摘要
倒伏影响作物产量和机械收获。茎秆强度是作物抗倒育种的重要目标。本研究以茎秆强度及其相关性状存在显著差异的两个甘蓝型油菜品种(系)G922和中双11号为亲本构建的DH群体为材料,对该群体茎秆强度相关性状进行QTL分析。结果表明:(1)中双11号和G922的杂种F1在茎直径、茎壁厚度和茎折断力上存在明显的正向中亲优势;茎折断力与茎直径、茎壁厚度、茎壁木质部厚度、茎壁穿透力均呈极显著正相关,茎壁穿透力与茎壁木质部厚度呈极显著正相关。(2)构建了包含1984个SNP标记、总长度为2592.64 cM的甘蓝型油菜遗传连锁图谱,在4个环境下共检测到90个茎秆强度及其相关性状QTL;其中有17个QTL能在多环境下重复检测到,包括6个茎直径QTL、5个茎秆强度QTL、2个茎壁厚度QTL和4个茎折断力QTL;茎直径主效QTL cqSD.C8-1在4个环境下能重复检测到,对表型变异的贡献率为14.67%;A2染色体上4个茎直径QTL、C6染色体上4个茎秆强度QTL分别组成QTL簇cqSD.A2、cqSS.C6。(3)茎直径QTL簇cqSD.A2及其连锁的3个分子标记(Bn-A02-p7893901、Bn-A02-p10176749、Bn-A02-p10668400),QTL cqSD.C8-1及其连锁的2个分子标记(Bn-scaff_25981_1-p90999、Bn-scaff_16287_1-p366585)可用于分子标记辅助育种。本研究进一步丰富了甘蓝型油菜抗茎倒的遗传机理,为茎直径性状精细定位及分子标记辅助育种奠定了基础。
倒伏不仅导致农作物减产,还会影响农产品品质和机械收
影响茎秆强度的因素主要包括茎秆的解剖结
油菜是我国最重要的油料作物,每年可生产优质菜籽油约520万吨,占国产植物油的47%,是我国第二大饲用蛋白
半冬性甘蓝型油菜中双11号(ZS11)和春性甘蓝型油菜G922,其中中双11号来源于中国农业科学院油料作物研究所,G922为青海省农林科学院选育的自交系。本课题组前期采用小孢子培养技术纯化亲本中双11号和G922,分别获得了DH株系ZS11-DH和G922-DH,再将ZS11-DH与G922-DH杂交,对F1植株进行小孢子培养,获得了包含211个DH株系的GZ-DH群体,该群体用于基因定位。
2017-2018年连续2年在青海西宁和互助分别种植GZ-DH群体和双亲材料(ZS11-DH和G922-DH),共4个环境,分别为2017年西宁、2017年互助、2018年西宁、2018年互助。2017-2018年在云南南繁基地,ZS11-DH与G922-DH正反交获得正反交F1种子,2018年在西宁种植双亲与正反交F1种子。试验采用随机区组设计,3次重复,每小区3行,行长2 m,行距0.30 m,株距0.15 m。播种时采用人工条播方式,出苗后及时间苗、除草和定苗,肥水管理和病虫害防治统一按当地栽培技术进行。
田间表型性状调查:在主花序角果开始转黄时,田间收取子叶节以上20~40 cm茎段6根,挂好标签于阴凉处放置。样品当天带回实验室,用数字显示游标卡尺测量茎段近地端茎直径、茎壁厚度、木质部厚度,每根茎段测量两个部位,取平均。用茎秆强度测定仪(YYD-1,浙江托普仪器有限公司)测量茎折断力、茎壁穿透力。同时,采用单位茎秆横切面积折断力计算茎秆强度,公式为茎秆强度SS=SBS/(π×S
双亲茎秆石蜡切片观察:2019年春季,两个亲本材料均种植于青海大学农林科学院田间试验区,分别于蕾苔期(6月21日)取子叶节以上5 cm处的茎段、初花期(7月4日)取子叶节以上20 cm处的茎段、终花期(7月16日)取子叶节以上20 cm处的茎段进行石蜡切片观察,石蜡切片操作方法按照Jia
性状均值、极值、标准差和中亲优势用Excel 2007进行分析。性状的T检验、方差分析采用软件DPS 12.5进行分析。
2017年,GZ-DH群体和亲本种植于西宁田间试验区,五叶期取幼嫩叶片0.2 g左右,装入2 mL离心管中,采用CTAB小量法提取DNA。利用Illumina公司开发的甘蓝型油菜 60 K SNP芯片对所有材料进行基因型检测,该芯片包含52157个SNP位点,芯片分析工作由北京怡美通德科技有限公司完成,得到的数据用Genome Studio软件进行分析,使用 GenTrain 2.0 聚类算法,结合 Brassica60k_Cons_ParkinAAFC_11621646_A.bpm 解码文件,得出分型结果。将在GZ-DH群体中没有遗传交换的SNP标记划归一个bin,每个bin中挑选出1个SNP标记,将SNP标记整理成Joinmap 4.0所要求的格式,采用软件默认的参数,对SNP标记进行分群,在连锁图构建的过程中,采用Kosambi作图函数将重组率转换为遗传图距单位(cM
采用Windows QTL Cartographer 2.5软
利用QTLNet work 2.0软
2018年对双亲及正反交F1进行茎秆强度相关性状比较(
品种或组合Variety or hybrid combination | 茎直径 SD | 茎壁厚度 SRT | 茎壁木质部厚度 SXT | 茎壁穿透力 RPR | 茎折断力 SBS | 茎秆强度 SS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
均值(mm) Mean value | 中亲优势(%) Mid-parent heterosis | 均值(mm)Mean value | 中亲优势(%) Mid-parent heterosis | 均值(mm)Mean value | 中亲优势(%) Mid-parent heterosis | 均值(N)Mean value | 中亲优势(%) Mid-parent heterosis | 均值 (N)Mean value | 中亲优势(%) Mid-parent heterosis | 均值 (N/m | 中亲优势(%) Mid-parent heterosis | |
