摘要
玉米的株高是决定其产量和稳定性的关键因素之一。本研究旨在通过优化玉米株型来提高玉米的单产。本课题组在B73的诱变材料中发现了一个矮化突变体d309,该突变体通过连续自交得以稳定遗传。遗传分析揭示,d309突变体的表型受单一隐性基因控制。与B73自交系相比,d309突变体展现出显著降低的株高和缩短的节间。细胞学研究表明,d309突变体在第5和第6茎节间的细胞长度显著缩短。通过构建d309与PH6WC的F2分离群体,并运用BSR-seq技术,将突变位点定位在第3号染色体的3.47~17.47 Mb区间。进一步通过基因定位将突变位点定位于5-4和5-7两对分子标记之间,该区间内只有1个开放阅读框(Zm00001d039634),编码赤霉素3-氧化酶(GA3ox,gibberellin 3-oxidases),已被报道为Dwarf1。测序结果显示,d309突变体在Zm00001d039634基因CDS区存在单个核苷酸的突变,导致氨基酸序列改变。蛋白质结构预测表明,该突变位点位于Fe(II)2OGD(Iron 2-oxoglutarate dioxygenase)结构域内。通过外源施加赤霉素,d309突变体的矮化表型得到恢复,从而确认d309为一个赤霉素合成缺陷型突变体。此外,d309突变体与已报道的Dwarf1等位突变体在突变机制上存在差异,表明d309可能是Dwarf1基因的一个新等位基因。
自绿色革命以来,高产、半矮秆品种已广泛应用于小麦、水稻、玉米等作物,使得粮食产量迅速增加,解决了发展中国家一半人口的吃饭问题,避免了大规模的粮食危
玉米株高受到多种因素影响,包括遗传背景、气候条件、水分和养分供给、植株密度及田间管理等。茎节长度、节间数以及细胞形态异常均会影响玉米株
近年来,随着高通量测序技术的发展,基因定位和验证过程中开发了大量分子标记。利用分子标记精细定位和鉴定候选基因,有助于进一步解析候选基因的功能和调控机制,并为相关性状的遗传改良和育种工作提供重要信息。本研究报道了一个新的玉米矮化突变体d309,通过田间表型鉴定、遗传分析和图位克隆,推测它可能是Dwarf1基因的一个新等位突变体。对Dwarf1蛋白的进化保守性、表达模式和结构变异进行了分析。本研究结果不仅为玉米矮秆品种的选育提供了宝贵的遗传资源,也为深入探索株高基因的优异等位变异和Dwarf1矮化机理提供了科学依据。
d309是本课题组前期从B73的诱变材料中获得的矮化突变体,具有明显的矮化表型,经过多代自交后矮化表型可以稳定遗传。本研究以矮化突变体d309和玉米自交系PH6WC 作为亲本杂交产生F1种子,经自交后产生F2群体。F2群体于2022年夏季种植在北京顺义中国农业科学院作物科学研究所试验基地,共计480行,行长5 m,行距0.6 m,株距25 cm,与亲本、F1材料种植方法一致。种植4周后调查表型,并统计F2群体中正常表型植株与矮化表型的分离比,选取10个F1单穗种植后获得的相应F2穗行进行卡方测验。待野生型和突变体植株生长至成熟期,使用塔尺进行株高和节间距测量,记录数据并分析。
待田间玉米自交系B73和矮化突变体d309生长至6周时,取第5、6节间浸没在固定液(50%乙醇89 mL、甘油 1 mL、冰醋酸 5 mL、福尔马林 5 mL混合而成)中,避光4℃固定。用3%的琼脂糖包埋后,用震荡切片机(LeicaVT1000s)切成45 μm左右薄片,0.05%甲苯胺蓝染色15 s,超纯水清洗,使用LEICA DM4 B光学显微镜观察细胞形态并拍照。细胞面积计算:计算0.28 m
在玉米拔节期,对F2分离群体中正常植株和矮化植株进行株高调查与鉴定,提取叶片总RNA(天根生化科技公司RNA快速提取试剂盒)后,分别构建正常植株和矮化植株混合样本库,每个混池中各30个样本,用于进行转录组测序。由安诺优达基因科技有限公司进行cDNA文库构建和转录组测序,测序平台使用Ilumina Nova Seq 6000,测序策略为双端150 bp(pair-end 150,PE150)。转录组测序数据分析由美国堪萨斯州立大学刘三震教授团队根据其已报道的分析方法完
PH6WC×d309 F2分离群体中鉴定到1347株具有矮化表型,用CTAB法提取玉米叶片组织DNA,PCR采用江苏康为2×Es Taq MasterMix(Dye)和诺唯赞2 ×3G Taq Master Mix for PAGE,程序与体系参照对应说明书。SSR标记参照Maize(GDB) (https://maizegdb.org/)和实验室现有标记,引物合成和DNA测序由上海生工生物有限公司北京分部完成。通过聚丙烯凝胶电泳利用特异性分子标记筛选区间内重组个体,通过设计InDel标记(primer3:https://bioinfo.ut.ee/primer3-0.4.0/)进一步缩小区间(
引物 Primer | 正向序列 (5΄-3΄) Forward sequence (5΄-3΄) | 反向序列(5΄-3΄) Reverse sequence (5΄-3΄) |
---|---|---|
umc1425 | ATAGTCAAGCAGCCAACAAAATCC | CTGTAATCGCTAACGGGGTAACAT |
3-14.9 | GGACCTCAAACTTGTCGATAAAT | CATCACCACTCAGAATGTCAGTG |
1-17 | CTCAAACAGCCAAGCAAGC | ATCTTCTCTCCGTGCTGTGT |
2-3 | CACGGGCAAGTTGGAATATGA | TCCGGTACTTCTCATTTCTGTT |
2-35 | AGATAGTGGCGTCATGAACCA | CGTAAAATGGATGTTTGGGTTCA |
2-44 | TGTACGTGCGAGAGAGTGAG | CCGTCCTCCTCAACCATCTA |
4-4 | ATGACCCATGGCTCGCGT | CGGCGATCACATCAACGG |
