摘要
植物细胞壁转化酶(CWIN,cell wall invertase)可以催化蔗糖水解为葡萄糖和果糖,在植物生长发育过程中具有重要作用。为探究GmCWINs在大豆株高、分枝数等株型发育过程中的功能,本研究克隆到1个该基因家族成员GmCWIN3,序列分析结果显示,GmCWIN3基因的CDS全长为1728 bp,其编码575个氨基酸。GmCWIN3蛋白二级结构中无规则卷曲结构占比最大,为48.17%;蛋白质三级结构显示该基因编码了一种细胞壁转化酶。GmCWIN3基因启动子区具有多个光响应元件,同时也具有响应生长素、赤霉素及昼夜节律的顺式作用元件。进一步地分析生长素和赤霉素诱导下GmCWIN3的表达模式,发现GmCWIN3基因能在反应初期快速地响应两种激素的诱导。构建GmCWIN3基因的植物表达载体并完成其在拟南芥中的过表达,对转基因株系及野生型拟南芥的细胞壁转化酶活性和蔗糖含量进行测定,结果表明转基因拟南芥中细胞壁转化酶活性显著提高,且蔗糖含量显著降低。此外,对植株表型进行观察和统计,发现与野生型相比,过表达植株的株高和分枝数均显著增加。综上所述,本研究推测GmCWIN3基因可能通过调节体内蔗糖的水解,从而参与生长素及赤霉素介导的大豆株高及分枝数等性状的形成过程。本研究结果为进一步探究GmCWIN3基因调控大豆株型相关性状的分子机制研究奠定了基础。
大豆(Glycine max(L.) Merr)是重要的粮油饲兼用作物,种子中富含丰富的油脂和蛋白质,对人类的营养健康有着重要作
植物细胞壁转化酶(CWIN/CWI, cell wall invertase)是一种催化蔗糖水解为葡萄糖和果糖的酶,广泛存在于植物的细胞壁中,参与糖分的运输和信号转
本研究旨在探究GmCWIN3基因在调控植物株型发育过程中的作用。首先,克隆GmCWIN3基因,并对其进行生物信息学分析及激素诱导的基因表达模式分析。其次,利用农杆菌浸花法转化拟南芥Col-0,测定转基因拟南芥的细胞壁转化酶活性和蔗糖含量;同时,对转基因拟南芥的株高及分枝数进行表型鉴定。本研究将为进一步明确大豆和其他物种CWIN基因家族的功能提供依据,为大豆理想株型相关性状的遗传改良及分子育种提供重要的基因资源。
本研究所使用的试验材料包括栽培大豆品种Williams82和拟南芥Col-0,均由本实验室保存。播种所用基质为1∶1配比的蛭石和营养土,培养条件分别为12 h光照/12 h黑暗和16 h光照/8 h黑暗,生长调节温度为22~25℃,空气湿度60%~70%。其中,种植大豆Williams 82为100株,用于基因克隆的植株数为5株,其余植株备用于外源激素诱导实验;种植拟南芥Col-0 100株,用于拟南芥的侵染转化。
待栽培大豆Williams 82第一组三出复叶展开时,取叶片100 mg左右,使用天根生化科技(北京)有限公司植物组织RNA提取试剂盒(DP424)提取大豆叶片总RNA。测定RNA的OD260/280值,用1.5%琼脂糖凝胶电泳对RNA进行检测后,对检测合格的RNA用聚合美公司的反转录酶M5 Sprint qPCR RT kit with gDNA remover(聚合美MF949-01)进行反转录得到cDNA,并将cDNA保存于-20℃冰箱。通过Phytozome在线数据库(https://phytozome-next.jgi.doe.gov/)获取GmCWIN3(Glyma.15G024600)基因的CDS序列,使用Primer 5软件设计GmCWIN3基因CDS区的克隆引物GmCWIN3-F/R(
引物名称 Primer name | 引物序列(5ʹ-3ʹ) Primer sequence(5ʹ-3ʹ) | 用途 Function |
---|---|---|
GmCWIN3-F | ACTCTTGACCATGGTAGATCTGATGGCCGTATCTCCAATTTTGT | 基因克隆 |
GmCWIN3-R | GTCATCCTTGTAATCACTAGTGTTTATTTTTGCCTTCTCCATG | |
q-GmCWIN3-F | GATGGGCTGGAATCCATACT | qRT-PCR |
q-GmCWIN3-R | TCACCACCTTTGACCACTTT | |
OE-JD-F1 | TGACGCACAATCCCACTATC | 转基因植株鉴定 |
OE-JD-R1 | AGGCTCAGCCACAATACTTC | |
GmEF1a-F | GCTCTTCTTGCTTTCACCCTT | qRT-PCR大豆内参基因 |
GmEF1a-R | TTCCTTCACAATTTCATCATACC | |
AtActin-F | GCTAACCGTGAGAAGATGAC | qRT-PCR拟南芥内参基因 |
AtActin-R | CTAGCATAAAGCGACAGGAC |
此外,通过在线软件PSIPRED(http://bioinf.cs.ucl.ac.uk/psipred/)对GmCWIN3蛋白二级结构进行分析,同时利用在线软件PlantCare(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)对基因启动子区的顺式作用元件进行分析。
当大豆的两组三出复叶完全展开时,对72株生长状态良好的Williams 82大豆叶片进行生长类植物激素的外源喷施处理。设置20 μmol/L生长素(IAA, indole acetic acid)、20 μmol/L赤霉素(GA3,gibberellin 3)和水(对照)3组处理。为了排除光周期的影响,采取了倒序处理的方式,即距离最后集中取样的48、36、24、12、8、4、2、0 h,共8个时间点分别各喷施一次,至最后0 h时同时取样。每个处理每次喷施3个单株,共72株,每个单株取样3个叶片,分别提取不同处理下的叶片总RNA,并稀释为统一浓度500 ng/μL,利用聚合美公司的反转录试剂盒将RNA反转录为cDNA,设计实时荧光定量PCR引物q-GmCWIN3-F和q-GmCWIN3-R(
