摘要
褐腐病是桃主要果实病害之一,筛选桃褐腐病抗性资源是抗性品种培育的关键。2022-2023年,以国家桃种质资源圃(郑州)保存的桃种质为试材,采收成熟度为8.0~8.5的桃果实进行人工接种,包含无损接种150份,有损接种37份。每天调查无损接种果实的病果率增加速率和有损接种果实的病斑直径扩展速率。以平均值和0.5个标准差建立9级抗性评价体系,比较不同种质类型、肉质类型、果实类型、来源地的褐腐病抗性,并分析褐腐病抗性与其他果实性状的相关性。无损接种的病果率增加速率为7.68%,变异系数为69.69%,其抗性评价体系中1级包含11份抗性较强的种质,2级共有34份,3级28份,4级21份,5级20份,6级14份,7级16份,8级4份,9级2份。有损病斑直径扩展速率为0.82 cm/d,变异系数为31.69%,其抗性评价体系中1级包含1份抗性较强的种质,2级共有3份,3级5份,4级5份,5级7份,6级8份,7级5份,8级2份,9级1份。比较发现,地方资源具有相对较强的褐腐病抗性。有损接种病斑直径扩展速率与果实酸度值呈显著负相关,无损接种病果率增加速率与果实硬度呈显著负相关。本试验分别筛选出11份抗褐腐病侵入能力较强的种质和1份抗褐腐病扩展能力较强的种质。
桃[Prunus persica (L.) Batsch]是我国重要的落叶果树,我国桃种植面积和产量均居世界第一
褐腐病在世界范围内主要分布为3个种,即美澳型核果链核盘菌(Monilinia fructicola)、核果链核盘菌(Monilinia laxa)和果生链核盘菌(Monilinia fructigena
本研究拟通过对桃种质资源褐腐病抗性进行评价,初步明确国家桃种质资源圃(郑州)部分桃种质的抗性等级分布,筛选出抗褐腐病桃种质资源,为今后抗褐腐病品种培育的亲本选择提供依据。
所有试材取自国家桃种质资源圃(郑州),树龄7~8年生,树势相近,行距3 m,株距1 m,每份种质1~2株,田间正常管理,条件一致。2022年、2023年分别进行桃果实褐腐病的抗性鉴定,2年鉴定种质资源的数量见
接种方式 Vaccination method | 2022 | 2023 | 总计Total |
---|---|---|---|
无损接种Non-invasive vaccination | 41 | 109 | 150 |
有损接种Injury vaccination | 0 | 37 | 37 |
每份种质采收成熟度为8.0~8.
试验所用褐腐菌种为美澳型核果链核盘菌(M. fructicola),由华中农业大学植物科学技术学院惠赠,使用PDA培养基进行扩繁和产孢。参考沈志军
无损接种,病果率增加速率为衡量褐腐病抗性的指标;有损接种,病斑直径扩展速率为衡量褐腐病抗性的指标。
桃种质资源褐腐病抗性的分组比较:按不同种质类型分为培育品种和地方品种;按不同果实类型分为普通桃、油桃、油蟠桃和蟠桃;按不同肉质类型分为不溶质、软溶质和硬溶质;按不同来源分为亚洲和美洲。
病果率增加速率(%)=病果率/接种天数×100%。
病斑直径的扩展速率(cm/d)=病斑直径/接种天数,以每份种质各个接种果实的平均值作为相应种质资源的病斑直径扩展速率。
标准差=sqrt (Σ (xi-μ)²/n),其中Σ代表总和,xi代表每个数据点,μ代表平均值,n代表数据点的个数。
以病果率增加速率或病斑直径扩展速率的平均值为中心点,0.5个标准差为间距建立9级抗性评价体系,其中鉴定的1级种质资源对褐腐病表现为高抗,2级表现出一定的抗性,3~7级抗性表现中等,8~9级表现为高感。
变异系数(%)=(标准差/平均值)×100%。
采用SPSS软件进行显著性检验、相关性分析等,采用Origin绘图。
无损接种150份种质的病果率增加速率平均值为7.68%,标准差为5.35,变异系数为69.69%。以病果率增加速率的平均值(7.68%)为中心点,0.5个标准差为间距建立的9级抗性评价体系如

图1 基于150份种质资源的病果率增加速率区间分布
Fig. 1 Interval distribution of the increase rate of diseased fruit rate based on 150 germplasm resources
由
有损接种37份桃种质资源的病斑直径扩展速率平均值为0.82 cm/d,标准差为0.26,变异系数为31.69%,相比无损鉴定的病果率增加速率,有损鉴定病斑直径扩展速率的变异程度相对较低。以病斑直径扩展速率的平均值(0.82 cm/d)为中心点,0.5个标准差为间距建立的9级抗性评价体系如

图2 基于37份种质资源的病斑直径扩展速率区间分布
Fig. 2 Interval distribution of lesion diameter growth rate based on 37 germplasm resources
由
无损鉴定病果率增加速率(y)与有损鉴定病斑直径扩展速率(x)的散点图呈“弥散型”,37份样品的线性回归关系为y=3.09+7.91x(

图3 无损接种病果率增加速率与有损接种病斑扩展速率的散点图及线性回归分析
Fig. 3 Scatter plot and linear regression of the percentage growth of infected fruits inoculated without injury and lesion diameter growth rate inoculated with injury
Ⅰ:低侵染与慢扩展区;Ⅱ:低侵染与快扩展区;Ⅲ:高侵染与快扩展区;Ⅳ:高侵染与慢扩展区
Ⅰ: Low injury and slow growth;Ⅱ: Low injury and rapid growth;Ⅲ: High injury and rapid growth;Ⅳ: High injury and slow growth;PGIF:The percentage growth of infected fruits;LDGR:Lesion diameter growth rate;The same as below
