摘要
植物分枝(分蘖)是一个复杂且受严格调控的发育过程,显著影响植物的形态建成及产量,是植物理想株型研究的重点内容之一。植物分枝形成至少需要两个重要步骤,一是腋生分生组织的形成;二是腋芽的形成及生长发育成分枝。近年来,已经证实多种因素调控这些过程,并最终影响植物分枝数。本文简述了植株分枝形成的分子调控机制,包括植物腋生分生组织形成关键基因调控网络和腋芽形成及生长关键基因调控网络,综述了多种内源激素包括生长素、细胞分裂素、赤霉素、油菜素内酯和独脚金内酯,营养物质蔗糖和环境因素光对分枝形成的影响,旨在为培育具有理想株型的高产新品种奠定基础。同时探讨了激素之间相互作用对分枝形成的调控,并分析了油料作物分枝研究现状及未来的努力方向,以期为塑造理想株型提供理论依据。
植物分枝(在禾本科植物中称为分蘖)是指植物在生长过程中侧芽或侧枝的发育和延伸,是植物株型的重要组成部分,是一种重要的农艺性状。分枝对于植物的形态建立、资源分配和适应环境变化具有重要作用。分枝可以提高植物光合作用效率,增加产
植物分枝的形成分为两个阶段,腋生分生组织(AM,axillary meristem)的形成;AM发育成腋芽,腋芽继续生长产生一个分枝或处于休眠状态形成休眠芽,休眠芽可以重新被激活产生一个分枝。植物分枝的生长发育受多种因素影响,而遗传因素是其中之一。目前已经在多种作物里系统研究了植物分枝形成的分子机制,筛选出一些调控分枝形成的关键基因(
类别 Class | 基因 Gene | 功能注释 Functional annotation | 参考文献 References |
---|---|---|---|
腋生分生组织起始关键基因 | REV | HD-ZIP转录因子 |
[ |
Key genes involved in AM initiation | LAX2 | 核蛋白 |
[ |
CUC2/CUC3 | NAC转录因子 |
[ | |
WUS | WOX蛋白 |
[ | |
CLV3 | 植物受体激酶 |
[ | |
RAX1 | MYB转录因子 |
[ | |
EXB1 | WRKY转录因子 |
[ | |
STM | KNOX转录因子 |
[ | |
LAS/LS/MOC1 | GRAS转录因子 |
[ | |
OsH1 | KNOX转录因子 |
[ | |
TAD1 | APC/C激活因子 |
[ | |
LAX1/ROX | bHLH转录因子 |
[ | |
腋芽激活及伸长的关键基因 | BRC1/TB1 | TCP转录因子 |
[ |
Key genes involved in axillary bud activation and outgrowth | IPA1/OsSPL14 | 类Squamosa启动子结合蛋白 |
[ |
TIN1 | C2H2锌指转录因子 |
[ | |
MOC3 | WOX蛋白 |
[ | |
FON1 | 植物受体激酶 |
[ |
关于AM的起源有两种解释模型,即“离生分生组织”模型和“从头诱导”模型。“离生分生组织”模型认为AM起源于茎顶端分生组织(SAM,shoot apical meristem),从SAM分化而来,保留了原分生组织的特

图1 参与腋生分生组织起始的关键转录因子及激素
Fig.1 Key factors and hormones involved in AM initiation
蓝色字体为激素;下同
Hormones are labeled in blue font; The same as below
GRAS家族转录因子在AM的形成与生长中起着关键作用,如拟南芥中的LAS,番茄中的LS (LATERAL SUPPRESSOR)和水稻中的MOC1(MONOCULM 1)。MOC1主要在腋芽中表达,促进AM形成和发育成分
植物生长发育过程中会不断的产生AM并形成腋芽,腋芽可直接发育成侧枝也可被抑制发育形成休眠芽,休眠芽被激活后才能继续生长成为侧枝,多种激素和基因参与这一过程(

图2 参与腋芽激活及伸长的关键因子及激素
Fig. 2 Key factors and hormones involved in axillary bud activation and outgrowth
Zhang
植物激素,包括生长素、细胞分裂素、赤霉素(GA,gibberellin)、油菜素内酯和独脚金内酯,是休眠芽打破休眠和分枝继续生长的重要因素,多种激素合成和信号转导关键基因(
激素 Hormone | 基因 Gene | 功能描述 Function description | 参考文献 References |
---|---|---|---|
生长素 IAA | YUC | IAA合成途径基因 |
[ |
TAA1 | IAA合成途径基因 |
[ | |
AUX1 | IAA输入载体 |
[ | |
LAX1 | IAA输入载体 |
[ | |
LAX2 | IAA输入载体 |
[ | |
PIN1 | IAA输出载体 |
[ | |
细胞分裂素 CK | IPT8 | CK合成途径基因 |
[ |
DgIPT3 | CK合成途径基因 |
[ | |
LOG1 | CK合成途径基因 |
[ | |
CKX3 | CK降解途径基因 |
[ | |
赤霉素 GA | GA2ox | GA失活关键酶 |
[ |
GA2ox4 | GA失活关键酶 |
[ | |
油菜素内酯 BR | BZR1 | BR信号途径的关键转录因子 |
[ |
BES1 | BR信号正调控因子 |
[ | |
独脚金内酯 SL | D53 | SL信号的抑制子 |
[ |
SMXL6/7/8 | SL信号的抑制子 |
[ | |
D14 | SL水解和SL信号转导相关基因 |
[ | |
D3 | SL信号转导相关基因 |
[ |
IAA:Indole-3-acetic acid;CK:Cytokinin;GA:Gibberellin;BR:Brassinosteroid;SL:Strigolactone
IAA是调控植物AM形成的重要激素。Wang
CK是调控植物AM形成和生长的重要激素,与IAA起拮抗作用。研究表明,CK信号级联涉及多个基因家族,包括拟南芥组氨酸激酶(AHK,arabidopsis histidine kinase)受体、含组氨酸的磷酸转移蛋白(AHPs,histidine-containing phosphotransfer proteins)、调节磷酸传递及对CK转录响应的B型响应调节因子(B-ARRs,type-B response regulator)和作为CK信号负反馈调节因子的A-ARRs,其中A-ARRs是CK的主要反应因
GA在AM形成和生长中也起到重要调控作用。GA调控植物分枝是一个非常复杂的机制,在木本科植物中GA和CK协同促进侧芽生长,其中GA3在促进芽分枝方面非常显著,GA的生物合成的抑制剂多效唑显著降低了CK对腋芽生长的促进作用,两种激素都影响维持芽休眠的关键基因BRC1和BRC2的表