ZS11×G922 | 17.09a | 13.93 | 1.82a | 10.30 | 0.89a | 11.95 | 25.05 b | -0.08 | 72.45ab | 21.59 | 0.3160b | -11.09 |
G922×ZS11 | 16.54ab | 10.27 | 1.77a | 7.27 | 0.78bc | -1.89 | 23.99 b | -4.31 | 66.80b | 12.11 | 0.3111b | -12.48 |
G922 | 15.53b | 1.70b | 0.75bc | 19.30 c | 40.54c | 0.2141c | ||||||
ZS11 | 14.20c | 1.60c | 0.84ab | 30.84 a | 78.63a | 0.4968a |
ZS11:中双11号;小写字母表示在P<0.05水平显著差异;下同
ZS11:Zhongshang No.11;Lowercase letters indicate significant difference(P<0.05);SD:Stalk diameter;SRT:Stalk rind thickness;SXT:Stalk xylem thickness;RPR:Rind penetrometer resistance;SBS:Stalk bending strength;SS:Stalk strength;The same as below
茎壁是茎秆的机械组织,是影响茎秆强度的关键部位。因此,对双亲蕾苔期、初花期、终花期的茎秆横切面进行了石蜡切片观察。结果见

图1 双亲茎秆横切面石蜡切片
Fig.1 Paraffin section images of stalks from the parents
G:G922;Z:中双11号;EP:表皮;CO:皮层;PH:韧皮部;XY:木质部;PI:髓腔;SXT:茎壁木质部厚度;SRT:茎壁厚度;1:蕾苔期(6月21日)子叶节以上5 cm茎段;2:初花期(7月4日)子叶节以上20 cm茎段;3:终花期(7月16日)子叶节以上20 cm茎段
G :G922;Z:ZS11;EP:Epidermis;CO: Cortex;PH: Phloem;XY: Xylem;PI: Pith;SXT:Stalk xylem thickness;SRT:Stalk rind thickness;1:Stalk segment at 5 cm above the cotyledon node on the bolting date (sampling on June 21); 2:Stalk segment at 20 cm above the cotyledon node in the initial flowering stage (sampling on July 4);3:Stalk segment at 20 cm above the cotyledon node in the final flowering stage (sampling on July 16)
2017年对茎壁穿透力和茎壁木质部厚度进行QTL分析时,未检测到可重复的主效QTL,表明这两个性状受环境影响大,很难定位到贡献率大的可靠QTL,因此2018年两个环境未测定茎壁穿透力和茎壁木质部厚度。对GZ-DH群体两年共4个环境的茎秆强度相关性状进行相关分析,结果见
环境 Environment | 性状 Traits | 茎壁厚度 SRT | 茎直径 SD | 茎壁木质部厚度 SXT | 茎壁穿透力 RPR |
---|---|---|---|---|---|
2017互助 2017HZ | 茎折断力 | 0.5314** | 0.4599** | 0.3322** | 0.3709** |
茎壁穿透力 | 0.2802** | -0.0494 | 0.3804** | 1.0000** | |
2017西宁 2017XN | 茎折断力 | 0.4260** | 0.6289** | 0.1858** | 0.3243** |
茎壁穿透力 | 0.0503 | -0.2165** | 0.2531** | 1.0000** | |
2018互助 2018HZ | 茎折断力 | 0.5123** | 0.5957** | - | - |
2018西宁 2018XN | 茎折断力 | 0.5142** | 0.6673** | - | - |
*、**分别表示在P<0.05、P<0.01水平上显著相关;-:无数据
*,** indicate significant correlation at P<0.05, P<0.01 level, respectively; -:No data; HZ:Huzhu;XN:Xining;The same as below
基因型检测共检测到52157个SNP标记,过滤掉无多态性、检出率低于95%和杂合基因型超过5%的SNP标记,同时GenTrain Score (SNP cluster quality) >0.6,最终获得32501个SNP标记。用Joinmap 4.0作图软件构建遗传连锁群,共获得19个连锁群,包含1984个SNP,遗传图谱总长度为2592.64 cM,单个标记平均图距1.42 cM。
