摘要
随着全球气候变化,极端天气事件发生概率显著上升。作为我国水稻商品粮重要生产基地,黑龙江省是低温冷害频发地区,黑龙江省粳稻在苗期和生殖生长期(含孕穗期、开花期和成熟期)都容易遭遇低温胁迫。低温胁迫是黑龙江省粳稻生产的重要限制因素,提高黑龙江省粳稻品种耐冷性对保障我国粮食安全生产具有重大战略意义。本文在回顾水稻耐冷鉴定方法和遗传研究同时,通过分析黑龙江省粳稻近20年(2006-2023年)育成品种的耐冷数据发现,随着近年来审定品种数量“井喷”,品种耐冷性呈现整体下降趋势;其次,通过基于参考基因组的比较作图发现,苗期和生殖生长期耐冷性大多受独立的位点或染色体区段控制,遗传重叠(包括一因多效位点和连锁区段)比例在21%左右,其中负调控位点占比20%。对当前黑龙江省粳稻耐冷育种工作而言,针对上述遗传重叠位点/区段和负调控位点开展深入研究,将有利于进一步提高育种工作效率。在此基础上,本文提出了黑龙江省粳稻耐冷生物育种策略以及苗期与生殖生长期耐冷性同步改良的具体建议。
水稻(Oryza sativa L.)起源于热带和亚热带地区,包括籼、粳两个亚种。相较于小麦(Triticum aestivum L.)、大麦(Hordeum vulgare L.)等其他禾本科作物,水稻较易受到低温冷害影响。加之我国稻作区分布范围广,在东北地区、长江流域、珠江流域及部分高海拔地区种植的水稻会遭遇不同时期、不同程度的低温冷
东北稻区地处高纬度,低温冷害是该地区水稻生产最大的风险性因素之一;其冷害发生频率高,受害面积大;特别是黑龙江省,平均每3~5年就发生一
低温冷害或者冷胁迫(Cold stress)简称冷害,是指农作物在生长期间遭遇低于所需最低温度阈值而引起生长发育受阻的现
根据冷害造成减产的原因,可将水稻冷害大致分为3
根据冷害发生时水稻所处的生长阶段,研究者又将冷害做了细分,大致包括发芽期、芽期、幼苗期、移栽期、分蘖期、孕穗期、开花期和成熟期冷害
苗期冷害在我国云贵高原单季稻区、长江中下游早稻区和北方稻区比较常见,生殖生长期冷害则在黑龙江省和南方中晚稻区时常出
通过2006-2023年审定品种的公开数据

图 1 2006-2023年黑龙江省不同积温带审定品种的数量及生殖生长期耐冷性变化趋势
Fig.1 The cold tolerances at reproductive stage and numbers of cultivars approved to be released across different accumulated temperature zones in Heilongjiang province during 2006-2023
一至五分别表示黑龙江省的第一至第五积温带;最小值和最大值分别表示低温处理空壳率的最小值和最大值
The numbers of 1 to 5 shown in Chinese characters represent the different accumulating temperature zones (ATZs) from ATZ one to ATZ five;Min. and Max. represent the minimum and maximum values of the spikelet sterility rate under cold stress, respectively
在品种的遗传改良研究中,目标性状鉴定是至关重要的环节,需要兼顾准确度和鉴定通量之间的平衡。耐冷性鉴定通常需要在鉴定过程中对试验对象施加低温处理,比较常见的处理方法包括自然低温、冷水灌溉和人工气候室处
自然低温是利用特殊气候条件对水稻施加温度胁迫的方法,比较适合大批量材料的初步筛选。例如利用云南特殊的垂直气候条件,开展水稻耐冷自然鉴
冷水灌溉是采用控温装置,将冷水与常温水混合调制,形成温度适合的处理水,然后用处理水灌溉稻株并维持一定深度水层,从而对稻株施加低温胁迫的方法。冷水灌溉可用于苗期也可用于生殖生长期的耐冷性研究。苗期处理的通常方法是:将常温下培养的三叶一心期幼苗用12~13℃的冷水处理10 d之后,恢复常温生长7~10 d,并调查幼苗受胁迫程
人工气候室处理则是通过人为控制水稻生长发育所需的温度、湿度和光照等条件对稻株施加低温胁迫的室内处理方法。该方法理论上适用于各个时期的耐冷性鉴定;然而,由于对人工气候室内不同位置温度均一性要求较高,加之单个气候室空间条件等限制因素,不同批次之间的鉴定效果也可能存在一定程度波动。结合实践,本文认为不同研究者可以根据研究目的和研究阶段的不同需求,将上述3种方法有机结合,因地制宜地制定鉴定策略,实现成本和效率平衡兼顾的耐冷鉴定方案。
水稻不同生育阶段对低温胁迫的响应不同,苗期受到低温冷害会使植株营养生长减慢,叶片失绿萎蔫甚至死亡;生殖生长期遭遇低温,影响花粉育性及结实率,导致产量降低。因此,水稻不同生育阶段鉴定水稻品种耐冷性的方法及鉴定评价标准也各不相同。
按照指标类型划分,水稻耐冷性鉴定指标主要包括生长发育、外部形态和生理生化3大类。其中,生长发育指标主要包括苗期的存活率和枯萎度等;外部形态指标主要包括苗期的叶赤枯度、地上部生长量和分蘖数,生殖生长期的秆长缩短率、穗抽出度、抽穗延迟天数、结实率、成熟期综合耐冷性和冷水反应指数
苗期耐冷性鉴定的形态指标中叶片枯萎度和叶片卷曲程度存在一定主观判断误差;存活率则相对直接客观,因此在遗传育种工作中,后者往往与前两者配合使用。生殖生长期耐冷性鉴定指标较多,但最常用的还是低温处理下的结实率或空瘪率,后者又称为低温处理空壳率,是黑龙江省品种耐冷性鉴定的重要指
耐冷性属于复杂性状,不同生长阶段的水稻都有可能遭遇不同程度的低温胁迫,其中苗期和生殖生长期对低温最为敏感。前人通过正向遗传学方法检测到了多达270个耐冷性数量性状位点(QTL,quantitative trait loci),分布在全基因组12条染色体上。不同时期的耐冷性QTL数量比例也有所不同,其中,苗期占比最高,达40%,生殖生长期则不到30