提取植物表达载体pCAMBIA3301质粒,使用引物GmCWIN3-F/R扩增GmCWIN3基因的CDS序列,利用限制性内切酶Spe Ⅰ与Bgl Ⅱ对质粒进行双酶切并进行产物纯化(诺唯赞,DC301-01),通过同源重组连接目的片段和酶切后的质粒,并转化大肠杆菌DH5α感受态细胞。挑选单菌落,利用GmCWIN3-F/R引物进行菌液PCR鉴定,并进行测序,得到pCAMBIA3301-GmCWIN3重组质粒并转化到农杆菌EHA105中。
摇菌培养含有pCAMBIA3301-GmCWIN3重组质粒的农杆菌,利用经典浸花法转化拟南芥Col-0。收获单株种子,进行种子平板筛选实验及植株喷施草铵膦筛选。设计基因鉴定引物OE-JD-F1/R1(
选取45 d的T3代转GmCWIN3基因过表达拟南芥株系OE-1和OE-4,进行细胞壁转化酶和蔗糖含量测定,对照为45 d的野生型拟南芥,取样部位是莲座叶和茎,分别设置6次生物学重复。依照索莱宝公司细胞壁转化酶试剂盒(BC4325)对植株的酶活性进行检测。实验原理是蔗糖被细胞壁转化酶催化水解生成还原性糖,接着还原糖与C7H4N2O7(2-羟基-3,5-二硝基苯甲酸)反应生成棕红色物质,该物质在540 nm有特征性吸收峰。依照索莱宝公司植物蔗糖含量试剂盒(BC2465)对植株叶片等组织部位的蔗糖含量进行检测。首先,利用碱热处理样本,以破坏其中的还原糖。在酸性环境下,将蔗糖分解为葡萄糖和果糖。之后,果糖与间苯二酚进行反应,形成有色物质,该物质在480 nm下展示出特征性吸收峰。通过使用可见分光光度计测定540 nm、480 nm处吸光值的大小变化,最终计算得出CWI的活性与蔗糖含量。
设计基因克隆引物,利用PCR扩增目的基因GmCWIN3 (Glyma.15G024600) 的完整CDS区,使用凝胶电泳检测获得PCR产物,目的片段长1728 bp(

图 1 大豆GmCWIN3基因CDS序列扩增
Fig.1 CDS sequence amplification of GmCWIN3
1~4:4个重复的PCR反应体系
1-4:Four duplicate PCR reaction systems
生物信息学分析显示,GmCWIN3基因的CDS序列全长1728 bp,编码575个氨基酸。GmCWIN3蛋白的理论相对分子质量为64.37 kDa,理论等电点为8.75,亲水性平均值为-0.30(负值代表亲水),不稳定指数为31.71 < 40,表明GmCWIN3蛋白是稳定的亲水性蛋白。此外,蛋白二级结构显示,GmCWIN3中无规则卷曲结构占比最大(48.17%),其次是片层结构(28.35%)、α螺旋(17.39%)和β转角(6.09%)。蛋白质三级结构显示该基因编码一种细胞壁转化酶。
为了探究GmCWIN3基因在生长发育过程中的潜在调节机制,将GmCWIN3基因转录起始密码子ATG上游的2000 bp序列作为基因上游启动子区,并输入PlantCARE数据库中进行顺式作用元件分析。结果发现该启动子区包含多种类型的顺式作用元件(

图 2 GmCWIN3基因启动子序列中的顺式作用元件
Fig.2 Cis-acting elements in GmCWIN3 gene promoter sequence
通过对GmCWIN3基因的启动子区进行顺式作用元件分析,发现其中包含生长素和赤霉素响应元件,而生长素和赤霉素在植物生长发育过程中扮演着重要作用。因此,为了探究GmCWIN3基因对生长素和赤霉素的响应模式,对生长状态良好的Williams82大豆第二组三出复叶于不同时间点进行外源激素处理,分析GmCWIN3基因的表达模式。结果显示,对照组中GmCWIN3基因的表达受光周期昼夜节律的影响,而呈规律性变化。相比较于对照组,喷施了生长素的大豆叶片在处理2 h时,GmCWIN3基因表达水平显著上调,而后表达下降,直至8 h后表达水平逐渐趋同于对照组(

图3 生长素和赤霉素处理下大豆叶片中GmCWIN3的相对表达量
Fig.3 Relative expression of GmCWIN3 in soybean leaves treated with IAA and GA3
A:IAA处理下的GmCWIN3基因表达水平;B:GA处理下的GmCWIN3基因表达水平;*:在P<0.05水平上差异显著;下同
A: Relative expression of GmCWIN3 under IAA treatment; B:Relative expression of GmCWIN3 under GA treatment; *: There is a significant difference at the P<0.05 level; The same as below
利用转基因鉴定引物对获得的植株进行逐代检测。结果显示,在T2代阳性株系中成功扩增到目的片段,大小为482 bp(

图 4 T2代转GmCWIN3基因拟南芥的鉴定
Fig. 4 Identification of the T2 generation transgenic Arabidopsis carrying GmCWIN3
A:T2代转基因拟南芥的PCR鉴定; 1: 野生型拟南芥,2~9: 4个转基因株系,每个株系设置两个单株重复;B: T2代转基因拟南芥的qRT-PCR鉴定;CK:野生型拟南芥,OE-1~OE-4:转基因拟南芥阳性株系;下同;***: 在P<0.001水平上差异显著