利用构建的遗传连锁图谱,对两年4个环境下GZ-DH群体的茎秆强度及其相关性状进行QTL检测,共获得90个QTL,其中,茎秆强度QTL 26个、茎直径QTL 16个、茎壁厚度QTL 14个、茎壁木质部厚度QTL 3个、茎壁穿透力QTL 10个、茎折断力QTL 21个。对于多个环境重复检测到的QTL进行了Meta分析,整合得到17个一致性QTL(
名称 Name | 峰值位置 (cM) Peak position | 置信区间(cM) Confidence interval | 表型变异率(%) Phenotypic variation percentage | 环境 Environments |
---|---|---|---|---|
cqSD.A2-1 | 86.33 | 84.91~87.75 | 7.41 | 2017XN/2018HZ/2018XN |
cqSD.A2-2 | 91.97 | 90.78~93.16 | 7.51 | 2017XN/2018HZ |
cqSD.A2-3 | 97.41 | 95.09~99.73 | 10.35 | 2017XN/2018HZ/2018XN |
cqSD.A2-4 | 106.12 | 105.14~107.10 | 9.99 | 2017XN/2018HZ/2018XN |
cqSD.C3-3 | 140.89 | 139.69~142.84 | 5.82 | 2017XN/2018HZ/2018XN |
cqSD.C8-1 | 4.31 | 4.12~5.21 | 14.67 | 2017HZ/2017XN/2018HZ/2018XN |
cqSS.C1-1 | 80.11 | 79.75~80.93 | 8.89 | 2017XN/2018HZ |
cqSS.C6-1 | 62.01 | 59.01~65.62 | 13.61 | 2017XN/2017HZ |
cqSS.C6-2 | 70.18 | 66.88~71.56 | 10.38 | 2017HZ/2017XN |
cqSS.C6-3 | 75.87 | 73.66~76.28 | 10.44 | 2017HZ/2017XN/2018HZ/2018XN |
cqSS.C6-4 | 82.11 | 81.17~82.69 | 10.54 | 2017HZ/2017XN/2018HZ |
cqSRT.A3-3 | 131.30 | 130.6~134.34 | 6.20 | 2017XN/2018HZ |
cqSRT.C5-1 | 57.11 | 56.25~57.44 | 5.85 | 2017HZ/2018XN |
cqSBS.A3-1 | 120.01 | 118.86~123.62 | 5.89 | 2017HZ/2017XN |
cqSBS.A3-2 | 128.61 | 125.56~131.24 | 7.21 | 2017HZ/2017XN |
cqSBS.C1-1 | 80.21 | 79.9~81.2 | 5.25 | 2017HZ/2018XN |
cqSBS.C8-2 | 9.02 | 7.35~17.58 | 5.92 | 2017XN/2018HZ |
表型变异率:QTL在多个环境下表型变异率的平均值
Phenotypic variation percentage: The average of the phenotypic variation rate of a QTL in multiple environments
对茎秆强度及其相关性状进行QTL上位性分析,结果表明,只在茎直径性状上检测到6个具有加性效应的QTL,3对上位性互作效应的QTL对(

图2 茎直径QTL上位性效应图
Fig.2 Epistasis effect of the QTLs for stalk diameter
图左边的字母及数字指的是染色体号;红点为有加性效应的QTL,黑点表示没有加性效应的QTL;红线表示QTL之间存在上位效应;染色体上方是标记名称,下方数字为标记在遗传图谱上的位置,单位为cM
Letters and digits refer to the code of chromosomes on the left of the figure;The red dots refer to QTLs with additive effects, the black dots indicate QTLs without additive effects; The red lines indicate epistatic effects between QTLs;The words above the chromosome are the marker name,the numbers below the chromosome are the positions of the markers on the genetic map, and the units are cM
检测到的QTL中,只有茎直径和茎秆强度QTL在3~4个环境下重复检测到,且对表型的贡献率较大,有可能用于分子标记辅助育种。为了评估茎直径、茎秆强度一致性QTL及其连锁的分子标记在育种中的应用价值,本研究用与主效QTL连锁的分子标记对130份自然资源群体进行鉴定,把群体分成两种基因型,考察两种基因型之间表型是否存在差异。