从编码产物看,这些基因主要编码转录因子和蛋白激酶,分别占35.1%和18.9%(
类型 Type | QTL/基因 QTL/gene | 染色体 Chr. | 候选基因 Candidate genes | 编码产物/代谢途径 Encoding product/metabolic pathway | 有利单倍型/等位基因来源 Advantageous haplotype/allele source | 调控类型 Regulation type | 参考文献 References |
---|---|---|---|---|---|---|---|
苗期 Seedling stage | OsSEH1 | 1 | LOC_Os01g43250 | 核孔蛋白 | 粳稻 | 负 |
[ |
OsNAC6 | 1 | LOC_Os01g66120 | NAC转录因子 | NA | 正 |
[ | |
OsMYB3R2 | 1 | LOC_Os01g62410 | MYB转录因子 | NA | 正 |
[ | |
苗期 Seedling stage | OsTIL1 | 2 | LOC_Os02g39930 | 脂质运载蛋白 | NA | 正 |
[ |
OsWRKY71 | 2 | LOC_Os02g08440 | WRKY转录因子 | NA | 正 |
[ | |
LTG1 | 2 | LOC_Os02g40860 | 酪蛋白激酶 | NA | 正 |
[ | |
OsCDPK7 | 4 | LOC_Os04g49510 | 钙依赖性蛋白激酶 | NA | 正 |
[ | |
COLD1 | 4 | LOC_Os04g51180 | G蛋白信号调节因子 | 粳稻 | 正 |
[ | |
OsMYB55/OsMYB4 | 4 | LOC_Os04g43680 | MYB转录因子 | NA | 正 |
[ | |
OsWRKY45 | 5 | LOC_Os05g25770 | WRKY转录因子 | NA | 负 |
[ | |
ONAC095 | 6 | LOC_Os06g51070 | NAC转录因子 | NA | 正 |
[ | |
OsMAPK6 | 6 | LOC_Os06g06090 | 丝裂原活化蛋白激酶 | NA | 正 |
[ | |
OsWRKY115 | 7 | LOC_Os07g27670 | WRKY转录因子 | NA | 正 |
[ | |
OsWRKY76 | 9 | LOC_Os09g25060 | WRKY转录因子 | NA | 正 |
[ | |
OsMYBS3 | 10 | LOC_Os10g41200 | MYB转录因子 | NA | 正 |
[ | |
OsLTPL159 | 10 | LOC_Os10g36160 |
非特异性脂质 转移蛋白 | 粳稻 | 正 |
[ | |
HAN1 | 11 | LOC_Os11g29290 | 氧化酶 | 粳稻 | 正 |
[ | |
COG1 | 11 | LOC_Os11g36200 | 类蛋白受体激酶 | 粳稻 | 正 |
[ | |
OsWRKY94 | 12 | LOC_Os12g40570 | WRKY转录因子 | NA | 正 |
[ | |
生殖生长期 Reproductive stage | OsLEA9 | 1 | LOC_Os01g21250 | 晚期胚胎富集蛋白 | NA | 负 |
[ |
OsMKKK70 (孕穗期) | 1 | LOC_Os01g50410 | 丝裂原活化蛋白激酶 | NA | 负 |
[ | |
OsMAPK3 | 3 | LOC_Os03g17700 | 丝裂原活化蛋白激酶 | 粳稻 | 正 |
[ | |
OsAPX1 | 3 | LOC_Os03g17690 | 抗坏血酸过氧化物酶 | NA | 正 |
[ | |
Ctb1(孕穗期) | 4 | LOC_Os04g52830 | F-box蛋白 | NA | 正 |
[ | |
CTB2/CTB4b (孕穗期) | 4 | LOC_Os04g04254 | UDP-葡萄糖甾醇葡萄糖基转移酶 | 粳稻 | 正 |
[ | |
CTB4a (孕穗期) | 4 | LOC_Os04g04330 | 蛋白激酶 | 粳稻 | 正 |
[ | |
OsWRKY53 (孕穗期) | 5 | LOC_Os05g27730 | WRKY转录因子 | NA | 负 |
[ | |
qCTB7 (孕穗期) | 7 | LOC_Os07g07690 | PHD结构域蛋白 | NA | 正 |
[ | |
LTT1 (孕穗期) | 10 | LOC_Os10g34110 | NA | NA | 负 |
[ | |
苗期与生殖生长期遗传重叠 The seedling stage overlaps with the reproductive stage |
qSR3.2/qWD3.2/qSSR3 (孕穗期) | 3 | NA | NA | 粳稻 | NA | 未发表结果 |
MIR1868 (孕穗期) | 4 | LOC Os04g32710 | NA | NA | 负 |
[ | |
bZIP73 | 9 | LOC Os09g29820 | bZIP转录因子 | 粳稻 | NA |
[ | |
qRC10-2 (成熟期) | 10 | NA | NA | 野生稻 | NA |
[ | |
qPSR10 (孕穗期) | 10 | NA | NA | NA | NA |
[ | |
qLTS11/qSST11-1和 qLTL11/qSST11-2(孕穗开花期) | 11 | NA | NA | 粳稻 | NA |
[ | |
OsWRKY63 (孕穗期) | 11 | LOC_Os11g45920 | WRKY转录因子 | 粳稻 | 负 |
[ | |
qCTBS11/COG3(孕穗期) | 11 | LOC_0s11g44680 | NA | 粳稻 | 正 |
[ |
括号表示该QTL/基因起作用的水稻生长时期;NA表示数据无法获取或不存在