A: Identification of T2 generation transgenic lines by PCR;1: Wild type, 2-9: Four transgenic lines with two single repeats per line; B: Identification of T2 generation transgenic lines by qRT-PCR; CK: Wild type, OE-1-OE-4: T2 generation transgenic lines;The same as below; ***: There is a significant difference at the P<0.001 level
选取两个T3代转GmCWIN3基因高表达且纯合的拟南芥株系(OE-1和OE-4)进行植株叶片和茎中CWI酶活和蔗糖含量的检测。结果显示,过表达拟南芥植株叶片和茎中的CWI酶活性显著高于野生型;与叶片相比,茎中的CWI酶活性明显更高(

图 5 转基因拟南芥叶片和茎的CWI活性及蔗糖含量
Fig.5 CWIN activity and sucrose content in leaves and stems of transgenic lines
**: 在P<0.01水平上差异显著;下同
**: There is a significant difference at the P<0.01 level;The same as below
选取两个T3代转GmCWIN3基因高表达且纯合的拟南芥株系(OE-1和OE-4)共50株,即OE-1株系和OE-4株系各25株,并在生长第40天的成熟期进行株高和分枝数的表型测定(

图 6 转基因拟南芥株高和分枝数表型鉴定
Fig. 6 Phenotype identification of plant height and branch number of transgenic lines
A:野生型与转基因拟南芥的株高和分枝数表型;B:野生型与转基因拟南芥的株高;C:野生型与转基因拟南芥的分枝数
A: Plant height and branch number of wild and transgenic Arabidopsis; B: Plant height of wild-type and transgenic Arabidopsis; C: Branch number of wild-type and transgenic Arabidopsis
细胞壁转化酶能催化蔗糖水解为葡萄糖和果糖,在控制植物代谢、生长发育等许多方面发挥着关键作
蔗糖是植物光合产物的主要运输形式,也是重要的信号分子,蔗糖通过韧皮部从源器官(通常为叶片),运输到花朵、种子和根系等库器官中以支持它们的生长和分化,并作为能量来源储存起
CWIN基因家族在调节植物生长发育过程中的重要作用已多有报道。在拟南芥中,增强细胞壁转化酶基因AtCWIN4的表达,可以恢复拟南芥转录因子ARF8突变体表现出的短小后稷表
综上所述,本研究初步探究了细胞壁酸性转化酶基因GmCWIN3的功能,证实了过表达GmCWIN3基因可以显著影响拟南芥的株高和分枝数,以调控拟南芥的株型,本研究结果可为今后培育具有理想株型及高产的大豆新品种(系)奠定重要的理论基础及基因资源。
参考文献
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 2022,20(2):256-282 [百度学术]
石慧, 王思明. 大豆在中国的历史变迁及其动因探究. 农业考古, 2019(3):32-39 [百度学术]
Shi H, Wang S M. Research on historical development and motivations of soybeans in China. Agricultural Archaeology, 2019(3):32-39 [百度学术]
刘羽诚, 申妍婷, 田志喜. 大豆泛基因组研究进展. 遗传, 2024, 46(3): 183-198 [百度学术]
Liu Y C, Shen Y T, Tian Z X. Frontiers of soybean pan-genome studies. Hereditas, 2024, 46(3): 183-198 [百度学术]
Liu Y, Song Y, Ruan Y. Sugar conundrum in plant-pathogen interactions: Roles of invertase and sugar transporters depend on pathosystems. Journal of Experimental Botany, 2022,73(7):1910-1925 [百度学术]
Vargas W, Cumino A, Salerno G L. Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol. Planta, 2003,216(6):951-960 [百度学术]
Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J. Structure, evolution, and expression of the two invertase gene families of rice. Journal of Molecular Evolution, 2005,60(5):615-634 [百度学术]