茎直径QTL连锁的分子标记在自然资源群体中的有效性分析 在自然资源群体中,利用A2染色体上与QTL簇qSD.A2连锁的3个分子标记(Bn-A02-p7893901、Bn-A02-p10176749、Bn-A02-p10668400)、C8染色体上与QTL qSD.C8-1连锁的2个分子标记(Bn-scaff_25981_1-p90999、Bn-scaff_16287_1-p366585)分别把130份自然资源分成两种基因型,结果表明(表4),A2染色体上有2个标记(Bn-A02-p10176749、Bn-A02-p10668400)可单独将所有资源分成两种基因型材料,且两种基因型材料间茎直径存在显著或极显著差异;联合3个标记(Bn-A02-p7893901、Bn-A02-p10176749、Bn-A02-p10668400)将所有资源分成的两种基因型材料间的茎直径也存在显著差异。C8染色体上与QTL qSD.C8-1连锁的2个分子标记(Bn-scaff_25981_1-p90999、Bn-scaff_16287_1-p366585),利用单个标记将所有资源分成的两种基因型材料间茎直径都没有显著差异,但联合两个标记划分的两种基因型材料间茎直径存在显著差异。以上结果证明,A2染色体上QTL簇qSD.A2及其连锁的3个分子标记,C8染色体上QTL qSD.C8-1及其连锁的2个分子标记可用于茎直径的分子标记辅助育种。标记信息详见http://doi.org/10.13430/j.cnki.jpgr.20240301003,附表1。
茎秆强度QTL连锁的分子标记在自然资源群体中的有效性分析 在130份自然资源中,利用与C6染色体上茎秆强度QTL簇qSS.C6连锁的4个分子标记(Bn-scaff_15763_1-p234548、Bn-scaff_15818_1-p202214、Bn-A07-p16095589、Bn-A07-p15758978)进行鉴定,发现单独使用4个标记区分的两种基因型材料之间的茎秆强度均没有达到显著差异;而联合4个标记对所有材料进行基因型分类,两类基因型材料之间茎秆强度也没有达到显著差异(
标记名称 Marker name | 染色体 Chr. | 基因型Genotype | 资源数 Germplasm number | 茎直径(mm) SD | P值 P value |
---|---|---|---|---|---|
Bn-A02-p7893901(qSD.A2-2) | A2 | AA | 48 | 14.51±1.56 | 0.2087 |
BB | 62 | 14.02±1.61 | |||
Bn-A02-p10176749(qSD.A2-3) | A2 | AA | 67 | 14.68±1.59 | 0.0097 |
BB | 41 | 13.88±1.48 | |||
Bn-A02-p10668400(qSD.A2-4) | A2 | AA | 76 | 14.60±1.60 | 0.0138 |
BB | 42 | 13.87±1.48 | |||
Bn-A02-p7893901、Bn-A02-p10176749、Bn-A02-p10668400 | A2 | AA | 29 | 14.91±1.55 | 0.0129 |
BB | 18 | 13.74±1.47 | |||
Bn-scaff_25981_1-p90999(qSD.C8-1) | C8 | AA | 50 | 14.67±1.64 | 0.0882 |
BB | 70 | 14.17±1.51 | |||
Bn-scaff_16287_1-p366585(qSD.C8-1) | C8 | AA | 104 | 14.49±1.85 | 0.0674 |
BB | 19 | 13.78±1.48 | |||
Bn-scaff_25981_1-p90999、Bn-scaff_16287_1-p366585 | C8 | AA | 47 | 14.55±1.76 | 0.0337 |
BB | 18 | 13.62±1.46 |
AA:G922基因型;BB:ZS11基因型;括号内为与标记连锁的QTL;下同
AA:Genotype of G922;BB:Genotype of ZS11;The contents in parentheses are the QTLs linked to the marker;The same as below
标记名称 Marker name | 染色体 Chr. | 基因型 Genotype | 资源数 Germplasm number | 茎秆强度 (N/m SS | P值 P value |
---|---|---|---|---|---|
Bn-scaff_15763_1-p234548(qSS.C6-1) | C6 | AA | 67 | 0.319±0.071 | 0.8450 |
BB | 52 | 0.315±0.071 | |||
Bn-scaff_15818_1-p2022143(qSS.C6-2) | C6 | AA | 69 | 0.317±0.072 | 0.6829 |
BB | 47 | 0.314±0.071 | |||
Bn-A07-p16095589(qSS.C6-3) | C6 | AA | 23 | 0.322±0.077 | 0.1672 |
BB | 90 | 0.303±0.060 | |||
Bn-A07-p15758978(qSS.C6-4) | C6 | AA | 37 | 0.313±0.071 | 0.6436 |
BB | 72 | 0.319±0.069 | |||
Bn-scaff_15763_1-p234548、Bn-scaff_15818_1-p202214、Bn-A07-p16095589、Bn-A07-p15758978 | C6 | AA | 32 | 0.319±0.077 | 0.7715 |
BB | 23 | 0.316±0.070 |
作物倒伏分为根倒和茎倒(茎秆折断)两种类型,茎秆与地面的夹角小于60°称为根倒,茎段发生弯曲或折断称为茎