无损接种一般用于评价果皮对褐腐病的抗侵染能力,有损接种用于评价侵染后果肉对褐腐病的抗扩展能
不同种质类型的桃褐腐病抗性比较结果见

图4 不同种质类型桃褐腐病抗性比较
Fig. 4 Comparison of brown rot resistance among different germplasm types
不同小写字母表示差异显著(P<0.05);下同
Different lowercase letters indicate significant difference (P<0.05);The same as below
不同果实类型的桃褐腐病抗性比较结果见

图5 不同果实类型桃褐腐病抗性比较
Fig. 5 Comparison of brown rot resistance among different fruit types
不同肉质类型的桃褐腐病抗性比较结果见

图6 不同肉质类型桃褐腐病抗性比较
Fig. 6 Comparison of brown rot resistance among different flesh texture
不同来源的桃褐腐病抗性比较结果见

图7 不同来源桃褐腐病抗性比较
Fig. 7 Comparison of resistance to peach brown rot from different sources
无损鉴定病果率增加速率、有损鉴定病斑直径扩展速率与果实性状的相关性分析见

图8 病果率增加速率及病斑直径扩展速率与果实性状的相关性分析
Fig. 8 Correlation analysis between the percentage growth of infected fruits and lesion diameter growth rate and fruit characters
*:在P<0.05水平显著相关
*:Significant correlation at the level of P < 0.05
目前国内外对桃种质资源褐腐病抗性评价的相关研究仅有少量报道,其评价指标有病果率、病斑直径、果皮厚度等,其中病果率鉴定方法较
除病果率增加速率、病斑直径扩展速率等常用抗性指标外,桃果皮角质层厚度也有望作为褐腐病抗性评价标准之一。西班牙学者研究了桃果皮角质层对褐腐病抗性的影响,发现桃果皮角质层是抵御褐腐病的第一道屏
褐腐病抗性是一个复杂的性状,易受到环境效应的影响,已报道的抗性资源较少。巴西品种‘Bolinha’是发现的第一个高抗褐腐病的桃种
西班牙学者利用扁桃(Prunus dulcis)‘Texas’和桃‘Earlygold’的杂交群体研究了褐腐病抗性,发现扁桃‘Texas’表现为抗褐腐病,而桃则高度易感。通过系统的褐腐病抗性鉴定,发现了7份抗性资
巴西学者利用20个亲本组成的16个杂交组合,对桃果实进行有损接种褐腐病菌,分别调查病斑直径和孢子形成,发现损伤接种的桃果实极易侵染褐腐病,但无损接种的桃果实褐腐病发生率和严重程度则表现出不同,并发现‘Conserva 947’和‘Conserva 1600’的发病率和严重程度低于其他种质,认为二者可作为褐腐病抗性育种的亲本材
美国学者利用中抗品种‘Dr. Davis’和抗病品种‘F8,1-42’(源自扁桃×桃种间杂交)的杂交群体,连续3年评估了有损和无损的褐腐病抗性,发现群体中只有两份种质连续3年表现出较强的果皮和果肉抗性。研究过程中还发现即使无损接种中果皮抗性较强的种质,对其进行有损接种后,也会表现为感
果皮颜色对褐腐病抗性也有影响。南非学者对11个红色和黄色果皮桃品种进行褐腐病抗性鉴定,在0 °C下贮藏14 d,15 °C下贮藏3 d后测定果实pH值、抗氧化活性、总花青素和总酚等理化性状,发现黄色果皮品种的褐腐病发生率较高(35%~65%),红色果皮品种则较低(20%~35%)。与自然侵染相比,人工侵染诱导了生理生化反应,抗氧化物含量高的桃品种病果发生率较低,表现出较强的抗性,并发现褐腐病抗性与苯丙氨酸裂解酶活性、酚类化合物以及绿原、咖啡酸和花青素的含量有
基于褐腐病抗性的无损和有损鉴定,筛选出无损接种褐腐病抗性较强的桃种质11份,有损接种桃种质1份。无损接种条件下,地方品种较培育品种褐腐病抗性强,蟠桃、普通桃比油桃、油蟠桃抗性强,不溶质比硬溶质和软溶质抗性强。有损接种病斑直径扩展速率与果实酸度值呈显著负相关,无损接种病果率增加速率与果实硬度呈显著负相关。
参考文献
王力荣. 我国桃产业现状与发展建议. 中国果树, 2021 (10): 1-5 [百度学术]
Wang L R. Current situation and development suggestions of peach industry in China. China Fruits, 2021 (10): 1-5 [百度学术]
李志伟, 汪少丽, 刘保友, 杜建峰, 王英姿. 山东桃褐腐病病原菌种群鉴定及致病性分析. 果树学报, 2023, 40(2): 327-339 [百度学术]
Li Z W, Wang S L, Liu B Y, Du J F, Wang Y Z. Population identification and pathogenicity analysis of peach brown rot pathogens in Shandong province. Journal of Fruit Science, 2023, 40(2): 327-339 [百度学术]
刘晨霞, 乔勇进, 王晓, 黄宇斐, 甄凤元. 桃果采后生理与贮藏保鲜技术研究进展. 江苏农业科学, 2018, 46(17): 18-23 [百度学术]
Liu C X, Qiao Y J, Wang X, Huang Y F, Zhen F Y. Research progress on postharvest physiology and storage and preservation techniques of peach fruits. Jiangsu Agricultural Sciences, 2018, 46(17): 18-23 [百度学术]