Li M, Feng F, Cheng L. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE, 2012,7(3):e33055 [百度学术]
Yao Y, Geng M, Wu X, Liu J, Li R, Hu X, Guo J. Genome-wide identification, expression, and activity analysis of alkaline/neutral invertase gene family from cassava (Manihot esculenta Crantz). Plant Molecular Biology Reporter, 2015,33(2):304-315 [百度学术]
Nonis A, Ruperti B, Pierasco A, Canaguier A, Adam-Blondon A, Di Gaspero G, Vizzotto G. Neutral invertases in grapevine and comparative analysis with Arabidopsis, poplar and rice. Planta, 2008,229(1):129-142 [百度学术]
Ruan Y. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 2014,65:33-67 [百度学术]
Bihmidine S, Hunter C T, Johns C E, Koch K E, Braun D M. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Frontiers in Plant Science, 2013, 4: 177 [百度学术]
Roitsch T, Balibrea M E, Hofmann M, Proels R, Sinha A K. Extracellular invertase: Key metabolic enzyme and PR protein. Journal of Experimental Botany, 2003,54(382):513-524 [百度学术]
Doidy J, Grace E, Kuhn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 2012,17(7):413-422 [百度学术]
Rausch T, Greiner S. Plant protein inhibitors of invertases. Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics, 2004,1696(2):253-261 [百度学术]
Proels R K, Hückelhoven R. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Molecular Plant Pathology, 2014,15(8):858-864 [百度学术]
Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008,40(11):1370-1374 [百度学术]
Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. The Plant Cell, 1992,4(3):297-305 [百度学术]
Jin Y, Ni D, Ruan Y. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. The Plant Cell, 2009,21(7):2072-2089 [百度学术]
Balibrea Lara M E, Gonzalez Garcia M, Fatima T, Ehneß R, Lee T K, Proels R, Tanner W, Roitsch T. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. The Plant Cell, 2004,16(5):1276-1287 [百度学术]
Albacete A, Cantero-Navarro E, Großkinsky D K, Arias C L, Balibrea M E, Bru R, Fragner L, Ghanem M E, González M D L C, Hernández J A, Martínez-Andújar C, van der Graaff E, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. Journal of Experimental Botany, 2015,66(3):863-878 [百度学术]
Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. Journal of Pineal Research, 2015,59(1):109-119 [百度学术]
Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y. Genome-wide survey of invertase encoding genes and functional characterization of an extracellular fungal pathogen-responsive invertase in Glycine max. International Journal of Molecular Sciences, 2018,19(8):2395 [百度学术]