BR通过BR信号传导相关基因调控腋芽生长。目前揭示了由BR介导的以BZR1(BRASSINAZOLE-RESISTANT1
SL是调控腋芽生长的重要激素,其通过SL生物合成和信号传导来调控植物分枝数。近年的研究表明,在单子叶植物和双子叶植物中SL作为植物内源激素均会抑制芽的生
糖在诱导植物腋芽的生长中起重要作用。腋芽初始形成后处于休眠状态或受顶端优势的抑制,蔗糖在植物体内的转运及其在芽中的积累与腋芽的起始密切相关,并能触发腋芽的生
光不仅是植物主要的能量来源,还是控制芽生长的关键环境信号。光信号由几种类型的光感受器感知,如光敏色素A(PHYA,phytochrome A)和光敏色素B(PHYB,phytochrome B)等。Xie
本文综述了植物中激素、蔗糖和光调控植物分枝的最新研究进展。目前的研究结果表明,IAA和SL抑制分枝,CK、BR和蔗糖促进分
近几年,水稻、拟南芥和番茄等作物中关于分枝调控的研究结果相继被发表。而在油料作物中,与分枝相关的基因研究较少。Liang
总之,分枝是影响植物理想株型的重要因子之一,同时也是影响植物产量的关键性状。AM的形成以及AM发育成腋芽,继而生长成分枝的过程受复杂的多因素调控。除了遗传因素和植物激素影响植物分枝性状外,还有大量的研究报道证实表观遗传调控也在分枝调控中扮演着重要的角
参考文献
Yiotis C, McElwain J C, Osborne B A. Enhancing the productivity of ryegrass at elevated CO2 is dependent on tillering and leaf area development rather than leaf-level photosynthesis. Journal of Experimental Botany, 2021, 72(5):1962-1977 [百度学术]
Drummond R S, Janssen B J, Luo Z, Oplaat C, Ledger S E, Wohlers M W, Snowden K C. Environmental control of branching in petunia. Plant Physiology, 2015, 168(2):735,751 [百度学术]
Aaliya B, Noreen Z, Rubina N, Sobia S, Shahid I, Abida K, Ali R. Harnessing the role of genes involved in plant architectural changes. Plant Growth Regulation, 2023, 101:15-34 [百度学术]
Jiang Y X, Zhang A R, He W J, Li Q Q, Zhao B S, Zhao H J, Ke X B, Guo Y L, Sun P Y, Yang T W, Wang Z, Jiang B, Shen J J, Li Z. GRAS family member LATERAL SUPPRESSOR regulates the initiation and morphogenesis of watermelon lateral organs. Plant Physiology, 2023, 193(4):2592-2604 [百度学术]
Xu C, Liberatore K L, MacAlister C A, Huang Z J, Chu Y H, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G Y, Pauly M, VanEck J, Matsubayashi Y, van der Knaap E, Lippman Z B. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nature Genetics, 2015, 47(7):784-792 [百度学术]
Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. The Plant Cell, 2006, 18(3):598-611 [百度学术]
Xia T Y, Chen H Q, Dong S J, Ma Z Y, Ren H B, Zhu X D, Fang X H, Chen F. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice. The Plant Journal, 2020, 104(6):1635-1647 [百度学术]
Otsuga D, Deguzman B, Prigge M J, Drews G N, Clark S E. Revoluta regulates meristem initiation at lateral positions. The Plant Journal, 2001, 25(2):223-236 [百度学术]
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X H,Yoshida H, Kyozuka J, Chen F, Sato Y. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. The Plant Cell, 2011, 23(9):3276-3287 [百度学术]
Shi B H, Zhang C, Tian C H, Wang J, Wang Q, Xu T F, Xu Y, Ohno C, Sablowski R, Heisler M G, Theres K, Wang Y, Jiao Y L. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genetics, 2016, 12(7):e1006168 [百度学术]
Li Y, Xia T, Gao F, Li Y H. Control of plant branching by the CUC2/CUC3-DA1-UBP15 regulatory module. The Plant Cell, 2020, 32(6):1919-1932 [百度学术]
Yang Y, Nicolas M, Zhang J Z, Yu H, Guo D S, Yuan R R, Zhang T T, Yang J Z, Cubas P, Qin G J. The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis. PLoS Genetics, 2018, 14(3):e1007296 [百度学术]