高密度遗传图谱是提高 QTL检测准确性的重要因
本研究在A2和C6染色体上鉴定到茎直径和茎秆强度性状相关的QTL簇各1个,在许多作物QTL定位研究中都发现了QTL簇的存
在水稻育种中,增加茎粗可以提高抗倒伏性,多个茎直径QTL的聚合可以产生更粗的茎和更强的抗倒
参考文献
Flint-Garcia S A, Jampatong C, Darrah L L, Mcmullen M D. Quantitative trait locus analysis of stalk strength in four maize populations. Crop Science, 2003, 43: 13-22 [百度学术]
李金才,尹钧,魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报,2005,31 (5):662-666 [百度学术]
Li J C, Yin J, Wei F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agronomica Sinica, 2005, 31 (5): 662-666 [百度学术]
Paul C, Roxana S, Barry C P. Sustainable food production//Berry P M.Lodging resistance in cereals. New York: Springer New York, 2013:1096-1110 [百度学术]
Luo Y L, Ni J, Pang D W, Jin M, Wang Z L. Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat. Field Crops Research, 2019, 241: 107572 [百度学术]
勾玲,黄建军,张宾,李涛,孙锐,赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报,2007,33(10):1688-1695 [百度学术]
Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agronomica Sinica, 2007, 33(10):1688-1695 [百度学术]
Kuai J, Li X Y, Ji J L, Li Z, Xie Y, Wang B, Zhou G S. The physiological and proteomic characteristics of oilseed rape stem affect seed yield and lodging resistance under different planting densities and row spacing. Journal of Agronomy and Crop Science, 2021, 207(5): 840-856 [百度学术]
Hu Y, Hassan J H, Du Y L, Lian Q W, Ye W, Zhou J, Peng X, Muhammad A, Ali R, Wu Y C. Improving lignin metabolism, lodging resistance, and yield of rapeseed (Brassica napus L.) by applying straw-fermented fertilizer. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2832-2848 [百度学术]
Sekhon R S, Joyner C N, Ackerman A J, Mcmahan C S, Cook D D, Robertson D J. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Research, 2020, 249:107737 [百度学术]
Kamran M, Cui W W, Ahmad I, Meng X P, Zhang X D, Su W N, Chen J Z, Ahmad S, Fahad S, Han Q F, Liu T N. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regulation, 2018, 84: 317-332 [百度学术]
Colbert T R, Darrah L L, Zuber M S. Effect of recurrent selection for stalk crushing strength of agronomic characteristics and soluble stalk solids in maize. Crop Science, 1984, 24: 473-478 [百度学术]
刘唐兴,官奍云,雷冬阳. 作物抗倒伏的评价方法研究进展. 中国农学通报,2007,23(5):203-206 [百度学术]
Liu T X, Guang C Y, Lei D Y. The research progress on evaluation mathods of lodging resistance in crops. Chinese Agricultural Science Bulletin, 2007, 23(5): 203-206 [百度学术]