余江平, 王红, 樊进补. 核果采后贮藏保鲜研究进展.耕作与栽培, 2023, 43(6): 57-59 [百度学术]
Yu J P, Wang H, Fan J B. Advances research on postharvest storage of stone fruits.Tillage and Cultivation, 2023, 43(6): 57-59 [百度学术]
何理, 汪文丽, 付丹阳, 孙亚亚. 桃树主要病害及其综合防治. 现代园艺, 2023, 46(12): 49-51 [百度学术]
He L, Wang W L, Fu D Y, Sun Y Y. The main diseases of peach trees and their comprehensive prevention and control. Modern Horticulture, 2023, 46(12): 49-51 [百度学术]
Sharma R L. Management of brown rot (Monilinia laxa) in peaches in warmer areas. Acta Horticulturae, 2005, 696: 359-362 [百度学术]
Singh B D, Singh A K. “Association mapping,” in marker-assisted plant breeding: Principles and practices. New Delhi: Springer, 2015: 217-256 [百度学术]
David B. Peach breeding trends:A world wide perspective. Acta Horticulturae, 2002, 592: 49-59 [百度学术]
Byrne H D. Trends in stone fruit cultivar development. HortTechnology, 2005, 15(3): 494-500 [百度学术]
郝晓娟, 周芳, 李新凤, 王美琴, 王建明, 李俊林. 山西省欧李褐腐病病原菌鉴定. 西北农业学报, 2015, 24(4): 101-104 [百度学术]
Hao X J, Zhou F, Li X F, Wang M Q, Wang J M, Li J L. Pathogen identification of brown rot of Cerasus humilis (Bge) Sok.in Shanxi. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(4): 101-104 [百度学术]
纪兆林, 谈彬, 朱薇, 董京萍, 朱峰, 徐敬友, 童蕴慧. 我国不同产区桃褐腐病病原鉴定与分析.微生物学通报, 2019, 46(4): 869-878 [百度学术]
Ji Z L, Tan B, Zhu W, Dong J P, Zhu F, Xu J Y, Tong Y H. Identification and analysis of the peach brown rot pathogens from different peach-growing areas in China. Microbiology China, 2019, 46(4): 869-878 [百度学术]
张艳婷, 仇智灵, 李阿根, 吴鉴艳, 毛程鑫, 张传清. 浙江省樱桃褐腐病病原菌种类及其对常见药剂的抗性检测.果树学报, 2020, 37(9): 1394-1403 [百度学术]
Zhang Y T, Qiu Z L, Li A G, Wu J Y, Mao C X, Zhang C Q. Species of pathogens causing cherry brown rot and their resistance to common fungicides in Zhejiang province. Journal of Fruit Science, 2020, 37(9): 1394-1403 [百度学术]
曾晴, 叶思思, 谢世莹, 陈姿伊, 叶百慧, 杨国, 郭天荣, 莫亿伟. 嵊州桃形李褐腐病病原菌的鉴定和防治药剂的筛选. 湖南农业大学学报: 自然科学版, 2023, 49(3): 321-328 [百度学术]
Zeng Q, Ye S S, Xie S Y, Chen Z Y, Ye B H, Yang G, Guo T R, Mo Y W. Identification of the brown rot pathogen from Shengzhou nane fruit and screening of highly effective fungicide. Journal of Hunan Agricultural University: Natural Sciences, 2023, 49(3): 321-328 [百度学术]
Fan J Y, Guo L Y, Xu J P, Luo Y, Michailides T J. Genetic diversity of populations of Monilinia fructicola (Fungi, Ascomycota, Helotiales) from China. The Journal of Eukaryotic Microbiology, 2010, 57(2): 206-212 [百度学术]
樊锦艳, 朱小琼, 国立耘, 骆勇. 褐腐病菌三种分子鉴定方法的比较. 植物保护学报, 2007, 34(3): 289-295 [百度学术]
Fan J Y, Zhu X Q, Guo L Y, Luo Y. Comparison of three molecular identification methods for Monilinia species on stone and pome fruits. Journal of Plant Protection, 2007, 34 (3): 289-295 [百度学术]