Guo D S, Zhang J Z, Wang X L, Han X, Wei B Y, Wang J Q, Li B X, Yu H, Huang Q P, Gu H Y, Qu L J, Qin G J. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. The Plant Cell, 2015, 27(11):3112-3127 [百度学术]
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. The Plant Cell, 1997, 9:841-857 [百度学术]
Mayer K F X, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95:805-815 [百度学术]
Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science,1999, 283:1911-1914 [百度学术]
Müller D, Schmitz G, Theres K. Blind homologous R2R3 Myb Genes control the pattern of lateral meristem initiation in Arabidopsis. The Plant Cell, 2006, 18(3):586-597 [百度学术]
Balkunde R, Kitagawa M, Xu X F M, Wang J, Jackson D. SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ boundaries in Arabidopsis. The Plant Journal, 2017, 90(3):435-446 [百度学术]
Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luok D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422:618-621 [百度学术]
Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proceedings of the National Academy of Sciences, 1999, 96:290-295 [百度学术]
Tsuda K, Ito Y, Sato Y, Kurata N. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. The Plant Cell, 2011, 23:4368-4381 [百度学术]
Xu C, Wang Y H, Yu Y C, Duan J B, Liao Z G, Xiong G S, Meng X B, Liu G F, Qian Q, Li J Y. Degradation of MONOCULM 1 by APC/
Oikawa T, Kyozuka J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. The Plant Cell, 2009, 21(4):1095-1108 [百度学术]
Yang F, Wang Q, Schmitz G, Müller D, Theres K. The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis. The Plant Journal, 2012, 71:61-70 [百度学术]
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal, 2003, 33(3):513-520 [百度学术]
Lu Z F, Yu H, Xiong G S, Wang J, Jiao Y Q, Liu G F, Jing Y H, Meng X B, Hu X M, Qian Q, Fu X D, Wang Y H, Li J Y. Genome-Wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. The Plant Cell, 2013, 25(10):3743-3759 [百度学术]
Zhang X, Lin Z L, Wang J, Liu H Q, Zhou L N, Zhong S Y, Li Y, Zhu C, Liu J C, Lin Z W. The tin1 gene retains the function of promoting tillering in maize. Nature Communications, 2019, 10:5608 [百度学术]
Lu Z F, Shao G N, Xiong J S, Jiao Y Q, Wang J, Liu G F, Meng X B, Liang Y, Xiong G S, Wang Y H, Li J Y. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. Journal of Genetics and Genomics, 2015, 42(2):71-78 [百度学术]
Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Molecular Plant, 2019, 12(8):1090-1102 [百度学术]
Long J, Barton M K. Initiation of axillary and floral meristems in Arabidopsis. Developmental Biology, 2000, 218(2):341-353 [百度学术]
Steeves T A, Sussex I M. Patterns in plant development. 2nd edn. Cambridge: Cambridge University Press, 1989 [百度学术]
McConnell J R, Barton M K. Leaf polarity and meristem formation in Arabidopsis. Development, 1998, 125:2935-2942 [百度学术]
Nicolas A, Maugarny-Calès A, Adroher B, Chelysheva L, Li Y, Burguet J, Bågman A, Smit M E, Brady S M, Li Y H, Laufs P. De novo stem cell establishment in meristems requires repression of organ boundary cell fate. The Plant Cell, 2022, 34(12):4738-4759 [百度学术]