4-18 | AAGAGCTACACAACCCGGAA | CGAGTGTTACAAAGTGGAGTGT |
634-1 | TGGAGAGAACAGGTCGATGG | CCAGTTTCGAGGGTGTTGTC |
637-1 | CTGCTTTACCTGCTTTGCCA | CCAGCTCCCAACTTGCATTA |
5-4 | CGACGACTACACCAGCTTCT | GACCTGCTGCTGTACCTGTA |
5-7 | CCGAGATAGAGCAACGCAAC | CTGCCTACCTACCCAGAGTG |
411 | CACGCCATGTACTTCTCTGC | GACCTGCTGCTGTACCTGTA |
412 | CGACGACTACACCAGCTTCT | TGAGGATGTGGAAGAGGTCG |
413 | CATGCATCTCAACTGGTGGG | CGGCCCGTCATCTATATCGA |
414 | AACTAATTCCGTTCCGCAGC | TCTCCACTGCTACTCACTGC |
分别在大田种植6行玉米自交系B73和6行矮化突变体d309,进行赤霉素喷洒试验,赤霉素浓度为50 mg/L,各设置3个生物学重
用 primer3设计候选区间内基因的qRT-PCR特异性引物,正向序列(5′-3′):TCCCTCCTTCCTTG GTCTCTAG,反向序列(5′-3′):ATAGATTACG CACGCTGGGATT,PCR产物长度150~300 bp;内参基因为GAPDH,正向序列(5′-3′):CCCTTC ATCACCACGGACTAC,反向序列(5′-3′):AACCTT CTTGGCACCACCCT。分别提取野生型B73和突变体的幼芽和植株叶片的总RNA(天根植物RNA 提取试剂盒)并进行反转录(天根反转录试剂盒)得到cDNA,进行qRT-PCR,各设置3个生物学重复,体系和程序均按试剂盒说明书进行操作,采用
从NCBI(https://www.ncbi.nlm.nih.gov/)数据库下载玉米Dwarf1基因在多个物种中的同源氨基酸序列,利用InterPro数据库(https://www.ebi.ac.uk/interpro/)对下载的同源序列进行蛋白结构域预测。采用MAGE7工具构建系统发育树,以比较d309突变体氨基酸序列与其他作物序列之间的同源性。通过Phyre2平台(http://www.sbg.bio.ic.ac.uk/phyre2)建立目标蛋白的三维模型,并分析D309突变对蛋白结构的潜在影响。
与B73相比,矮化突变体d309表现出显著的植株矮化特征,包括缩短的茎节、紧凑而浓绿的叶片布局以及较多的分蘖数(

图1 B73和突变体d309的表型分析
Fig. 1 Phenotype comparison of wild type B73 and mutant d309
A、B: B73和d309灌浆期的植株, 标尺=10 cm; C: B73和d309的株高比较, n=30, **表示在P<0.01水平差异显著,下同; D: B73(左)和d309(右)不同节间长度比较, N1代表由地面往上第一节间,以此类推,标尺=10 cm; E: B73 和d309成熟期茎节
A, B: Plants of B73 and d309 at filling stage, Bar=10 cm; C: Comparison of plant height between B73 and d309, n=30 , **: Significant difference at P< 0.01, the same as below; D: The comparison of different internode lengths between B73(left) and d309(right), N1 represents the first section from the ground up,and so on ,Bar=10 cm; E:Maturity node of B73 and d309
d309与PH6WC杂交产生F1,自交后产生F2分离群体,约7600株,通过统计发现正常植株与矮化植株的比例接近3∶1 (
穗行编号 Ear rows code | 正常表型 Wild type | 突变表型 Mutant type | 分离比 Segregation ratio | 卡方值 Chi-square value |
---|---|---|---|---|
19SG-1 | 217 | 58 | 3∶1 | 0.134 |
19SG-2 | 241 | 74 | 3∶1 | 0.573 |
19SG-3 | 161 | 46 | 3∶1 | 0.356 |
19SG-4 | 223 | 71 | 3∶1 | 0.736 |
19SG-5 | 194 | 51 | 3∶1 | 0.130 |
19SG-6 | 182 | 52 | 3∶1 | 0.326 |
19SG-7 | 161 | 46 | 3∶1 | 0.356 |
19SG-8 | 182 | 52 | 3∶1 | 0.326 |
19SG-9 | 168 | 52 | 3∶1 | 0.640 |
19SG-10 | 174 | 53 | 3∶1 | 0.565 |
穗行来源于d309×PH6WC产生的F1单穗
The ear rows were derived from the F1 single ear produced by d309 × PH6WC
为了深入探究影响突变体d309株高降低的微观因素,选取生长6周后的B73和矮化突变体d309的节间进行精确的组织横切和纵切分析。结果如


图2 B73和突变体d309的茎节间细胞形态比较
Fig. 2 Morphological comparison of internode cells between B73 and mutant d309