穆春华,张发军,李文才,孙琦,孟昭东. 玉米自交系茎秆显微结构及其与茎节抗折强度的相关与通径分析. 玉米科学,2012,20(5):71-75 [百度学术]
Mu C H, Zhang F J, Li W C, Sun Q, Meng Z D. Correlation and path analysis between node snap strength (NSS) and stalk microstructure of maize inbred line. Journal of Maize Sciences, 2012, 20(5): 71-75 [百度学术]
Zuber U, Winzeler H, Messmer M, Keller M, Keller B, Schmid J, Stamp P. Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). Journal of Agronomy and Crop Science, 1999, 182(1): 17-24 [百度学术]
Robertson, D J, Julias M, Lee S Y, Cook D D. Maize stalk lodging: Morphological determinants of stalk strength. Crop Science, 2017, 57: 926-934 [百度学术]
Hu D, Liu X B, She H Z, Gao Z, Ruan R Z, Wu D Q, Yi Z L. The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum. Biologia Plantarum, 2017, 61: 1-9 [百度学术]
Kong E, Liu D, Guo X L, Yang W L, Sunday J Z, Li X, Zhan K H, Cuisine D Q, Line J X, Zhang A M. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop Journal, 2013, 1: 43-49 [百度学术]
Zhang Y L, Liang T H, Chen M , Zhang, Y C, Wang T, Lin H J, Rong T Z, Zou C Y, LiuP, Lee M, Pan G T, Shen Y O, Lübberstedt T. Genetic dissection of stalk lodging-related traits using an IBM Syn10 DH population in maize across three environments (Zea mays L.). Molecular Genetics and Genomics, 2019, 294: 1277-1288 [百度学术]
Yadav S, Singh U M, Naik S M, Challa V, Ramayya P J , Anitha R K, Nitika S, Arvind K. Molecular mapping of QTLs associated with lodging resistance in dry direct-seeded rice (Oryza sativa L.). Frontiers in Plant Science, 2017, 8: 1431 [百度学术]
Sameri M, Nakamura S, Nair S K, Takeda K, Komatsuda T. A quantitative trait locus for reduced culm internode length in barley segregates as a mendelian gene. Theoretical and Applied Genetics, 2009, 118(4): 643-652 [百度学术]
范冬梅,杨振,马占洲,曾庆力,杜翔宇,蒋洪蔚,刘春燕,韩冬伟,栾怀海,裴宇峰,陈庆山,胡国华. 多环境条件下大豆倒伏性相关形态性状的QTL分析. 中国农业科学,2012,45(15):3029-3039 [百度学术]
Fan D M, Yan Z, Ma Z Z, Zeng Q L, Du X Y, Jiang H W, Liu C Y, Han D W, Luan H H, Pei Y F, Chen Q S, Hu G H. QTL analysis of lodging-resistance related traits in soybean in different environments. Scientia Agricultura Sinica, 2012, 45(15): 3029-3039 [百度学术]
Wei L J, Jian H J, Lu K, Yin N W, Wang J, Duan X J, Li W, Liu L Z, Xu X F, Wang R, Paterson A H, Li J N. Genetic and transcriptomic analyses of lignin and lodging-related traits in Brassica napus. Theoretical Applied Genetics, 2017, 130: 1961-1973 [百度学术]
陈雪萍,荆凌云,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊. 甘蓝型油菜茎秆菌核病抗性与木质素含量及其单体G/S的相关性分析及QTL定位. 作物学报,2017,43(9):1280-1289 [百度学术]