Luo Z W, Janssen B J, Snowden K C. The molecular and genetic regulation of shoot branching. Plant Physiology, 2021, 187(3):1033-1044 [百度学术]
Zeng J, Geng X, Zhao Z, Zhou W K. Tipping the balance: The dynamics of stem cell maintenance and stress responses in plant meristems. Current Opinion in Plant Biology, 2024, 78:102510 [百度学术]
Su Y H, Zhou C, Li Y J, Yu Y, Tang L P, Zhang W J, Yao W J, Huang R F, Laux T, Zhang X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences, 2020, 117(36):22561-22571 [百度学术]
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X H, Yoshida H, Kyozuka J, Chen F, Sato Y. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell, 2011, 23(9):3276-3287 [百度学术]
Gonzalez-Grandio E, Poza-Carrion C, Sorzano C O S, Cubas P. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. The Plant Cell, 2013, 25(3):834-850 [百度学术]
Ishizaki T, Ueda Y, Takai T, Maruyama K, Tsujimoto Y. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency. Plant Science, 2023, 330:111627 [百度学术]
Takai T, Taniguchi Y, Takahashi M, Nagasaki H, Yamamoto E, Hirose S, Hara N, Akashi H, Ito J, Arai-Sanoh Y, Hori K, Fukuoka S, Sakai H, Tokida T, Usui Y, Nakamura H, Kawamura K, Asai H, Ishizaki T, Maruyama K, Mochida K, Kobayashi N, Kondo M, Tsuji H, Tsujimoto Y, Hasegawa T, Uga Y. MORE PANICLES 3, a natural allele of OsTB1/FC1, impacts rice yield in paddy fields at elevated CO2 levels. The Plant Journal, 2023, 114:729-742 [百度学术]
Zhang L, Yu H, Ma B, Liu G F, Wang J J, Wang J M, Gao R C, Li J J, Liu J Y, Xu J, Zhang Y Y, Li Q, Huang X H, Xu J L, Li J M, Qian Q, Han B, He Z H, Li J Y. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nature Communications, 2017, 8:14789 [百度学术]
Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 2018, 69:437-468 [百度学术]
Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano H. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. The Plant Cell, 2015, 27(4):1173-1184 [百度学术]
Liao Z G, Yu H, Duan J B, Yuan K, Yu C J, Meng X B, Kou L Q, Chen M J, Jing Y H, Liu G F, Smith S M, Li J Y. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature Communications, 2019, 10:2738 [百度学术]
Cheng Y F, Dai X H, Zhao Y D. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development, 2006, 20:1790-1799 [百度学术]
Stepanova A N, Robertson-Hoyt J, Yun J, Benavente L M, Xie D, Doležal K, Schlereth A, Jürgens G, Alonso J M. TAA1-Mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 2008, 133:177-191 [百度学术]
Bainbridge K, Guyomarc’h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C. Auxin influx carriers stabilize phyllotactic patterning. Genes & Development, 2008, 22:810-823 [百度学术]
Reinhardt D, Pesce E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature, 2003, 426:255-260 [百度学术]
Wang Y, Wang J, Shi B H, Yu T, Qi J Y, Meyerowitz E M, Jiao Y L. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. The Plant Cell, 2014, 26(5):2055-2067 [百度学术]
于静,董丽丽,郗琳,赵瑞艳,马男,赵梁军. 切花菊‘神马’细胞分裂素合成酶基因DgIPT3参与侧枝发育的功能分析. 园艺学报, 2012, 39(4):721-728 [百度学术]