朱小琼, 段维军, 胡勐郡, 国立耘. 核果和仁果褐腐病病原菌研究进展. 菌物学报, 2022, 41(3): 331-348 [百度学术]
Zhu X Q, Duan W J, Hu M J, Guo L Y. Research progress on brown rot pathogens of stone and pome fruit. Mycosystema, 2022, 41(3): 331-348 [百度学术]
Hu M J, Luo C X, Grabke A, Schnabel G. Selection of a suitable medium to determine sensitivity of Monilinia fructicola mycelium to SDHI fungicides. Journal of Phytopathology, 2011, 159(9): 616-620 [百度学术]
Li J M, Wei Y Y, Chen Y, Ye J F, Jiang S, Xu F, Shao X F. Combined application of alginate oligosaccharide and marine yeast Sporidiobolus pararoseus to control brown rot of peach fruit. Postharvest Biology and Technology, 2024, 208: 112677 [百度学术]
Gura W P, Gelain J, Sikora E J, Vinson E L, Brannen P M, Schnabel G. Low frequency of resistance to thiophanate-methyl in Monilinia fructicola populations from southeastern United States peach orchards. Pesticide Biochemistry and Physiology, 2023, 197: 105642 [百度学术]
Li G X, Zhang L, Wang H K, Li X H, Cheng F, Miao J Q, Peng Q,Liu X L. Resistance to the DMI fungicide mefentrifluconazole in Monilinia fructicola: Risk assessment and resistance basis analysis. Pest Management Science, 2024, 80(4): 1802-1811 [百度学术]
Benedetta F, Lucrezia A D, Anastasiya K, Ancuta N, Dennis F, Marwa M, Deborah P. Identification of volatile organic compounds as markers to detect Monilinia fructicola infection in fresh peaches. Postharvest Biology and Technology, 2023, 206: 112581 [百度学术]
Xu X, Bertone C, Berrie A. Effects of wounding, fruit age and wetness duration on the development of cherry brown rot in the UK. Plant Pathology, 2007, 56(1): 114-119 [百度学术]
Barry K M, Tarbath M, Glen M, Measham P, Corkrey R. Understanding infection risk factors for integrated disease management of brown rot and grey mould in sweet cherry. Acta Horticulturae, 2015, 1105: 67-72 [百度学术]
Chen G K, Du S F,Li G Q,Luo C X,Yin L F. First report of brown rot caused by Monilinia fructicola on Chinese sour cherry (Cerasus pseudocerasus) in Southwestern China. Plant Disease, 2016, 100(1): 224-224 [百度学术]
Bellamy S, Xu X M, Shaw M. Biocontrol agents to manage brown rot disease on cherry. European Journal of Plant Pathology, 2021, 161: 493-502 [百度学术]
尹显慧, 顾桂飞, 龙海江, 龙友华, 舒然, 吴琼. 贵州李树主要病虫害发生及防控对策. 山地农业生物学报, 2021, 40(4): 58-63 [百度学术]
Yin X H, Gu G F, Long H J, Long Y H, Shu R, Wu Q. Occurrence and control countermeasures of main diseases and insect pests of plum in Guizhou. Journal of Mountain Agriculture and Biology, 2021, 40(4): 58-63 [百度学术]