The content shown in parentheses indicated the specific stage when the QTL/gene is working ; NA means the data not available
WRKY是植物特有的一类锌指转录因子,在抗逆中发挥重要作用。已知与水稻耐冷性相关的WRKY转录因子有7个(
信号转导途径在水稻应对低温胁迫过程中起重要作用,蛋白激酶是其重要组成部
G蛋白是信号转导途径的另一重要组成部分,COLD1基因编码的G蛋白信号调节因子能够与G蛋白α亚基RGA1相互作用并正调控苗期耐冷
OsAPX1编码的细胞质抗坏血酸过氧化物酶能够增强H2O2和丙二醛的清除能
遗传重叠是两种性状在遗传上存在一定程度关联,控制不同性状的位点存在一因多效或紧密连锁的现

图 2 水稻苗期、生殖生长期耐冷性相关基因/QTL的基因组分布和遗传重叠
Fig.2 Genomic distribution and genetic overlaps of cold tolerance-related genes/QTLs at seedling stage and reproductive stage
黑色字表示已知的水稻苗期、生殖生长期耐冷性相关基因/QTL;蓝色字表示项目组定位的苗期、生殖生长期耐冷性QTL,其中QTL命名依据冷处理后的性状,WD:枯萎度;SR:存活率;SSR:结实率
Previously identified genes/QTLs against cold stresses at the seedling stage and reproductive stage of rice were shown in black, while the QTLs identified by authors’ working group were shown in blue. The loci were nominated according to the traits under cold stresses including,WD:Wilting degree; SR:Survival rate ; SSR:Seed setting rate
上述结果表明,尽管苗期与生殖生长期的耐冷遗传机制可能存在较大差异,但仍然有一定比例的遗传重叠。上述遗传重叠位点/染色体区段有望在借助生物育种方法同步改良水稻苗期和生殖生长期耐冷性中提供重要信息。
黑龙江省位于我国最北方,作为最大单季稻产区,承担着我国粮食安全饭碗底座的重任。尽管在全球变暖背景下,黑龙江省于2023年调整了积温带设置,但是未来黑龙江省大部区域仍然面临冷害威胁。
黑龙江省春季温度较低,通常大田育秧有困难。当前生产上主要通过大棚旱育稀植方式来提高积温可得性;在秧棚外积雪条件下,秧棚内通常能够维持在20℃以上,秧龄可长达40 d。因此,随着栽培制度变化,芽期耐冷性已经不是黑龙江省生产上的主要问题,而生殖生长期耐冷性成为主要问题。2002年,我国北方稻区遭受到严重冷害,2003年起,耐冷性被列为黑龙江省水稻品种审定的重要指标。生殖生长期耐冷性和稻瘟病抗性一样,是黑龙江省水稻品种审定“一票否决”的重要指标,低温处理空壳率标准为小于30
根据采用的资源和耐冷性鉴定方法,黑龙江省耐冷育种大致分为两个阶段,包括20世纪80年代及以前与2004年至今。
这个阶段的黑龙江省水稻育种处于系统育种阶段和杂交育种初期。育种家普遍认为,20世纪50年代以来直接或间接能够在黑龙江省长期立足的引进品种具有较强耐冷性,其中具有代表性的是引自日本北海道的石狩白
随着黑龙江省农业科学院水稻研究所等单位连续多年对大量材料进行耐冷性研究,于1979-1984年逐步形成黑龙江省水稻耐冷材料的鉴定筛选标准,经过6年试验研究,在鉴定的917份材料中,苗期耐冷材料有194份,生殖生长期耐冷材料有15份。从鉴定结果看,水稻各时期都耐冷的材料很少,只有1份合江13;然而,在育种实践中合江13的利用效果却不及合江12和合江2
2004年开始的黑龙江省品种区域试验中,以低温处理空壳率为指标的水稻生殖生长期耐冷性由指定单位进行统一鉴定,其中2004-2010年采用空育131为鉴定对照。空育131于1991年从日本北海道引入黑龙江省,1997年通过黑龙江省农垦总局品种审定委员会审定,2000年经黑龙江省农作物审定委员会认定推广,其累计推广面积超过1亿
2022年以来,耐极端高/低温水稻新品种设计与培育项目组(以下简称项目组)针对黑龙江省地区开展耐极端低温新品种的生物育种研究,育成了一批苗头品系。其中,龙粳1934是黑龙江省农业科学院水稻研究所通过系谱法选育的耐冷性强且优质高产抗倒伏早熟新品种(黑审稻20230053)。该品种是以含有空育131耐冷血缘的中间材料为母本,耐冷抗倒抗稻瘟病的中间材料为父本,经连续耐冷鉴定选育的新品种;主茎11片叶,在适应区出苗至成熟生育日数130 d左右,需≥10℃活动积温2400℃左右。2021-2022年耐冷性鉴定结果:低温处理空壳率17.6%~19.4%。
龙粳4613是黑龙江省农业科学院水稻研究所选育的耐冷性强且优质高产抗倒伏早熟品种(黑审稻2023L0118)。该品种双亲均含有耐冷品种空育131血缘;主茎11片叶,在适应区出苗至成熟生育日数130d,需≥10℃活动积温2400℃左右。2021-2022年耐冷性鉴定结果:低温处理空壳率15.8%~23.4%。
中农粳18是由中国农业科学院作物科学研究所以吉粳88导入系LY1为母本,育成的抗病耐冷特性较好的早熟粳稻品种(黑审稻2023L0088)。2020-2021年参加第三积温带晚熟期组区域试验,平均产量9075.4 kg/h
随着全球气候变化,黑龙江省地区积温呈现整体上升趋
在已知的37个耐冷基因/位点上,有利等位基因大都来自粳稻,只有1个来自野生稻(
要进一步提升黑龙江省粳稻耐冷性,一方面需要通过野生稻资源或者3K测序资