Yu J, Dong L L, Xi L, Zhao R Y, Ma N, Zhao L J. Isolation and characterization of cytokinin synthase gene DgIPT3 in chrysanthemum‘Jinba’. Acta Horticulturae Sinica, 2012, 39(4):721-728 [百度学术]
Han Y Y, Zhang C, Yang H B, Jiao Y L. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proceedings of the National Academy of Sciences, 2014, 111(18):6840-6845 [百度学术]
Zawaski C, Busov V B. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS ONE, 2014, 9(1):e86217 [百度学术]
Zhang Q Q, Wang J G, Wang L Y,Wang J F, Wang Q, Yu P, Bai M Y, Fan M. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA‐SPL9 complex activity. Journal of Integrative Plant Biology, 2020, 62(4):421-432 [百度学术]
Fang Z M, Ji Y Y, Hu J, Guo R K, Sun S Y, Wang X L. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering. Molecular Plant, 2019, 13(4):586-597 [百度学术]
Hu J, Ji Y Y, Hu X T, Sun S Y, Wang X L. BES1 functions as the Co-regulator of D53-like SMXLs to inhibit BRC1 expression in strigolactone-regulated shoot branching in Arabidopsis. Plant Communications, 2019, 1(3):100014 [百度学术]
Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504(7480):401-405 [百度学术]
Wang L, Wang B, Yu H, Guo H Y, Lin T, Kou L Q, Wang A Q, Shao N, Ma H Y, Xiong G S, Li X Q, Yang J, Chu J F, Li J Y. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature, 2020, 583(7815):277-281 [百度学术]
Yao R F, Ming Z H, Yan L M, Li S H, Wang F, Ma S, Yu C T, Yang M, Chen L, Chen L H, Li Y W, Yan C, Miao D, Sun Z Y, Yan J B, Sun Y N, Wang L, Chu J F, Fan S L, He W, Deng H T, Nan F J, Li J Y, Rao Z H, Lou Z Y, Xie D X. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 2016, 536(7617):469-473 [百度学术]
Nakamura H, Xue Y L, Miyakawa T, Hou F, Qin H M, Fukui K, Shi X, Ito E, Ito S, Park S H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T. Molecular mechanism of strigolactone perception by DWARF14. Nature Communications, 2013, 4:2613 [百度学术]
Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SC
Wang Q, Kohlen W, Rossmann S, Vernoux T, Theresa K. Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato. The Plant Cell, 2014, 26(5):2068-2079 [百度学术]
Vernoux T, Besnard F, Traas J. Auxin at the shoot apical meristem. Cold Spring Harb Perspectives in Biology, 2010, 2:a001487 [百度学术]
Kieber J J, Schaller G E. Cytokinin signaling in plant development. Development, 2018, 145:dev149344 [百度学术]
Hwang I, Sheen J, Müller B. Cytokinin signaling networks. Annual Review of Plant Biology, 2012, 63:353-380 [百度学术]
刘杨,顾丹丹,许俊旭,丁艳锋,王强盛,李刚华,刘正辉,王绍华. 细胞分裂素对水稻分蘖芽生长及分蘖相关基因表达的调控. 中国农业科学, 2012, 45(1):44-51 [百度学术]
Liu Y, Gu D D, Xu J X, Ding Y F, Wang Q S, Li G H, Liu Z H, Wang S H. Effect of cytokinins on the growth of rice tiller buds and the expression of the genes regulating rice tillering. Scientia Agricultura Sinica, 2012, 45(1):44-51 [百度学术]
Müller D, Waldie T, Miyawaki K, To J P C, Melnyk C W, Kieber J J, Kakimoto T, Leyser O. Cytokinin is required for escape but not release from auxin mediated apical dominance. The Plant Journal, 2015, 82(5):874-886 [百度学术]