Feliciano A, Feliciano A J, Ogawa J M. Monilinia fructicola resistance in the peach cv Bolinha. Phytopathology, 1987, 77: 776-780 [百度学术]
Martínez-García J P, Parfitt E D, Bostock M R, Fresnedo-Ramirez J, Vazquez-Lobo A, Ogundiwin A E, Gradziel M T, Crisosto H C. Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS ONE, 2018, 8(11): e78634 [百度学术]
Pacheco I, Bassi D, Eduardo I, Ciacciulli A, Pirona R, Rossini L, Vecchietti A. QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genetics Genomes, 2014, 10(5): 1223-1242 [百度学术]
王力荣, 朱更瑞, 方伟超, 左覃元, 韩立新. 桃种质资源对桃蚜的抗性评价. 果树学报, 2001 (3): 145-147 [百度学术]
Wang L R, Zhu G R, Fang W C, Zuo Q Y, Han L X. Study on the resistance to peach aphid (Myzus persicae Sulzer) of peach germplasm. Journal of Fruit Science, 2001 (3): 145-147 [百度学术]
闻家乐, 王淑瑾, 范芝蕊, 吕中一, 杨勇, 关长飞. 柿种质资源炭疽病抗性评价及病原菌分离鉴定.植物遗传资源学报, 2023, 24(4): 1046-1056 [百度学术]
Wen J L, Wang S J, Fan Z R, Lv Z Y, Yang Y, Guan Z F. Investigation of resistance resources and identification of anthracnose in persimmon. Journal of Plant Genetic Resources, 2023, 24(4): 1046-1056 [百度学术]
王杰花, 韩丽丽, 张胜军, 陈卫民, 张学超. 新疆山楂种质资源对梨火疫病的抗性鉴定与评价. 北方园艺, 2023 (24): 30-37 [百度学术]
Wang J H, Han L L, Zhang S J, Chen W M, Zhang X C. Identification and evaluation of resistance of hawthorn germplasm resources to pear fire blight in Xinjiang. Northern Horticulture, 2023 (24): 30-37 [百度学术]
曹雅芝, 陈卫民, 张胜军, 陆彪, 崔志军, 李克梅, 韩丽丽, 张学超, 张晓倩, 阿依达娜·阿思克别列. 83份新疆野苹果种质资源对梨火疫病菌的抗病性评价. 植物检疫, 2024, 38(1): 33-46 [百度学术]
Cao Y Z, Chen W M, Zhang S J, Lu B, Cui Z J, Li K M, Han L L, Zhang X C, Zhang X Q, Asikebielie A Y D N. Evaluation of disease resistance of 83 Malus sieversii germplasm resources to Eswinia amylovora. Plant Quarantine, 2024, 38(1): 33-46 [百度学术]
任春梅, 程兆榜, 陆芳, 孟庆长, 孔令杰, 朱云, 季英华. 江苏省玉米弯孢叶斑病菌的分离鉴定及种质资源抗性评价. 江苏农业科学, 2023, 51(24): 95-99 [百度学术]
Ren C M, Cheng Z B, Lu F, Meng Q Z, Kong L J, Zhu Y, Ji Y H. Isolation, identification and resistance evaluation of corn germplasms to corn Curvularia leaf spot in Jiangsu province. Jiangsu Agricultural Sciences, 2023, 51(24): 95-99 [百度学术]
王玉琪, 甘可欣, 李雄伟, 金静, 赵岚, 叶正文, 孙德利, 王莉, 贾惠娟, 高中山. 110个桃/油桃品种资源在浙江的流胶病抗性初步评价. 浙江大学 学报:农业与生命科学版, 2024, 50(1): 65-74 [百度学术]
Wang Y Q, Gan K X, Li X W, Jin J, Zhao L, Ye Z W, Sun D L, Wang L, Jia H J, Gao Z S. Preliminary evaluation of 110 peach/nectarine varieties on the gummosis disease resistance in Zhejiang province. Journal of Zhejiang University: Agriculture & Life Sciences, 2024, 50(1): 65-74 [百度学术]
温家康, 马荣, 王大芬, 张萍. 新疆野核桃种质资源对核桃腐烂病的抗性评价. 果树学报, 2022, 39(8): 1469-1478 [百度学术]
Wen J K, Ma R, Wang D F, Zhang P. Evaluation of resistance of Xinjiang wild walnuts to walnut canker. Journal of Fruit Science, 2022, 39(8): 1469-1478 [百度学术]