生物育种即生物技术育种的简称,指在生物技术(BT,biology technology)与包括信息技术(IT,information technology)在内的多种前沿技术融合基础上,结合常规育种技术手段,培育新品种的过程。多种技术的综合运用,不仅使育种家的亲本选配能够有更加明确的方向,而且能够较大程度地缩短育种周
针对黑龙江省粳稻耐冷育种,一是进一步加强耐冷资源鉴定。根据水稻中存在的针对生物胁迫和非生物胁迫的“隐蔽变异
未来是育种的智能设计时代,育种家有望首先借助多组学手段,采集包括中农粳5205和龙粳1934在内的优异耐冷品系信息,通过遗传群体和资源群体等建立基因组育种数据
通过上述过程的探索和实践,逐步构建适合黑龙江省的早熟粳稻耐冷生物育种技术体系,提升耐冷品种选育效率,加快培育兼具苗期和生殖生长期耐冷性且综合性状优良的黑龙江省早熟粳稻新品种,保障国家粮食安全。
参考文献
戴陆园, 叶昌荣, 余腾琼, 徐福荣. 水稻耐冷性研究 Ⅰ. 稻冷害类型及耐冷性鉴定评价方法概述. 西南农业学报, 2002(1): 41-45 [百度学术]
Dai L Y, Ye C R, Yu T Q, Xu F R.Study on cold tolerance of rice,Oryzasativa L. I.Discription on types of cold injury and classifications of evaluation methods on cold tolerance in rice. Southwest Agricultural Journal, 2002 (1) : 41-45 [百度学术]
中国天气网内蒙古站. 东北冷害. 中国天气网.(2013-09-22) [2024-03-03]. http://www.weather.com.cn/neimenggu/sy/tqyw/09/1973105.shtml [百度学术]
China Weather Network Inner Mongolia Station.Cold damage in Northeast China.China Weather Network.(2013-09-22) [2024-03-03]. http://www.weather.com.cn/neimenggu/sy/tqyw/09/1973105.shtml [百度学术]
Wang P, Liu H, Wu W, Kong F, Hu T. Future projections of rice exposure to cold stress in China throughout the 21st century. European Journal of Agronomy, 2022, 135: 126473 [百度学术]
熊振民, 闵绍楷, 王国梁, 程式华, 曹立勇. 早籼品种苗期耐冷性的遗传研究. 中国水稻科学, 1990(2): 75-78 [百度学术]
Xiong Z M, Min S K, Wang G L, Cheng S H, Cao L Y.Genetic study on cold tolerance of early indica rice varieties at seedling stage. Chinese Journal of Rice Science, 1990 (2) : 75-78 [百度学术]
Zhao G Z, Liu J X, Yang S J, Yea J D, Liao X H, Su Z X, Shi R, Jiang C, Dai L Y. Effect of cold-water irrigation on grain quality traits in japonica rice varieties from Yunnan province, China. Rice Science, 2009, 16(3): 201-209 [百度学术]
戴陆园, 叶昌荣, 熊建华, 王怀义. 稻耐冷性鉴定评价方法. 中国水稻科学, 1999(1): 62 [百度学术]
Dai L Y, Ye C R, Xiong J H, Wang H Y. Method for identification and evaluation of cold tolerance in rice. Chinese Journal of Rice Science, 1999 (1) : 62 [百度学术]
韩龙植, 张三元. 水稻耐冷性鉴定评价方法. 植物遗传资源学报, 2004,5(1): 75-80 [百度学术]
Han L Z, Zhang S Y. Identification and evaluation of cold tolerance in rice. Journal of Plant Genetic Resources, 2004 ,5(1) : 75-80 [百度学术]
刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望. 遗传, 2018, 40(3): 171-185 [百度学术]
Liu C T, Wang W, Mao B G, Chu C C.Study on low temperature tolerance of rice: Molecular physiological mechanism and breeding prospect. Genetics, 2018,40 (3): 171-185 [百度学术]
潘国君. 寒地粳稻育种. 北京: 中国农业出版社, 2014: 650 [百度学术]
Pan G J. Cold japonica rice breeding. Beijing : China Agricultural Publishing House, 2014: 650 [百度学术]
农业农村部种业管理司. 国家种业大数据平台.(2013-09-22) [2024-03-03]. http://202.127.42.47:6010/SDSite/Home/Index [百度学术]