Ni J, Gao C C, Chen M S, Pan B Z, Ye K Q, Xu Z F. Gibberellin promotes shoot branching in the perennial woody plant Jatropha Curcas. Plant Cell Physiology, 2015, 56:1655-1666 [百度学术]
Lin Q B, Zhang Z, Wu F Q, Feng M, Sun Y, Chen W W, Cheng Z J, Zhang X, Ren Y L, Lei C L, Zhu S S, Wang J, Zhao Z C, Guo X P, Wang H Y, Wan J M. The APC/
Lo S F, Yang S Y, Chen K T, Hsing Y L, Zeevaart J A D, Chen L J, Yu S M. A novel class of gibberellin 2-Oxidases control semidwarfism,tillering, and root development in rice. The Plant Cell, 2008, 20:2603-2618 [百度学术]
黄升财,王冰,谢国强,刘中来,张美娟,张树清,程宪国. 赤霉素GA4是水稻矮化特征的重要调节因子. 中国农业科学, 2019, 52(5):786-800 [百度学术]
Huang S C, Wang B, Xie G Q, Liu Z L, Zhang M J, Zhang S Q, Cheng X G. Enrichment profile of GA4 is an important regulatory factor triggering rice dwarf. Scientia Agricultura Sinica, 2019, 52(5):786-800 [百度学术]
Ito S, Yamagami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, Yajima S, Kyozuka J, Ueguchi-Tanaka M, Matsuoka M, Shirasu K, Yamaguchi S, Asami T. Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiology, 2017, 174:1250-1259 [百度学术]
Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling. New Phytologist, 2015, 206(2):522-540 [百度学术]
Xia X J, Dong H, Yin Y L, Song X W, Gu X H, Sang K Q, Zhou J, Shi K, Zhou Y H, Foyer C H, Yu J Q. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proceedings of the National Academy of Sciences, 2021, 118(11):e2004384118 [百度学术]
Yin Y H, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005, 120(2):249-259 [百度学术]
Wang Y, Sun S Y, Zhu W J, Jia K P, Yang H Q, Wang X L. Strigolactone/MAX2-Induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Developmental Cell, 2013, 27:681-688 [百度学术]
Leyser O. Strigolactones and shoot branching: A new trick for a young dog. Developmental Cell, 2008, 15(3):337-338 [百度学术]
Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J, Letisse F, Matusova R, Danoun S, Portais J, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210):189-194 [百度学术]
王玫,陈洪伟,王红利,刘克锋. 独脚金内酯调控植物分枝的研究进展. 园艺学报, 2014, 41(9):1924-1934 [百度学术]
Wang M, Chen H W, Wang H L, Liu K F. Research progress in regulatory role of strigolactones in shoot branching. Acta Horticulturae Sinica, 2014, 41(9):1924-1934 [百度学术]
姚瑞枫,谢道昕. 独脚金内酯信号途径的新发现——抑制子也是转录因子. 植物学报, 2020, 55(4):397-402 [百度学术]
Yao R F, Xie D X. New insight into strigolactone signaling. Chinese Bulletin of Botany, 2020, 55(4):397-402 [百度学术]
Xie Y R, Liu Y, Ma M D, Zhou Q, Zhao Y P, Zhao B B, Wang B B, Wei H B, Wang H Y. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nature Communications, 2020, 11:1955 [百度学术]
Saeed W, Naseem S, Ali Z. Strigolactones biosynthesis and their role in abiotic stress resilience in plants: A critical review. Frontiers in Plant Science, 2017, 8:1487 [百度学术]
Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska M A, Leyser O. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137:2905-2913 [百度学术]
Shinohara N, Taylor C, Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biology, 2013, 11(1):e1001474 [百度学术]