A: B73生长6周后第5节间茎秆横切,标尺=250 µm; B: d309生长6周后第5节间茎秆横切,标尺=250 µm; C: B73生长6周后第5节间茎秆纵切,标尺=250 µm; D: d309生长6周后第5节间茎秆纵切,标尺=250 µm; E: B73 和d309茎秆横切细胞面积比较; F: B73 和d309茎秆纵切细胞长度比较
A: Cross cut the 5th internode stem after 6 weeks of growth of B73, Bar=250 µm; B: Cross cut the 5th internode stem after 6 weeks of growth of d309, Bar=250 µm; C: longitudinal cutting of the 5th internode stem after 6 weeks of growth of B73, Bar=250 μm; D: longitudinal cutting of the 5th internode stem after 6 weeks of growth of d309, Bar=250 μm; E: Comparison of cell area of B73 and d309 of crosscut stem; F: Comparison of cell length between B73 and d309 of longitudinal section
进一步分析发现,矮化突变体d309第5、6节间的平均细胞面积约为0.0013 m
在玉米拔节期,对F2分离群体鉴定取样,进行转录组测序。测序结果经分析后,根据每个SNP在参考基因组中的物理坐标来绘制其连锁概率图。结果显示在B73参考基因组第3号染色体上3.47~17.47 Mb(P>0.2)的位置有一个极显著的单峰,初定位矮化突变体目的基因所在区间为14 Mb(

图3 BSR-seq分析结果
Fig. 3 BSR-seq analysis results
每个SNP的连锁概率根据参考基因组中的物理坐标绘制(P>0.2)
The linkage probability of each SNP is plotted based on the physical coordinates in the reference genome (P>0.2)
基于初步定位的结果,本研究进一步开发分子标记定位目的基因。 将F2群体中鉴定的1347株矮化突变体作为精细定位群体,在Maize(GDB)上筛选第3号染色体3.47~17.47 Mb内的SNP位点,从中筛到29对SSR标记。经过聚丙烯酰胺凝胶电泳分析,确定了两对可用的SSR标记:umc1425和3-14.9,两者筛选到的交换单株基本一致,判断为目的基因同一侧标记,其中3-14.9标记离目标基因更近。进一步在3.47 Mb至3-14.9标记区间内设计lnDel标记位点,共设计79对引物,从中筛选到1-17和2-35,将目标区间缩小至3.14 Mb。在此区间内共设计53对引物,并通过lnDel标记4-4和4-18将区间缩小至1.37 Mb。最终,利用634-1和637-1两对分子标记将区间缩小至78.8 kb,该区间有4个候选基因:Zm00001d039634、Zm00001d039635、Zm00001d039636和Zm00001d039637。进一步通过5-4和5-7将候选基因确定为Zm00001d039634(

图4 d309突变体基因在玉米第3号染色体上的精细定位
Fig. 4 Fine mapping of the d309 on maize chromosome 3

图5 d309突变体基因突变位点及其蛋白结构域预测
Fig. 5 Prediction of gene mutation sites and protein structural domains of d309
A: B73和突变体d309基因测序结果比对; B: Dwarf1基因结构及d309突变位点,深灰色区域为Dwarf1基因编码区,浅灰色区域分别代表5′UTR和3′UTR区,c代表碱基序列的变化,p是氨基酸序列变化; C: d309突变位点所在的蛋白结构域,该结构域全长由308个氨基酸构成
A: Comparison of wild-type B73 and mutant d309 gene sequencing results; B: Structure of the Dwarf1 gene and mutation site d309. The dark grey area denotes the coding sequence of the Dwarf1 gene, and the light grey areas represent the 5' untranslated region (5' UTR) and the 3' untranslated region (3' UTR), respectively.The c represents changes in the base sequence, while p represents changes in the amino acid sequence; C: Protein domains where the d309 mutation site is located. The full length of this domain is composed of 308 amino acids
检测了Dwarf1在B73和d309中基因相对表达量,结果显示,在幼芽和叶片中,B73基因平均相对表达量均极显著高于突变体(

图6 基因功能初步验证
Fig. 6 Preliminary verification of gene function