Department of Seed Industry Management, Ministry of Agriculture and Rural Affairs.National Seed Industry Big Data Platform.(2013-09-22) [2024-03-03]. http://202.127.42.47:6010/SDSite/Home/Index [百度学术]
中国水稻研究所. 国家水稻数据中心. (2024-03-03) [2024-03-03]. https://www.ricedata.cn/variety/ [百度学术]
China National Rice Research Institute. National Rice Data Center. (2024-03-03) [2024-03-03]. https://www.ricedata.cn/variety/ [百度学术]
苗得雨. 寒地水稻品种不同时期耐冷性比较研究. 现代农业科技, 2009(5): 155-158 [百度学术]
Miao D Y. A comparative study on the cold tolerance of rice varieties in different periods. Modern Agricultural Science and Technology, 2009 (5): 155-158 [百度学术]
崔迪, 杨春刚, 汤翠凤, 余腾琼, 张俊国, 曹桂兰, 阿新祥, 徐福荣, 张三元, 戴陆园, 韩龙植. 低温胁迫下粳稻选育品种耐冷性状的鉴定评价. 植物遗传资源学报, 2012, 13(5): 739-747 [百度学术]
Cui D, Yang C G, Tang C F, Yu T Q, Zhang J G, Cao G L, A X X, Xu F R, Zhang S Y, Dai L Y, Han L Z. Identification and evaluation of cold tolerance traits of japonica rice varieties under low temperature stress. Journal of Plant Genetic Resources, 2012,13 (5): 739-747 [百度学术]
张景龙, 孟昭河, 郑桂萍, 张群. 寒地水稻孕穗期耐冷性的鉴定. 现代化农业, 2010(4): 27-29 [百度学术]
Zhang J L, Meng Z H, Zheng G P, Zhang Q. Identification of cold tolerance of rice at booting stage in cold region. Modern Agriculture, 2010 (4): 27-29 [百度学术]
杨洛淼. 水稻孕穗期耐冷性QTL的遗传解析. 哈尔滨: 东北农业大学, 2018 [百度学术]
Yang L M. Genetic analysis of QTL for cold tolerance at booting stage in rice. Northeast Agricultural University, 2018 [百度学术]
Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. Journal of Experimental Botany, 2011, 62(14): 4863-4874 [百度学术]
Tang J, Tian X, Mei E, He M, Gao J, Yu J, Xu M, Liu J, Song L, Li X, Wang Z, Guan Q, Zhao Z, Wang C, Bu Q. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. The Plant Cell, 2022, 34(11): 4495-4515 [百度学术]
Zhang M X, Zhao R R, Huang K, Huang S Z, Wang H T, Wei Z Q, Li Z, Bian M D, Jiang W Z, Wu T, Du X L. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. The Plant Journal, 2022, 112(2): 383-398 [百度学术]
Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiology, 2009, 150(1): 244-256 [百度学术]
Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal, 2004, 37(1): 115-127 [百度学术]
Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiology, 2010, 153(1): 145-158 [百度学术]
Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008, 67(1-2): 169-181 [百度学术]
Huang L, Hong Y, Zhang H, Li D, Song F. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biology, 2016, 16(1): 203 [百度学术]
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324 [百度学术]
Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over‐expression of a single C