Yuan K, Zhang H, Yu C J, Luo N, Yan J J, Zheng S, Hu Q L, Zhang D H, Kou L Q, Meng X B, Jing Y H, Chen M J, Ban X W, Yan Z Y, Lu Z F, Wu J, Zhao Y, Liang Y, Wang Y H, Xiong G S, Chu J F, Wang E T, Li J Y, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. Molecular Plant, 2023, 16(11):1811-1831 [百度学术]
Mason M G, Ross J J, Babst B A, Wienclaw B N, Beveridge C A. Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences, 2014, 111(16):6092-6097 [百度学术]
Barbier F F, Lunn J E, Beveridge C A. Ready, steady, go! A sugar hit starts the race to shoot branching. Current Opinion in Plant Biology, 2015, 25:39-45 [百度学术]
Barbier F, Péron T, Lecerf M, Perez-Garcia M, Barrière Q, Rolčík J, Boutet-Mercey S, Citerne S, Lemoine R, Porcheron B, Roman H, Leduc N, Gourrierec J L, Bertheloot J, Sakr S. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in rosa hybrida. Journal of Experimental Botany, 2015, 66(9):2569-2582 [百度学术]
Salam B B, Malka S K, Zhu X B, Gong H L, Ziv C, Teper-Bamnolker P, Ori N, Jiang J M, Eshel D. Etiolated stem branching is a result of systemic signaling associated with sucrose level. Plant Physiology, 2017, 175:734-745 [百度学术]
Salam B B, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spı´chal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Carmeli-Weissberg M, Gal-On A, Jiang J M, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. Plant Physiology, 2021, 185(4):1708-1721 [百度学术]
Patil S B, Barbier F F, Zhao J F, Zafar S A, Uzair M, Sun Y L, Fang J J, Perez-Garcia M, Bertheloot J, Sakr S, Fichtner F, Chabikwa T G, Yuan S J, Beveridge C A, Li X Y. Sucrose promotes D53 accumulation and tillering in rice. New Phytologist, 2021, 234:122-136 [百度学术]
Koumoto T, Shimada H, Kusano H, She K C, Iwamoto M, Takano M. Rice monoculm mutation moc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1,6-bisphosphatase. Plant Biotechnology, 2013, 30:47-56 [百度学术]
Wang M, Ogé L,Voisine L, Perez-Garcia M, Jeauffre J, Saint-Oyant L H, Grappin P, Hamama L, Sakr S. Posttranscriptional regulation of RhBRC1 (Rosa hybrida BRANCHED1) in response to sugars is mediated via its own 3′ untranslated region, with a potential role of RhPUF4 (Pumilio RNA-Binding Protein Family). International Journal of Molecular Sciences, 2019, 20(15):3808 [百度学术]
Schwarz S, Grande A V, Bujdoso N, Saedler H, Huijser P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology, 2008, 67(1-2):183-195 [百度学术]
Wang J W, Schwab R, Czech B, Mica E, Weigel D. Dual effects of miR156-Targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell, 2008, 20(5):1231-1243 [百度学术]
Franklin K A, Whitelam G C. Phytochromes and shade-avoidance responses in plants. Annals of Botany, 2005, 96:169-175 [百度学术]
Xie Y R, Liu Y, Wang H, Ma X J, Wang B B, Wu G X, Wang H Y. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade avoidance syndrome in Arabidopsis. Nature Communications, 2017, 8:348 [百度学术]
Kebrom T H, Burson B L, Finlayson S A. Phytochrome B represses teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiology, 2006, 140(3):1109-1117 [百度学术]