王大江, 高源, 张玉刚, 张校立, 孙思邈, 路翔, 郭绍霞, Khurshid S.Turakulov, 李连文, 王昆. 苹果种质资源火疫病抗性鉴定评价与筛选. 植物遗传资源学报, 2022, 23(6): 1682-1695 [百度学术]
Wang D J, Gao Y, Zhang Y G, Zhang X L, Sun S M, Lu X, Guo S X, Turakulov K, Li L W, Wang K. Evaluation and screening of Malus germplasm resources with fire blight resistance. Journal of Plant Genetic Resources, 2022, 23(6): 1682-1695 [百度学术]
沈志军, 田雨, 蔡志翔, 徐子媛, 严娟, 孙朦, 马瑞娟, 俞明亮. 基于国家果树种质南京桃资源圃的桃褐腐病抗性评价. 中国农业科学, 2022, 55(15): 3018-3063 [百度学术]
Shen Z J, Tian Y, Cai Z X, Xu Z Y, Yan J, Sun M, Ma R J, Yu M L. Evaluation of brown rot resistance in peach based on genetic resources conserved in national germplasm repository of peach in Nanjing. Scientia Agricultura Sinica, 2022, 55(15): 3018-3063 [百度学术]
Obi I V, Barriuso J J, Moreno A M, Gimenez R, Gogorcena Y. Optimizing protocols to evaluate brown rot (Monilinia laxa ) susceptibility in peach and nectarine fruits. Australasian Plant Pathology, 2017, 46(2): 183-189 [百度学术]
王力荣, 朱更瑞. 桃种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005: 56-61 [百度学术]
Wang L R, Zhu G R. Descriptors and data standard for peach (Prunus persica L.). Beijing: Chinese Agriculture Press, 2005: 56-61 [百度学术]
Obi I V, Barriuso J J, Usall J, Gogorcena Y. Breeding strategies for identifying superior peach genotypes resistant to brown rot. Scientia Horticulturae, 2019, 246: 1028-1036 [百度学术]
Holb J I, Szőke S, Abonyi F. Temporal development and relationship amongst brown rot blossom blight, fruit blight and fruit rot in integrated and organic sour cherry orchards. Plant Pathology, 2013, 62(4): 799-808 [百度学术]
Keske C, Amorim L, Mio M L. Peach brown rot incidence related to pathogen infection at different stages of fruit development in an organic peach production system. Crop Protection, 2011, 30(7): 802-806 [百度学术]
Martínez-García P J, Mas-Gómez J, Prudencio Á S, Barriuso J J, Cantín C M. Genome-wide association analysis of Monilinia fructicola lesion in a collection of Spanish peach landraces. Frontiers in Plant Science, 2023, 14: 1165847 [百度学术]
Núria B, Iban E, Josep U, Carla C, Pere A, Neus T, Rosario T. Exploring sources of resistance to brown rot in an interspecific almond×peach population. Journal of the Science of Food and Agriculture, 2019, 99(8): 4105-4113 [百度学术]
Maximiliano D, Bassols C D M R, Silvia S, Bernardo U. Breeding peaches for brown rot resistance in embrapa. Agronomy, 2022, 12(10): 2306 [百度学术]
Gununu R P, Munhuweyi K, Obianom C P, Sivakumar D. Assessment of eleven South African peach cultivars for susceptibility to brown rot and blue mould. Scientia Horticulturae, 2019, 254: 1-6 [百度学术]