A、B: Dwarf1在B73 和d309突变体幼芽和叶片中的基因相对表达量; C、D: B73 和d309突变体中Dwarf1蛋白三维模型比对,红框标注的地方为网站预测的突变位点; E: Dwarf1系统发育进化树,红框标注的为目的基因; F: Dwarf1在不同物种中同源氨基酸序列比对, 红框标注的氨基酸位点为突变位点
A, B: The relative expression of Dwarf1 in the buds and leaves of B73 and d309 mutants; C, D: Three-dimensional model alignment of Dwarf1 protein in B73 and d309 mutants, the areas marked with a red box are the predicted mutation sites on the website; E: Dwarf1 phylogenetic tree, the gene marked with a red box is the target gene; F: Dwarf1 homologous amino acid sequence alignment in different species,and the amino acid sites marked with red boxes are the mutation sites
前人研究表明,Dwarf1基因编码的GA3ox合成酶在赤霉素的生物合成中起着关键作用,该基因突变会导致赤霉素合成缺陷,外施赤霉素可以恢复突变体表

图7 外源赤霉素田间处理B73 和d309突变体
Fig. 7 Exogenous gibberellin treatment in B73 and d309 mutant in the field
A: 未经赤霉素处理的B73和d309, 标尺=10 cm; B:外源赤霉素处理后B73(B73- GA)和d309(d309-GA)突变体比对, 标尺=10 cm; C: B73、d309及赤霉素处理后的B73、d309株高比较, n=20
A: B73 and d309 without gibberellin treatment, Bar=10 cm; B: Comparison of B73(B73- GA) and d309 mutants(d309-GA) after exogenous gibberellin treatment, Bar=10 cm; C: Comparison of plant height between B73, d309, B73- GA and d309-GA, n=20
株高作为影响作物产量的关键性状,对作物的生长、光合作用、抗倒伏能力以及农机收割等方面均具有显著影响。合理设计的株型是提升作物产量的有效策略之一。自绿色革命以来矮化突变体的研究与应用显著提高了作物产量。禾本科植物株高通常受到节间数和节间长度共同影响,如水稻htd3突变体和玉米a2突变体均因节间数减少和节间长度缩短导致植株矮
目前已发现的矮化突变体多数与激素合成和转运相
随着高通量测序技术的发展,大量分子标记被开发,同时玉米基因组数据的积累也在不断增长。本研究利用分子标记构建了一个玉米矮化突变体的遗传连锁图谱,结合转录组数据和分子标记将突变位点定位在第3号染色体上,通过精细定位将突变位点确定在5-4和5-7这两对分子标记之间,通过测序发现Zm00001d039634第三个外显子上有一个C到T的单碱基突变,这与已报道的Dwarf1等位突变体gad39、d1-6016、d1-4、d1-6039和d1-3286的突变方式不同,推测d309可能是一个新的Dwarf1等位突变体。通过对蛋白结构域分析及预测,发现该突变位点在Fe(II)2OGD结构域内。脯氨酸和亮氨酸在侧链结构上存在差异,前者具有芳香环结构,而后者是一种支链烷基氨基酸,氨基酸的替换可能导致局部结构变化,进而对蛋白质的整体结构产生影响。
在玉米B73的诱变材料中鉴定出一个表现为节间缩短和叶片浓绿的矮化突变体d309,利用BSR-Seq技术,将D309初定位于第3号染色体的3.47~17.47 Mb区域。经过精细定位,发现D309基因第3个外显子1569位碱基由胞嘧啶替换为胸腺嘧啶,这一变化导致编码的氨基酸序列中脯氨酸被亮氨酸所替代。基于这些发现,推测d309可能是一个新的Dwarf1等位突变体,为Dwarf1基因功能的深入研究提供了宝贵的遗传材料。
参考文献
Conway G, Toenniessen G. Feeding the world in the twenty-first century. Nature, 1999, 402:C55-C58 [百度学术]
Sher A, Khan A, Cai L J, Ahmad, M I, Asharf U, Jamoro S A. Response of maize grown under high plant density; performance, issues and management-a critical review. Advanced in Crop Science and Technology, 2017, 5(3): 25997438 [百度学术]
Ku L X, Zhang L K, Tian Z Q, Guo S L, Su H H, Ren Z Z, Wang Z Y, Li G H, Wang X B, Zhu Y G, Zhou J L, Chen Y H. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.). Molecular Genetics and Genomics, 2015, 290(4):1223-1233 [百度学术]