Lu G W, Wu F Q, Wu W X, Wang H J, Zheng X M, Zhang Y H, Chen X L, Zhou K N, Jin M N, Cheng Z J, Li X Y, Jiang L, Wang H Y, Wan J M. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. The Plant Journal, 2014, 78(3): 468-480 [百度学术]
Xia C, Liang G, Chong K, Xu Y. The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice. Nature Communications, 2023, 14(1): 3104 [百度学术]
Zhang Z, Li J, Pan Y, Li J, Zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W, Yu J, Sun X, Li G, Ding Y, Ma L, Shen S, Dai L, Zhang H, Yang S, Guo Y, Li Z. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 2017, 8:14788 [百度学术]
Liu J, Liu J, He M, Zhang C, Liu Y, Li X, Wang Z, Jin X, Sui J, Zhou W, Bu Q, Tian X. OsMAPK6 positively regulates rice cold tolerance at seedling stage via phosphorylating and stabilizing OsICE1 and OsIPA1. Theoretical and Applied Genetics, 2023, 137(1): 10 [百度学术]
Lou Q, Guo H, Li J, Han S, Khan N U, Gu Y, Zhao W, Zhang Z, Zhang H, Li Z, Li J. Cold‐adaptive evolution at the reproductive stage in Geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9. The Plant Journal, 2022, 111(4): 1032-1051 [百度学术]
Mei E, Tang J, He M, Liu Z, Tian X, Bu Q. OsMKKK70 negatively regulates cold tolerance at booting stage in rice. International Journal of Molecular Sciences, 2022, 23(22): 14472 [百度学术]
Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 160(6): 1209-1221 [百度学术]
Ji L X, Zhang Z F, Liu S, Zhao L Y, Li Q, Xiao B Z, Suzuki N, Burks D J, Azad R K, Xie G S. The OsTIL1 lipocalin protects cell membranes from reactive oxygen species damage and maintains the 18∶3‐containing glycerolipid biosynthesis under cold stress in rice. The Plant Journal, 2023, 117(1): 72-91 [百度学术]
Zhao J, Wang S, Qin J, Sun C, Liu F. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. Plant Biotechnol Journal, 2019, 18(3): 756-769 [百度学术]
Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Reports, 2011, 30(3): 399-406 [百度学术]
Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Science, 2010, 179(1-2): 97-102 [百度学术]
李继龙. 水稻孕穗期耐冷QTL的精细定位与克隆.北京: 中国农业大学, 2018 [百度学术]
Li J L. Fine mapping and cloning of cold tolerance QTL at booting stage in rice. Beijing: China Agricultural University, 2018 [百度学术]
Li J L, Zeng Y W, Pan Y H, Zhou L, Zhang Z Y, Guo H F, Lou Q J, Shui G H, Huang H G, Tian H, Guo Y M, Yuan P R, Yang H, Pan G J, Wang R Y, Zhang H L, Yang S H, Guo Y, Ge S, Li J J, Li Z C. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. New Phytologist, 2021, 231(3): 1056-1072 [百度学术]