Chen X P, Jing L Y, Wang J, Jian H J, Mei J Q, Xu X F, Li J N, Liu L Z. Correlation analysis of sclerotiniaresistance with lignin content and monomer G/S and its QTL mapping in Brassica napus L. Acta Agronomica Sinica, 2017, 43(9): 1280-1289 [百度学术]
Tian Z S, Wang X F, Dun X L, Zhao K Q, Wang H Z, Ren L J. An integrated QTL mapping and transcriptome sequencing provides further molecular insights and candidate genes for stem strength in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2024, 137(2): 38 [百度学术]
Shen Y S, Xiang Y, Xu E S, Ge X H, Li Z Y. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an Alien introgression derived Brassica napus DH population. Frontiers in Plant Science, 2018, 9: 390 [百度学术]
Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2008, 117: 749-757 [百度学术]
Shao Y J, Shen Y S, He F F, Li Z Y. QTL identification for stem fiber, strength and rot resistance in a DH population from an Alien introgression of Brassica napus. Plants, 2022, 11, 373 [百度学术]
Li H G, Cheng X, Zhang L P, Hu J H, Zhang F G, Chen B Y, Xu K, Gao G Z, Li H, Li L X, Huang Q, Li Z Y, Yan G X, Wu X M. An integration of genome-wide association study and gene co-expression network analysis identifies candidate genes of stem lodging-related traits in Brassica napus. Frontiers in Plant Science, 2018, 9:796 [百度学术]
Zhang Z H, Zhang X, Lin Z L, Wang J, Liu H Q, Zhou L N, Zhong S Y, Li Y, Zhu C, Lai J S, Li X R, Yu J M, Lin Z W. A larget transposon insertion in the stiff1 promoter increases stalk strength in maize. The Plant Cell, 2020, 32: 152-165 [百度学术]
刘成,冯中朝,肖唐华,马晓敏,周广生,黄凤洪,李加纳,王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报,2019,41(4):485-489 [百度学术]
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of chinese rapeseed industry. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485-489 [百度学术]
杜德志,肖麓,赵志,柳海东,姚艳梅,星晓蓉,徐亮,李开祥,王瑞生,李钧,付忠,赵志刚,唐国永. 我国春油菜遗传育种研究进展.中国油料作物学报,2018,40(5):633-639 [百度学术]
Du D Z, Xiao L, Zhao Z, Liu H D, Yao Y M, Xing X R, Xu L, Li K X, Wang R S, Li J, Fu Z, Zhao Z Z, Tang G Y. Advances in genetic breeding of spring rapeseed in China. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 633-639 [百度学术]
徐亮,林建荣,杜德志. 通过表型和基因型鉴定筛选适合春油菜区的优异种质.中国油料作物学报,2022,44(2):280-288 [百度学术]
Xu L, Lin J R, Du D Z. Identification and screening of elite germplasm for spring rapeseed area by genotyping and phenotyping. Chinese Journal of Oil Crop Sciences, 2022, 44(2): 280-288 [百度学术]