Wu L, Zhang D F, Xue M, Qian J J, He Y, Wang S C. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. Journal of Integrative Plant Biology, 2014, 56(11):1053-1063 [百度学术]
虞慧芳 , 曹家树 , 王永勤 . 植物矮化突变体的激素调控. 生命科学, 2002, 14(2):85-88 [百度学术]
Yu H F, Cao J S, Wang Q Y. Hormones regulation in plant dwarfing mutants. Life Science, 2002, 14(2): 85-88 [百度学术]
白丽君,尹淑霞.植物矮化突变体的来源及矮化机理研究进展.生物技术通报, 2014(6):34-39 [百度学术]
Bai L J, Yin S X. Progress on origins and mechanism of dwarfish plants mutant. Biotechnology Bulletin, 2014(6) : 34-39 [百度学术]
王天依,王荣焕,王夏青,张如养,徐瑞斌,焦炎炎,孙轩,王继东,宋伟,赵久然.玉米矮秆基因与矮秆育种研究.生物技术通报,2023,39(8):43-51 [百度学术]
Wang T Y, Wang R H, Wang X Q, Zhang Y R, Xu R B, Jiao Y Y, Sun X, Wang J D, Song W, Zhao J R. Research in maize dwarf genes and dwarf breeding. Biotechnology Bulletin, 2023,39 (8) : 43-51 [百度学术]
Avila LM, Cerrudo D, Swanton C, Lukens L. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016, 67(5):1577-1588 [百度学术]
Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S, McSteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell, 2011,23(2):550-566 [百度学术]
Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003, 302 (5642) :81-84 [百度学术]
Li Z X, Zhang X R, Zhao Y J, Li Y J, Zhang G F, Peng Z H, Zhang J Z. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnology Journal, 2018, 16(1): 86-99 [百度学术]
Wang C, Zhang H, Xia Q, Yu J, Zhu D, Zhao Q. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize. Plant Science, 2019 ,289:110248 [百度学术]
Makarevitch I, Thompson A, Muehlbauer G J, SpringerN M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE, 2012, 7(1): e30798 [百度学术]
Kir G, Ye H X, Nelissen H, Neelakandan A K, Luo A, Inzé D, Sylvester A W, Yin Y H, Becraft P W. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiology, 2015, 169(1): 826-839 [百度学术]
Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P, Choe S, Johal G S, Schulz B. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of The United States of America, 2011, 108(49): 19814-19819 [百度学术]
Dt N B, Hartwig T, Budka J, Shozo F S, Johal G, Schulz B, Dilkes B P. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins . Plant Physiology, 2016, 171(4): 2633-2647 [百度学术]
Vu G T, Wicker T, Buchmann J P, Chandler P M, Matsumoto T, Graner A, Stein N. Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley. Functional & Integrative Genomics, 2010,10(4):509-521 [百度学术]
Li H C, Wang L J, Liu M S, Dong Z P, Li Q F, Fei S L, Xiang H T, Liu B S, Jin W W. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiology, 2020, 183(3): 1184-1199 [百度学术]