Kebrom T H, Brutnell T P, Finlayson S A. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant, Cell & Environment, 2010, 33:48-58 [百度学术]
周琴,谢钰容. 光信号转导因子HY5调控拟南芥分枝的功能研究. 生物技术进展, 2022, 12(3):379-386 [百度学术]
Zhou Q, Xie Y R. Functional analysis of ELONGATED HYPOCOTYL5 regulating branching in Arabidopsis thaliana.Current Biotechnology, 2022, 12(3):379-386 [百度学术]
Dong H, Wang J C, Song X W, Hu C Y, Zhu C G, Sun T, Zhou Z W, Hu Z J, Xia X J, Zhou J, Shi K, Zhou Y H, Foyer C H, Yu J Q. HY5 functions as a systemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth. Proceedings of the National Academy of Sciences, 2023, 120(16):e2301879120 [百度学术]
Kondhare K R, Kumar A, Patil N S, Malankar N N, Saha K, Banerjee A K. Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism. Plant Physiology, 2021, 187(3):1071-1086 [百度学术]
Liang Q J, Chen L Y, Yang X, Yang H, Liu S L, Kou K, Fan L, Zhang Z F, Duan Z B, Yuan Y Q, Liang S, Liu Y C, Lu X T, Zhou G A, Zhang M, Kong F J, Tian Z X. Natural variation of Dt2 determines branching in soybean. Nature Communications, 2022, 13:6429 [百度学术]
吴海涛,张勇,苏伯鸿,Lamlom F Sobhi,邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位. 作物学报, 2020, 46(11):1667-1677 [百度学术]
Wu H T, Zhang Y, Su B H, Sobhi L F, Qiu L J. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.). Acta Agronomica Sinica, 2020, 46(11):1667-1677 [百度学术]
刘倩倩,申潇潇,李淮琳,余凯迪,范楚川. 利用基因编辑技术研究BnaFZP基因调控油菜分枝的功能. 中国油料作物学报, 2024,46(5):985-992 [百度学术]
Liu Q Q, Shen X X, Li H L, Yu K D, Fan C C. Regulation of shoot branching by BnaFZP in Brassica napus based on gene editing technology. Chinese Journal of Oil Crop Sciences, 2024,46(5):985-992 [百度学术]
张晓红,许佩阳,闫绪,张贝贝,于婵婵. 棉花GhFUL1基因及其启动子的克隆和功能分析. 华北农学报, 2023, 38(5):60-68 [百度学术]
Zhang X H, Xu P Y, Yan X, Zhang B B, Yu C C. Cloning and functional analysis of GhFUL1 gene and its promoter in cotton. Acta Agriculturae Boreali-sinica, 2023, 38(5):60-68 [百度学术]
Sun Q, Xie Y H, Li H M, Liu J L, Geng R, Wang P, Chu Z Y, Chang Y, Li G J, Zhang X, Yuan Y L, Cai Y F. Cotton GhBRC1 regulates branching, flowering, and growth by integrating multiple hormone pathways. The Crop Journal, 2021, 10:75-87 [百度学术]
Zhang S Z, Qiu J L, Miao H R, Yang W Q, Zhao L B, Song X, Pan L J, Zhang Z M, Hu X H, Chen J. QTL mapping for main stem height,first branch length and branch number based on a high-density linkage map in peanut (Arachis hypogaea L.). Journal of Peanut Science, 2019, 48(2):1-9 [百度学术]
成良强,唐梅,任小平,黄莉,陈伟刚,李振动,周小静,陈玉宁,廖伯寿,姜慧芳. 栽培种花生遗传图谱的构建及主茎高和总分枝数QTL 分析. 作物学报, 2015, 41(6):979-987 [百度学术]
Cheng L Q, Tang M, Ren X P, Huang L, Chen W G, Li Z D, Zhou X J, Chen Y N, Liao B S, Jiang H F. Construction of genetic map and QTL analysis for mainstem height and total branch number in peanut (Arachis hypogaea L.). Acta Agronomica Sinica, 2015, 41(6):979-987 [百度学术]
Gupta C, Salgotra R K. Epigenetics and its role in effecting agronomical traits. Frontiers in Plant Science, 2022, 13:925688 [百度学术]