Mao D H, Xin Y Y, Tan Y J, Hu X J, Bai J J, Liu Z Y, Yu Y L, Li L Y, Peng C, Fan T, Zhu Y X, Guo Y L, Wang S H, Lu D P, Xing Y Z, Yuan L P, Chen C Y. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proceedings of the National Academy of Sciences, 2019, 116(9): 3494-3501 [百度学术]
Yang L, Lei L, Wang J, Zheng H, Xin W, Liu H, Zou D. qCTB7 positively regulates cold tolerance at booting stage in rice. Theoretical and Applied Genetics, 2023, 136(6): 135 [百度学术]
Xu Y, Wang R, Wang Y, Zhang L, Yao S. A point mutation in LTT1 enhances cold tolerance at the booting stage in rice. Plant, Cell & Environment, 2020, 43(4): 992-1007 [百度学术]
Gu S, Zhang Z, Li J, Sun J, Cui Z, Li F, Zhuang J, Chen W, Su C, Wu L, Wang X, Guo Z, Xu H, Zhao M, Ma D, Chen W, Natural variation in OsSEC13 HOMOLOG 1 modulates redox homeostasis to confer cold tolerance in rice. Plant Physiology, 2023, 193(3): 2180-2196 [百度学术]
Shen Y, Cai X, Wang Y, Li W, Li D, Wu H, Dong W, Jia B, Sun M, Sun X. MIR1868 negatively regulates rice cold tolerance at both the seedling and booting stages. The Crop Journal, 2024, 12(2): 375-383 [百度学术]
Kim C Y, Vo K T X, Nguyen C D, Jeong D H, Lee S K, Kumar M, Kim S R, Park S H, Kim J K, Jeon J S. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology Reports, 2016, 10(1): 13-23 [百度学术]
Liu H, Yang L, Xu S, Lyu M-J, Wang J, Wang H, Zheng H, Xin W, Liu J, Zou D. OsWRKY115 on qCT7 links to cold tolerance in rice. Theoretical and Applied Genetics, 2022, 135(7): 2353-2367 [百度学术]
Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 2013, 64(16): 5085-5097 [百度学术]
Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K, OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytologist, 2018, 218(1): 219-231 [百度学术]
Liu C, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi M R, Zhao B, Xiao G, Wang X, Chu C. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nature Communications, 2018, 9(1): 3302 [百度学术]
Liu C, Schläppi M R, Mao B, Wang W, Wang A, Chu C. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol Journal, 2019, 17(9): 1834-1849 [百度学术]
Xu M L, Xiao N, Huang W N, Zhang X X, Gao Y, Li A H, Dai Y, Yu L, Liu G Q, Pan C H, Li Y H, Dai Z Y, Chen J M. Fine mapping of qRC10-2, a quantitative trait locus for cold tolerance of rice roots at seedling and mature stages. PLoS ONE, 2014, 9(5): e96046 [百度学术]
Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiology, 2018, 177(3): 1108-1123 [百度学术]
张立娜. 水稻不同生长发育时期耐冷性QTL定位及候选基因发掘. 北京: 中国农业科学院, 2022 [百度学术]
Zhang L N.QTL mapping and candidate gene discovery of cold tolerance at different growth and development stages of rice. Beijing: Chinese Academy of Agricultural Sciences, 2022 [百度学术]