Yamaguchi I, Nakajima M, Park S H. Trails to the gibberellin receptor, GIBBERELLIN INSENSITIVE DWARF1. Bioscience, Biotechnology, and Biochemistry, 2016, 80(6): 1029-1036 [百度学术]
Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. The Plant Cell, 2009, 21(6): 1647-1658 [百度学术]
Wang Y J, Deng D X, Ding H D, Xu X M, Zhang R, Wang S X, Bian Y L, Yin Z T, Chen Y. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11(D11) mutant phenotype: Physiological and transcriptomic evidence. PLoS ONE, 2013, 8(6): e66466 [百度学术]
Lv H K, Zheng J, Wang T Y, Fu J J, Huai J L, Min H W, Zhang X, Tian B H, Shi Y S, Wang G Y. The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Molecular Biology, 2014, 84: 243-257 [百度学术]
Lawit S J, Wych H M, Xu D P, Kundu S, Tomes D T. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant and Cell Physiology, 2010, 51(11): 1854-1868 [百度学术]
Bommert P, Je B I, Goldshmidt A, Jackson D. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature, 2013,502(7472):555-558 [百度学术]
Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. The Plant Journal, 2013,73(3):405-416 [百度学术]
Guan J C, Koch K E, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee H J, McCarty D R. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 2012, 160(3): 1303-1317 [百度学术]
Graebe J E, Ropers H J, Letham D S, Goodwin P B, Higgins T J V. Phytohormones and related compounds-A comprehensive treatise. Amsterdam: Elsevier, 1978: 107-204 [百度学术]
李强, 吴建明, 梁和, 黄杏, 丘立杭. 高等植物赤霉素生物合成及其信号转导途径. 生物技术通报, 2014(10): 16-22 [百度学术]
Li Q, Wu J M, Liang H, Huang X, Qiu L H. Gibberellins biosynthesis and signaling transduction pathway in higher plant. Biotechnology Bulletin, 2014(10): 16-22 [百度学术]
郝小花,胡爽,赵丹,田连福,谢子靖,吴莎,胡文俐,雷晗,李东屏.OsGA3ox通过合成不同活性GA调控水稻育性及株高.遗传,2023,45(9):845-855 [百度学术]
Hao X H, Hu S, Zhao D, Tian L F, Xie Z J, Wu S, Hu W L, Lei H, Li D P. OsGA3ox genes regulate rice fertility and plant height by synthesizing diverse active GA. Heredity, 2023,45(9):845-855 [百度学术]
殷小林,张超,王有成,袁定阳,谭炎宁,段美娟.水稻赤霉素3β羟化酶基因(OsGA3ox1)同源基因的生物信息学分析.分子植物育种,2019,17(4):1054-1060 [百度学术]
Yin X L, Zhang C, Wang Y C, Yuan D Y, Tan Y N, Duan M J. Bioinformatics analysis of homologous genes of rice gibberellin 3β-hydroxylase gene (OsGA3ox1). Molecular Plant Breeding, 2019,17(4):1054-1060 [百度学术]
李赵博.大豆Gmdwarf1的矮化晚花性状基因定位.哈尔滨:黑龙江大学,2016 [百度学术]
Li Z B.Gene mapping of dwarfing late flowering trait in soybean Gmdwarf1. Harbin: Heilongjiang University, 2016 [百度学术]
