [百度学术]
Chen W, Zhang B, Ren W, Chen L, Fang Z, Yang L, Zhuang M, Lv H, Wang Y, Zhang Y. An identification system targeting the SRK gene for selecting S-haplotypes and self-compatible lines in cabbage. Plants, 2022, 11 (10): 1372 [百度学术]