Tang X, Su T, Han M, Wei L, Wang W, Yu Z, Xue Y, Wei H, Du Y, Greiner S, Rausch T, Liu L. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). Journal of Experimental Botany, 2017,68(3):469-482 [百度学术]
Dimou M, Flemetakis E, Delis C, Aivalakis G, Spyropoulos K G, Katinakis P. Genes coding for a putative cell-wall invertase and two putative monosaccharide/
Koch K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 2004,7(3):235-246 [百度学术]
李涛涛, 刘溢健, 王仕稳, 殷俐娜, 邓西平. 作物旱后复水补偿效应产生的源-库-流的响应及机制. 水土保持学报, 2024,38(2):1-12 [百度学术]
Li T T, Liu Y J, Wang S W, Yin L N, Deng X P. Response and mechanism of sourc-sink-flow caused by the compensation effect of crop rehydration after drought. Journal of Soil and Water Conservation, 2024,38(2):1-12 [百度学术]
Nie H, Lee S, Lim S, Park J, Kim J, Bae S H, Lee Y, Shin A, Kwon S. Expression profiles of genes involved in sugar metabolism during fruit development and ripening of paprika (Capsicum annuum L.). Horticulture, Environment, and Biotechnology, 2023,64(6):1015-1026 [百度学术]
Li Y, Zhang P, Wang Z, Zhang Y, Zhu F, Liu Y, Jones A, Wu L, Song Y. Coordinated regulation of sucrose and lignin metabolism for arrested silk elongation under drought stress in maize. Environmental and Experimental Botany, 2023,214:105482 [百度学术]
张军, 翟莹, 邱爽, 尹珺伊, 张艳, 金振华, 张勇, 王丽坤. 大豆GmGolS基因高温胁迫应答及启动子活性分析. 大豆科学, 2023,42(2):188-193 [百度学术]
Zhang J, Zhai Y, Qiu S, Yin J Y, Zhang Y, Jin Z H, Zhang Y, Wang L K. Response of soybean GmGolS gene to heat stress and promoter activity analysis. Soybean Science, 2023,42(2):188-193 [百度学术]
French S R, Abu-Zaitoon Y, Uddin M M, Bennett K, Nonhebel H M. Auxin and cell wall invertase related signaling during rice grain development. Plants, 2014,3(1):95-112 [百度学术]
Wu L, Mitchell J P, Cohn N S, Kaufman P B. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots. International Journal of Plant Sciences, 1993,154(2):280-289 [百度学术]
徐慧芳, 陈栩. 生长素研究现状及其在大豆育种中的应用. 中国科学:生命科学, 2024,54(2):247-259 [百度学术]
Xu H F, Chen X. Auxin research status and its application in soybean breeding. Scientia Sinica Vitae, 2024,54(2):247-259 [百度学术]
Zhang Y, Zhen L, Tan X, Li L, Wang X. The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Molecular Biology Reports, 2014,41(12):7899-7910 [百度学术]
Yoon J, Cho L, Tun W, Jeon J, An G. Sucrose signaling in higher plants. Plant Science, 2021,302:110703 [百度学术]