Hu D Z, Li X, Yang Z Y, Liu S L, Hao D R, Chao M N, Zhang J Y, Yang H, Su X Y, Jiang M Y, Lu S Q, Zhang D, Wang L, Kan G Z, Wang H, Cheng H, Wang J, Huang F, Tian Z X, Yu D Y. Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytologist, 2022 , 235(2):502-517 [百度学术]
Martinez S, Hausinger R P. Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. Journal of Biological Chemistry, 2015, 290:20702-20711 [百度学术]
Eng J G M, Shahsavarani M, Smith D P, Hájíček J, De Luca V, Qu Y. A catharanthus roseus Fe(II)/α-ketoglutarate-dependent dioxygenase catalyzes a redox-neutral reaction responsible for vindolinine biosynthesis. Nature Communications, 2022, 13(1):3335 [百度学术]
吕洪坤.玉米矮化基因D2003的图位克隆与功能分析.北京:中国农业科学院,2013 [百度学术]
Lv H K. Map-based cloning and functional analysis of the dwarf gene D2003 in maize. Beijing:Chinese Academy of Agricultural Sciences, 2013 [百度学术]
Liu S Z, Liu S Z, Yeh C T, Tang H M, Nettleton D, Schnable P S. Gene mapping via bulked segregant RNA-Seq(BSR-Seq).PLoS ONE, 2012, 7: e36406 [百度学术]
Chen Y, Hou M M, Liu L J, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty D R, Tan B C. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiology, 2014,166(4):2028-2039 [百度学术]
Zhang B, Tian F, Tan L, Xie D, Sun C. Characterization of a novel high-tillering dwarf 3 mutant in rice. Journal of Genetics and Genomics, 2011 , 38(9):411-418 [百度学术]
董春林,翟广谦,张正,杨睿,张明义, 张彦琴, 杨丽莉,常建忠.玉米矮秆突变体A2的表型鉴定及转录组分析.玉米科学, 2019,27(4): 52-57 [百度学术]
Dong C L, Zhai G Q, Zhang Z, Yang R, Zhang M Y, Zhang Y Q, Yang L L, Chang J Z. Phenotypic characterization and transcriptome analysis of maize dwraf mutant A2. Maize Science, 2019,27(4): 52-57 [百度学术]
Wang F X, Yu Z P, Zhang M L, Wang M L, Lu X D, Liu X, Li Y B, Zhang X S, Tan B C, Li C L, Ding Z-J. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Journal of Genetics and Genomics, 2022, 20(3):526-537 [百度学术]
卞能飞,温明星,高润红,王海燕,王秀娥. 普通小麦望水白矮秆多蘖突变体的鉴定及遗传分析//中国遗传学会. 中国遗传学会第九次全国会员代表大会暨学术研讨会论文集. 北京:中国遗传学会,2013: 87 [百度学术]
Bian N F, Wen M X, Gao R H, Wang H Y, Wang X E. Identification and genetic analysis of a dwarf and tiller mutant in common wheat, Wangshui Bai//Genetics Society of China.The 9th national congress and academic symposium of the genetics society of China. Beijing: Genetics Society of China, 2013: 87 [百度学术]
Izawa Y, Takayanagi Y, Inaba N, Abe Y, Minami M, Fujisawa Y, Kato H, Ohki S, Kitano H, Iwasaki Y. Function and expression pattern of the α subunit of the heterotrimeric g protein in rice. Plant and Cell Physiology, 2010, 51(2): 271-281 [百度学术]
Wang Y, Li J. Molecular basis of plant architecture. Annual Review of Plant Biology, 2008, 59:253-279 [百度学术]