Liu D, Luo S, Li Z, Liang G, Guo Y, Xu Y, Chong K. COG3 confers the chilling tolerance to mediate OsFtsH2‐D1 module in rice. New Phytologist, 2024, 241(5): 2143-2157 [百度学术]
郑天清. 水稻高代回交导入系选择群体的选择响应与遗传重叠研究. 南京: 南京农业大学, 2006 [百度学术]
Zheng T Q. Study on selection response and genetic overlap of selected populations of advanced backcross introgression lines in rice. Nanjing: Nanjing Agricultural University, 2006 [百度学术]
殷琪荔. 气候变化对黑龙江省粮食全要素生产率的影响研究. 哈尔滨: 东北农业大学, 2023 [百度学术]
Yin Q L. Research on the impact of climate change on grain total factor productivity in Heilongjiang province. Harbin: Northeast Agricultural University, 2023 [百度学术]
Wang W S, Mauleon R, Hu Z Q, Chebotarov D, Tai S S, Wu Z C, Li M, Zheng T Q, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J L, Sun C, Fu B Y, Zhang H L, Gao Y M, Zhao X Q, Shen F, Cui X, Yu H, Li Z, Chen M L, Detras J, Zhou Y L, Zhang X Y, Zhao Y, Kudrna D, Wang C C, Li R, Jia B, Lu J Y, He X C, Dong Z T, Xu J B, Li Y H, Wang M, Shi J X, Li J, Zhang D B, Lee S, Hu W S, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y C, Yue Z, Naredo M E B, Talag J, Wang X Q, Li J J, Fang X D, Yin Y, Glaszmann J-C, Zhang J W, Li J Y, Hamilton R S, Wing R A, Ruan J, Zhang G Y, Wei C C, Alexandrov N, McNally K L, Li Z K, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43-49 [百度学术]
林敏. 农业生物育种技术的发展历程及产业化对策. 生物技术进展, 2021, 11(4): 405-417 [百度学术]
Lin M. Development course and industrialization countermeasures of agricultural bio-breeding technology. Advances in Biotechnology, 2021, 11(4): 405-417 [百度学术]
Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Research, 2006, 97(1): 66-76 [百度学术]
He Y X, Zheng T Q, Hao X B, Wang L F, Gao Y M, Hua Z T, Zhai H Q, Xu J L, Xu Z J, Zhu L H, Li Z K. Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. Plant Breeding, 2010, 129(2): 167-175 [百度学术]
Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C C, McNally K L, Alexandrov N, Gao X Y, Li J Y, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol Journal, 2020, 18(1): 14-16 [百度学术]
Wang K, Abid M A, Rasheed A, Crossa J, Hearne S, Li H. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant, 2023, 16(1): 279-293 [百度学术]
Watson A, Ghosh S, Williams M J, Cuddy W S, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski N M, Breakspear A, Korolev A, Rayner T, Dixon L E, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters M J, DeLacy I H, Zhou J, Uauy C, Boden S A, Park R F, Wulff B B H, Hickey L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4(1): 23-29 [百度学术]