Jia Y P, Li K X, Liu H D, Zan L X, Du D Z. Characterization of the BnA10. tfl1 gene controls determinate inflorescence trait in Brassica napus L.. Agronomy, 2019, 9(11):722 [百度学术]
Kosambi D. The estimation of map distances from recombination values. Ann Eugen, 1994, 12: 172-175 [百度学术]
Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC,2012.http://brcwebportal.cos ncsu.edu/qtlcart/WQTLCart.htm [百度学术]
Deng C R, Liu H D, Yao Y M, Guo S M, Xiao L, Fu Z, Du D Z. QTL analysis of four yield-related traits for Brassica napus L. in multiple environments. Molecular Breeding, 2019, 39: 166 [百度学术]
Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-13 [百度学术]
Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: Mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721-723 [百度学术]
Sosnowski O, Charcosset A, Joets J. BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics, 2012, 28: 2082-2083 [百度学术]
黄文辉,王会,蔡鑫,汪文祥,付丽,胡琼,成洪涛,梅德圣. 甘蓝型油菜DH群体抗倒伏相关性状遗传分析. 中国油料作物学报,2018,40(1):18-24 [百度学术]
Huang W H, Wang H, Cai X, Wang W X, Fu L, Hu Q, Cheng H T, Mei D S. Genetic analysis of lodging resistance related traits of Brassica napus DH population. Chinese Journal of Oil Crop Sciences, 2018, 40(1): 18-24 [百度学术]
Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140 (3):1111-1127 [百度学术]
Wang H, Yan M, Xiong M, Wang P F, Liu Y, Xin Q, Wan L L, Yang G S, Hong D F. Genetic dissection of thousand-seed weight and fine mapping of cqSW. A03-2 via linkage and association analysis in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2020, 133: 1321-1335 [百度学术]
Mallard S, Cantet M, Massire A, Bachellez A,Ewert S,Lefebvre V. A key QTL cluster is conserved among accessions and exhibits broad-spectrum resistance to Phytophthora capsici: A valuable locus for pepper breeding. Molecular Breeding, 2013, 32(2): 349-364 [百度学术]
Onishi K, Horiuchi Y, Ishigoh-Oka N, Takagi K, Sano Y. A QTL cluster for plant architecture and its ecological significance in Asian wild rice. Breeding Science, 2007, 57(1): 7-16 [百度学术]
Jiang D L, Gu X H, Li B J, Zhu Z X, Qin H, Meng Z N, Lin H R, Xia J H. Identifying a long QTL cluster across chrLG18 associated with salt tolerance in Tilapia using GWAS and QTL-seq. Marine Biotechnology, 2019, 21(2): 250-261 [百度学术]
Liu T M, Yu T, Xing Y Z. Identification and validation of a yield-enhancing QTL cluster in rice (Oryza sativa L.). Euphytica, 2013, 192(1): 145-153 [百度学术]