Chen L, Qu X, Hou B, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by sweet proteins as a key step for phloem transport. Science, 2012,335(6065):207-211 [百度学术]
Bavnhøj L, Driller J H, Zuzic L, Stange A D, Schiøtt B, Pedersen B P. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. Nature Plants, 2023,9(6):938-950 [百度学术]
Lohaus G, Burba M, Heldt H W. Comparison of the contents of sucrose and amino acids in the leaves, phloem sap and taproots of high and low sugar-producing hybrids of sugar beet (Beta vulgaris L.). Journal of Experimental Botany, 1994,45(8):1097-1101 [百度学术]
Li J, Foster R, Ma S, Liao S, Bliss S, Kartika D, Wang L, Wu L, Eamens A L, Ruan Y. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses. The Plant Journal, 2021,106(4):1058-1074 [百度学术]
Zhang J, Wu Z, Hu F, Liu L, Huang X, Zhao J, Wang H. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. Horticulture Research, 2018,5:39 [百度学术]
陈晓睿, 王影, 邱丽娟, 陈庆山. 大豆GmBAS1基因的鉴定以及对大豆株型结构的影响. 农业生物技术学报, 2024,32(1):26-38 [百度学术]
Chen X R, Wang Y, Qiu L J, Chen Q S. Identification of soybean (Glycine max) GmBAS1 gene and its effect on soybean plant architecture structure. Journal of Agricultural Biotechnology, 2024,32(1):26-38 [百度学术]
Chen Y, An X, Zhao D, Li E, Ma R, Li Z, Cheng C. Transcription profiles reveal sugar and hormone signaling pathways mediating tree branch architecture in apple (Malus domestica Borkh.) grafted on different rootstocks. PLoS ONE, 2020,15(7):e236530 [百度学术]
Barbier F F, Dun E A, Beveridge C A. Apical dominance. Current Biology, 2017,27(17):R864-R865 [百度学术]
Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. Multiple pathways regulate shoot branching. Frontiers in Plant Science, 2015,5:714 [百度学术]
Bertheloot J, Barbier F, Boudon F, Perez-Garcia M D, Péron T, Citerne S, Dun E, Beveridge C, Godin C, Sakr S. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. New Phytologist, 2020,225(2):866-879 [百度学术]
Patil S B, Barbier F F, Zhao J, Zafar S A, Uzair M, Sun Y, Fang J, Perez-Garcia M, Bertheloot J, Sakr S, Fichtner F, Chabikwa T G, Yuan S, Beveridge C A, Li X. Sucrose promotes D53 accumulation and tillering in rice. New Phytologist, 2022,234(1):122-136 [百度学术]
Yang H, Xu F, Liao H, Pan W, Zhang W, Xu B, Yang X. Transcriptome and metabolite analysis related to branch development in two genotypes of Eucalyptus urophylla. Molecular Genetics and Genomics, 2021,296(5):1071-1083 [百度学术]